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Abstract

The OpenMath framework for transmitting mathematical
objects over the Internet relies on the concept of Content
Dictionaries (CDs) to define the semantics of mathemati-
cal objects. This is an essential measure for establishing a
meaningful communication amongst mathematical software
systems (and humans).

Currently, the infrastructure for conceiving, administer-
ing, viewing CDs is limited to a file-based almost flat repos-
itory. In this paper, we propose to use the OMDoc exten-
sion of the OpenMath Xml encoding as an infrastructure
to express and manipulate content dictionary information.
OMDoc extends OpenMath by adding support for docu-
ment markup (making the CDs more readable to the human
user) and structured specification (making them more ex-
plicit, formal, and allow the user to reuse, and inherit CD
information in a flexible, but well-defined way).

1 Introduction

It is plausible to expect that the way we do (conceive, de-
velop, communicate about, and publish) mathematics will
change considerably in the next ten years. The Internet
plays an ever-increasing role in our everyday life, and most
of the mathematical activities will be supported by mathe-
matical software systems like computer algebra systems, the-
orem provers, mathematical knowledge bases, visualisation
tools, etc; we will jointly call them mathematical services, if
they are available on the Internet. These will be connected
by a commonly accepted distribution architecture. From
the experience with our MathWeb [11, 12] and similar ex-
periments [7, 3] we can distinguish four kinds of problems
that have to be overcome for realizing the vision of creating
a world wide web of cooperating mathematical services. We
will review them briefly and point out their relation to the
OpenMath effort.

Syntax This is the very problem addressed by the Open-

Math Xml encoding. With its imminent wider ac-
ceptance, and the emerging set of support tools, this
problem will soon be solved.

Protocol/Control The problems of low-level communica-
tion and common control protocols have to be decided
upon in the concrete application. OpenMath does not
make a contribution here, but empirically, a very wide
range of such protocols and architectures can be flexi-
bly modelled by agent-oriented programming [15, 16];

in MathWeb we have experimented with the current
de-facto standard Kqml [9] with good results. While
a large-scale evaluation of this approach is still miss-
ing, we will not pursue this in this paper and refer the
reader to [11, 2].

Semantics For the integration of systems it is crucial to
specify concisely and without ambiguity the meaning
of the exchanged formulae, i.e. there is the problem of
establishing a semantics for the communicated mathe-
matical objects. Otherwise the results of the integrated
system can be arbitrary1. This is well-known as the so-
called ontology problem in distributed artificial intelli-
gence, the accepted solution to this is to either take
recourse to a common set of concepts (the ontology)
or to negotiate a private ontology for the communica-
tion. OpenMath recognises this and offers the mecha-
nism of “content dictionaries”: machine-readable, but
normally informal definitions of the mathematical con-
cepts involved.

Context The context problem is a variant of the semantics
problem, i.e. in the communication of two mathemat-
ical software systems (or more generally agents) it is
advantageous to maintain a sense of shared context or
state. For instance, the state can be used to refer back
to (parts of) previous formulae that are kept in the so-
called context. Of course it is possible to eliminate con-
text/state from the communication by retransmitting
the relevant parts of the context, but this can lead to
an exponential increase in costs. As a consequence al-
most all mathematical software systems use some form
of context for the communication with the user. The
OpenMath community has repeatedly discussed the
concept of “dynamic CD” for this, but has not reached
a conclusion yet.

All in all we see that the concept of content dictionar-
ies in OpenMath addresses important problems (semantics
and context) in the communication of mathematical objects
over the Internet. Before we go on, let us briefly review the
structure of CDs (see figure 1 for an example); they are ba-
sically collections of symbol declarations2 , without explicit
structuring mechanism (the CDUses element in CDs, which

1Recall the recent incident of the NASA Mars mission, where
NASA specified metric units but the contractor used pounds and
inches (as a result the probe crashed on Mars.)

2The actual term used is CDDefinition, which is somewhat mis-
leading, since e.g. the property of being commutative does not really
define addition.
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suggests a simple inclusion mechansim only specifies which
examples are used in FMP tags or examples).

<CD>
<CDName>arith1</CDName>
<CDReviewDate>2000-09-01</CDReviewDate>
...

<CDUses>
<CDName>alg1</CDName>
...

<CDName>relation1</CDName>
</CDUses>
<Description>
This CD defines symbols for common arithmetic functions.

