
spec.tex 8685 2010-08-23 08:55:17Z kohlhase

Michael Kohlhase

Computer Science

Jacobs University Bremen

m.kohlhase@jacobs-university.de

An Open Markup Format

for Mathematical Documents

OMDoc [Version 1.3]

August 23, 2010

This Document is the OMDoc 1.3 Specification.

Source Information revision 8755, last change August 23, 2010 by kohlhase

https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.3/doc/spec/spec.tex

This work is licensed by the Creative Commons Share-Alike license

http://creativecommons.org/licenses/by-sa/2.5/: the contents of this

specification or fragments thereof may be copied and distributed freely, as long

as they are attributed to the original author and source, derivative works (i.e.

modified versions of the material) may be published as long as they are also

licenced under the Creative Commons Share-Alike license.

Springer

m.kohlhase@jacobs-university.de
http://creativecommons.org/licenses/by-sa/2.5/

dedication.tex 8685 2010-08-23 08:55:17Z kohlhase

To Andrea

— my wife, collaborator, and best friend —

for all her support

abstract.tex 8685 2010-08-23 08:55:17Z kohlhase

VII

Abstract

The OMDoc (Open Mathematical Documents) format is a content markup
scheme for (collections of) mathematical documents including articles, text-
books, interactive books, and courses. OMDoc also serves as the content
language for agent communication of mathematical services on a mathemati-
cal software bus.

This document describes version 1.3 of the OMDoc format, the final and
mature release of OMDoc1. The format features a modularized language
design, OpenMath and MathML for representing mathematical objects,
and has been employed and validated in various applications.

This book contains the rigorous specification of the OMDoc document
format, an OMDoc primer with paradigmatic examples for many kinds of
mathematical documents. Furthermore we discuss applications, projects and
tool support for OMDoc.

foreword.tex 8685 2010-08-23 08:55:17Z kohlhase

VIII

Foreword

Computers are changing the way we think. Of course, nearly all desk-workers
have access to computers and use them to email their colleagues, search the
web for information and prepare documents. But I’m not referring to that. I
mean that people have begun to think about what they do in computational
terms and to exploit the power of computers to do things that would previously
have been unimaginable.

This observation is especially true of mathematicians. Arithmetic com-
putation is one of the roots of mathematics. Since Euclid’s algorithm for
finding greatest common divisors, many seminal mathematical contributions
have consisted of new procedures. But powerful computer graphics have now
enabled mathematicians to envisage the behaviour of these procedures and,
thereby, gain new insights, make new conjectures and explore new avenues
of research. Think of the explosive interest in fractals, for instance. This has
been driven primarily by our new-found ability rapidly to visualise fractal
shapes, such as the Mandelbrot set. Taking advantage of these new opportu-
nities has required the learning of new skills, such as using computer algebra
and graphics packages.

The argument is even stronger. It is not just that computational skills are
a useful adjunct to a mathematician’s arsenal, but that they are becoming
essential. Mathematical knowledge is growing exponentially: following its own
version of Moore’s Law. Without computer-based information retrieval tech-
niques it will be impossible to locate relevant theories and theorems, lead-
ing to a fragmentation and slowing down of the field as each research area
rediscovers knowledge that is already well-known in other areas. Moreover,
without the use of computers, there are potentially interesting theorems that
will remain unproved. It is an immediate corollary of Gödel’s Incompleteness
Theorem that, however huge a proof you think of, there is a short theorem
whose smallest proof is that huge. Without a computer to automate the dis-
covery of the bulk of these huge proofs, then we have no hope of proving
these simple-stated theorems. We have already seen early examples of this
phenomenon in the Four-Colour Theorem and Kepler’s Conjecture on sphere
packing. Perhaps computers can also help us to navigate, abstract and, hence,
understand these huge proofs.