</Description>

<CDDefinition>
<Name>plus</Name>
<Description>
An nary commutative function plus.

</Description>
<CMP>Addition is commutative, i.e. a+b=b+a</CMP>
<FMP>∀ x, y.x + y = y + x</FMP>3

</CDDefinition>
...

</CD>

Figure 1: An OpenMath Content Dictionary

Symbol declarations contain a description of the sym-
bol together with a set of “commented mathematical prop-
erties” (CMP) and “formal mathematical properties” (FMP)
in the form of OpenMath objects. As we see in figure 1,
these can be arbitrary properties of the symbol (e.g. com-
mutativity, but not associativity in the concrete example of
arith1.ocd).

Note that this way of specifying the meaning of symbols
is at best a partial solution, since the OpenMath frame-
work does not offer any support for ensuring consistency,
conciseness, or manipulation of CDs. In short, CDs are not
primary objects in OpenMath:

• They are machine-readable (OpenMath specifies an
Xml document type definition), but not machine-
understandable, since the only part of their content
that is fully formalised is administrative information
like review- and expiry dates.

• They are not objects intended for communication
themselves, but as background references defining the
meaning of symbols, in particular for implementing
phrase-books. OpenMath does provide an encoding of
CDs as OpenMath objects, but there are no phrase-
books or applications using that.

As a consequence, their content is largely informal (only
humans can interpret them anyway). Unfortunately, Open-

Math misses out on the opportunity to serve also as a stan-
dard for the theorem proving and software engineering (al-
gebraic specification communities and program verification),
where the precise (and machine-understandable, i.e. formal)
specification of meaning is essential.

Changing this situation, by providing support for mak-
ing the semantics of mathematical objects explicit or even
formal is in some sense a much larger task, which involves
formalising the mathematical theories behind them. We will
show that an extension of OpenMath (called OMDoc), can

3We have used the mathematical notation instead of the Open-

Math representation to conserve space here.

be used as an infrastructure to support this task. In fact we
claim (and we will substantiate this in section 6) that OM-

Doc is a good drop-in replacement for CDs in OpenMath.

2 OMDoc: OpenMath Documents

OMDoc extends the OpenMath standard to encompass
mathematical documents (see [19]). This is suitable for
our task since almost all of mathematics (specifications and
properties of mathematical objects) is currently commu-
nicated in document form (publications, letters, e-mails,
talks,. . . ). As these documents have a complex structure of
their own (often left implicit by typographic conventions),
the specific task to be solved in the extension to OpenMath

is to provide a standardised infrastructure for this as well.
As a consequence, OMDoc provides two sorts of markup

devices; for

microstructure of mathematical texts this largely com-
prises the general pattern “definition, theorem, proof”
that has long been considered paradigmatic of math-
ematical documents like textbooks and papers. Fur-
thermore OMDoc supports auxiliary items like ex-
planatory text, cross-references, exercises, applets, etc.
See [21] for details. In a nutshell, OMDoc uses spe-
cialised Xml elements for all of these which may con-
tain text representations (in form of CMPs) and formal
versions (in the form of FMPs) of the mathematical con-
tent.)

macrostructure in terms of mathematical theories. For
this, OMDoc techniques from the field of software
engineering (see e.g. [22] for an introduction to alge-
braic specification), which focuses around the struc-
tured specification of structured formal theories of the
behaviour of software and hardware.

In this paper, we will presuppose an intuition about the
microstructure of mathematical texts, but concentrate on
the treatment of mathematical theories (see section 3).

OMDoc is developed in the MathWeb project (see
http://www.mathweb.org) to serve as

• a communication standard between mathematical ser-
vices [11, 12].

• a data format that supports the controlled refinement
from informal presentation to formal specification of
mathematical objects and theories. Basically, an in-
formal textual presentation can first be marked up, by
making its discourse structure4 explicit, and then for-
malising the textually given mathematical knowledge
in logical formulae (by adding FMP elements; see [21]
for details.

• a basis for individualised (interactive) books. OMDoc

documents can be generated from the MBase service
(see section 6) making use of the discourse structure
information encoded in MBase. This application is
joint work with Arjeh Cohen’s OpenMath project at
Eindhoven.

4classifying text fragments as definitions, theorems, proofs, linking
text, and their relations; we follow the terminology from computa-
tional linguistics here.
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We are currently evaluating OMDoc in the development
of a user-adaptive interactive book including proof explana-
tion based on IDA [5]. The OMDoc representation supports
the formalisation of (parts of) the mathematical knowledge
in IDA and makes it accessible to the Ωmega [4] mathemat-
ical assistant system, which can prove some of the problems
either fully automatically (by proof planning) or in interac-
tion with the user. This newly developed formal data (it is
not present in IDA now) will enable the reader to read and
experiment with the proofs behind the mathematical theory,
much as she can in the present version with the integrated
computer algebra system GAP [24].

In the context of this project, we have developed sophis-
ticated mechanisms to translate OMDoc representations to
output formats like LATEX, HtML, MathMl, and the com-
munication formats of mathematical services including the-
orem provers and computer algebra systems. This allows to
browse OMDocs on the web and to produce nice printed
output.

We also have first authoring tools for OMDoc that sim-
plify generating OMDoc documents for the working mathe-
matician. There is a simple OMDoc mode for emacs, and a
LATEX style [20] that can be used to generate OMDoc repre-
sentations from LATEX sources and thus help migrate existing
mathematical documents. A second step will be to integrate
the LATEX to OpenMath conversion tools developed in the
OpenMath Esprit project. Michel Vollebregt has built a
program that traverses an OMDoc and substitutes various
representations for formulae (including the Mathematica,
GAP, and Maple representations) with the corresponding
OpenMath representations.

3 Mathematical Theories in OMDoc

Traditionally, mathematical knowledge has been partitioned
into so-called theories (see [10, 8] for an introduction), often
centred around certain mathematical objects like groups,
fields, or vector spaces. Theories have been formalised as
collections of

• signature declarations (the symbols used in a particular
theory, together with optional typing information).

• axioms (the logical laws defining the theory).

• theorems; these are in fact logically redundant, since
they are entailed by the axioms.

In software engineering a closely related concept is known
under the label of an (algebraic) specification, that is used
to specify the intended behaviour of programs. There, the
concept of a theory (specification) is much more elaborate to
support the structured development of specifications. With-
out this structure, real world specifications become unwieldy
and unmanageable.

In OMDoc, we support this structured specification of
theories; we build upon the technical notion of a develop-
ment graph [14], since this supplies a simple set of primitives
for structured specifications and also supports the manage-
ment of theory change. Furthermore, it is logically equiva-
lent to a large fragment of the emerging Casl standard [6]
for algebraic specification (see [1]).

All specification languages support mechanisms for spec-
ifying signature and axiom information, in particular, most
also support abstract data types as a convenient shorthand
for sets of inductively defined objects and recursive functions

on these. We will subsume these under the label of simple
theories and discuss their representation in OMDoc in the
next section. After that we will use section 5 to discuss
the issue of structuring and reusing theories by importing
material from other theories.

4 Simple Theories

Theories are specified by the theory element in OMDoc.
Since signature and axiom information are particular to a
given theory, the symbol, definition, and axiom elements
must be contained in a theory as sub-elements.

<theory xml:id="monoid">. . .

<symbol name="monoid">
<commonname xml:lang="en">monoid</commonname>
<commonname xml:lang="de">Monoid</commonname>
<commonname xml:lang="it">monoide</commonname>
<signature system="simply-typed">

set[any] -> (any -> any -> any) -> any -> bool
</signature>

</symbol>. . .

</theory>

Figure 2: An OMDoc symbol declaration

symbol This element specifies the symbols for mathematical
concepts, such as 1 for the natural number “one”, + for
addition, = for equality, or group for the property of
being a group. The symbol element has an id attribute
which uniquely identifies it (in an OMDoc document).

This information is sufficient to allow referring back
to this symbol as an OpenMath symbol. For in-
stance the symbol declaration in figure 2 gives rise to
an OpenMath symbol that can be referenced as <OMS
cd="monoid" name="monoid"/>.

If the document containing this symbol element is
stored in a data base system, the OpenMath symbol
could be looked up by its common name. The type
information specified in the signature element char-
acterises a monoid as a three-place predicate (taking
as arguments the base set, the operation and a neutral
element).

definition Definitions give meanings to (groups of) sym-
bols (declared in symbol elements elsewhere) in terms
of already defined ones. For example the number 1 can
be defined as the successor of 0 (specified by the Peano
axioms). Addition is usually defined recursively, etc.

The OMDoc definition element supports several
kinds of definition mechanisms specified in the type
attribute, currently:

simple The FMP contains an OpenMath representa-
tion of a logical formula that can be substituted
for the symbol specified in the item attribute of
the definition.

inductive The formal part is given by a set of recur-
sive equations whose left and right hand sides are
specified by the pattern and value elements in
requation elements. The termination proof nec-
essary for the well-definedness of the definition
can be specified in the just-by attribute of the
definition.
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implicit Here, the FMP elements contain a set of log-
ical formulae that uniquely determines the value
of the symbols that are specified in the items slot
of the definition. Again, the necessary proof of
unique existence can be specified in the just-by
attribute.

obj This can be used to directly give the concept de-
fined here as an OpenMath object, e.g. as a
group representation generated by a computer al-
gebra system.

Figure 3 gives an example of a (simple) monoid defini-
tion.

For a description of abstract data types see [21].

<definition name="mon.d1" item="monoid" type="simple">
<CMP>
A structure (M, ∗, e), is called a monoid,
if (M, ∗) is a semi-group and e a unit for ∗.

</CMP>
</definition>

Figure 3: A Definition of a monoid

5 Complex Theories and Inheritance

Not all definitions and axioms need to be explicitly stated
in a theory; they can be inherited from other theories, pos-
sibly transported by signature morphism. The inheritance
information is stated in an imports element.

imports This element has a from attribute, which specifies
the theory which exports the formulae.

For instance, given a theory of monoids using the sym-
bols set, op, neut (and axiom elements stating the
associativity, closure, and neutral-element axioms of
monoids), a theory of groups can be given by the theory
definition using import in figure 4.

<theory xml:id="group">
<imports xml:id="group.import" from="monoid" type="global"/>
<axiom><CMP> Every object in
<OMOBJ><OMS cd="monoid" name="set"/></OMOBJ> has an inverse.

</CMP></axiom>
</theory>

Figure 4: A theory of groups based on that of monoids

morphism The morphism is a recursively defined function
(it is given as a set of recursive equations using the
requation element, described above). It allows to
carry out the import of specifications modulo a cer-
tain renaming. With this, we can e.g. define a the-
ory of rings given as a tuples (R,+, 0,−, ∗, 1) by im-
porting from a group (M, ◦, e, i) via the morphism
{M 7→ R, ◦ 7→ +, e 7→ 0, i 7→ −} and from a monoid
(M, ◦, e) via the morphism {M 7→ R∗, ◦ 7→ ∗, e 7→ 1},
where R∗ is R without 0 (as defined in the theory of
monoids).

inclusion This element can be used to specify applicability
conditions on the import construction. Consider for in-
stance the situation given in figures 5 and 6, where the

theory of lists of natural numbers is built up by import-
ing from the theories of natural numbers and lists (of
arbitrary elements). The latter imports the element
specification from the parameter theory of elements,
thus to make the actualisation of lists to lists of natu-
ral numbers, all the symbols and axioms of the param-
eter theory must be fulfilled by the natural numbers.
For instance if the parameter theory specifies an order-
ing relation on elements, this must also be present in
theory Nat, and have the same properties there. These
requirements can be specified in the inclusion element
of OMDoc. Due to lack of space, we will not elaborate
this and refer the reader to [14, 21].

theory−inclusion

Proof Obligations

Actualization

imports

imports imports

NatOrd

0, s, Nat, <
cons, nil cons, nil

Elem, <

0, s, Nat, <
TOSet

Elem, <

NatOrdList OrdList

Figure 5: A Structured Specification of Lists

6 A System Infrastructure for OMDocs and Con-
tent Dictionaries

So far we have only taken a look at the OMDoc represen-
tation format for theories. To see the infrastructural advan-
tage over the OpenMath CD format, let us compare e.g. the
theories nat-list.thy given in figure 6 and the theory of
rings alluded to on page 4 with hypothetical equivalent CDs.

readability We can use all the presentation mechanisms
developed in the context of the IDA project mentioned
in section 2; this allows to browse CD information as
structured texts (as opposed to CD representations in
Xml, which is supported by the OpenMath technol-
ogy) on the web and to produce nice printed output.

definitions The definitions, axioms, and theorems given in
these theories can be expressed as CMPs and FMPs in
CDDefinitions in the CD.

In fact, we have developed Xsl style sheets that trans-
form OMDoc theories (see section 4) into CDs and
back [18]. This in particular allows to migrate all ex-
isting CDs into our proposed format.

redundancy Note that in the translation back into CD
format we lose the information which indicates which
of the properties are defining ones, and which just serve
illustration purposes (they are technically redundant,
and add no further specification, since they are implied
by the defining properties).

reuse both theories reuse other theories, by structured in-
clusion. The ring theory makes use of the monoid
and group theories importing material via a renaming
(CDUses does not allow this), and natlist.thy uses the
parameterised theory list instantiating it with natural
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<theory xml:id="Param">
<symbol name="Elem" type="sort"/>
<symbol name="ord"/>
<axiom ... ord is a partial order on Elem ... /axiom>

</theory>

<assertion xml:id="geq-ord" theory="nat-thy">
<CMP><OMOBJ><OMS name="geq" cd="nat"/></OMOBJ> is a
partial order on <OMOBJ><OMS name="nat" cd="nat"/><OMOBJ>

</CMP>
<assertion>

<theory xml:id="List">
<imports xml:id="List.im" type="global" from="Param"/>
<symbol name="List-sort" type="sort"/>
<symbol name="cons"/><symbol name="nil"/>
<symbol name="ordered"/>

</theory>

<theory xml:id="nat-list.thy">
<imports xml:id="nat-list.im-nat"

type="global" from="nat-thy"/>
<imports xml:id="nat-list.im-Element"

type="local" from="List">
<morphism xml:id="elem-nat">
<requation>
<pattern><OMS cd="Param" name="Elem"/></pattern>
<value>
<OMOBJ><OMS cd="nat.thy" name="Nat"/></OMOBJ>

</value>
</requation>
</morphism>

</imports>
<inclusion item="elem-nat-incl"/>

</theory>

<axiom-inclusion xml:id="elem-nat-incl"
from="nat.thy"
to="Param" by="ord-nat">

<morphism xml:id="elem-nat-incl-morph"
base="elem-nat"/>

</axiom-inclusion>

Figure 6: A theory of Lists of Natural Numbers

numbers. CDs for these theories would have to dupli-
cate multiply used theories, which can lead to combi-
natorial explosion, especially in the case of parametric
theories.

Another piece of infrastructure which can be used for
providing OpenMath infrastructure for managing content
dictionary information is the MBase system, a MathWeb

service that acts as a distributed mathematical knowledge
base. We will not present the MBase system here (see [13,
17]), but only look at some applications. MBase can be
used to

• collect and integrate multiple CDs (in OMDoc repre-
sentation), in particular it can be used as a web-based
CD server.

• generate personalised sub-documents or linearisations
of the structured data based on a user model. This
supports browsing and manipulating CD information
in large systems that reference a great number of CDs.

• answer high-level queries about the existence of specific
symbols, e.g. in cases where the actual CD a symbol is
defined in is unknown.

7 Conclusion

We have argued that for the specification and formalisation
of the meaning of mathematical symbols we need more sup-
port than is currently available from OpenMath content
dictionaries. We have proposed to use the OMDoc format
– an extension to OpenMath that allows to represent the
semantics and structure of various kinds of mathematical
documents – as the basis for an infrastructure for conceiving,
administering, viewing content dictionary information. As
a document-centred format, OMDoc gives better readabil-
ity than content dictionaries. With its structuring devices
inspired by methods from the field of software engineering
it allows for more concise and reusable specifications.

In the meantime, OMDoc is adopted as a data inter-
change format for theorem provers and program verifica-
tion systems (including Isabelle, Ωmega, λClam, Imps,
and InKa). All of these provide a substantial amount of
formalised mathematical theories, that can be used as CD
information in the OpenMath setting.

Of particular importance in this respect is the bridge be-
tween the Casl standard (Common Algebraic Specification
Language) [6] currently under development in Saarbrücken
and Bremen. This software engineering standard attempts
to solve a similar goal as the OpenMath standard: the
communication of meaningful mathematical objects over the
net. While OpenMath has concentrated on standardising
the representation of mathematical objects and web-based
communication, Casl has concentrated on standardising the
specification of (mathematical) theories (i.e. content dictio-
nary information).

OMDoc borrows from both standards and combines the
ideas in one system, thus it is well-suited as a basis for solv-
ing the semantics-problem mentioned in the introduction.
Together with the MBase system, which can act as an in-
teractive OMDoc/CD server (thus making CD information
dynamic), OMDoc can eventually serve as a basis for the
context problem mentioned there. This will however require
a tighter integration with the protocol/control layer, which
we intend to study in the near future taking [2] as a basis.
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