Realising this dream of: computer access to a world repository of mathe-
matical knowledge; visualising and understanding this knowledge; reusing and
combining it to discover new knowledge, presents a major challenge to math-
ematicians and informaticians. The first part of this challenge arises because
mathematical knowledge will be distributed across multiple sources and rep-
resented in diverse ways. We need a lingua franca that will enable this babel
of mathematical languages to communicate with each other. This is why this
book — proposing just such a lingua franca — is so important. It lays the
foundations for realising the rest of the dream.

foreword.tex 8685 2010-08-23 08:55:17Z kohlhase

IX

OMDoc is an open markup language for mathematical documents. The
‘markup’ aspect of OMDoc means that we can take existing knowledge and
annotate it with the information required to retrieve and combine it automat-
ically. The ‘open’ aspect of OMDoc means that it is extensible, so future-
proofed against new developments in mathematics, which is essential in such
a rapidly growing and complex field of knowledge. These are both essential
features. Mathematical knowledge is growing too fast and is too distributed
for any centrally controlled solution to its management. Control must be dis-
tributed to the mathematical communities that produce it. We must provide
lightweight mechanisms under local control that will enable those communi-
ties to put the produce of their labours into the commonwealth with mini-
mal effort. Standards are required to enable interaction between these diverse
knowledge sources, but they must be flexible and simple to use. These re-
quirements have informed OMDoc’s development. This book will explain to
the international mathematics community what they need to do to contribute
to and to exploit this growing body of distributed mathematical knowledge.
It will become essentially reading for all working mathematicians and mathe-
matics students aspiring to take part in this new world of shared mathematical
knowledge.

OMDoc is one of the first fruits of the Mathematical Knowledge Manage-
ment (mkm) Network (http://www.mkm-ig.org/). This network combines
researchers in mathematics, informatics and library science. It is attempting
to realise the dream of creating a universal digital mathematics library of all
mathematical knowledge accessible to all via the world-wide-web. Of course,
this is one of those dreams that is never fully realised, but remains as a source
of inspiration. Nevertheless, even its partial realisation would transform the
way that mathematics is practised and learned. It would be a dynamic li-
brary, providing not just text, but allowing users to run computer software
that would provide visualisations, calculate solutions, reveal counter-examples
and prove theorems. It would not just be a passive source of knowledge but
a partner in mathematical discovery. One major application of this library
will be to teaching. Many of the participants in the mkm Network are build-
ing teaching aids that exploit the initial versions of the library. There will
be a seamless transition between teaching aids and research assistants — as
the library adjusts its contribution to match the mathematical user’s current
needs. The library will be freely available to all: all nations, all age groups
and all ability levels.

I’m delighted to write this foreword to one of the first steps in realising
this vision.

Alan Bundy, Edinburgh, 25. May 2006

http://www.mkm-ig.org/

preface.tex 8685 2010-08-23 08:55:17Z kohlhase

X

Preface

Mathematics is one of the oldest areas of human knowledge1. It forms the basis
most modern sciences, technology and engineering disciplines build upon it:
Mathematics provides them with modeling tools like statistical analysis or
differential equations. Inventions like public-key cryptography show that no
part of mathematics is fundamentally inapplicable. Last, but not least, we
teach mathematics to our students to develop abstract thinking and hone
their reasoning skills.

However, mathematical knowledge is far too vast to be understood by one
person, moreover, it has been estimated that the total amount of published
mathematics doubles every ten–fifteen years [Odl95]. Thus the question of
supporting the management and dissemination of mathematical knowledge
is becoming ever more pressing but remains difficult: Even though mathe-
matical knowledge can vary greatly in its presentation, level of formality and
rigor, there is a level of deep semantic structure that is common to all forms
of mathematics and that must be represented to capture the essence of the
knowledge.

At the same time it is plausible to expect that the way we do (i.e. con-
ceive, develop, communicate about, and publish) mathematics will change
considerably in the next years. The Internet plays an ever-increasing role in
our everyday life, and most of the mathematical activities will be supported
by mathematical software systems connected by a commonly accepted distri-
bution architecture, which makes the combined systems appear to the user
as one homogeneous application. They will communicate with human users
and amongst themselves by exchanging structured mathematical documents,
whose document format makes the context of the communication and the
meaning of the mathematical objects unambiguous.

Thus the inter-operation of mathematical services can be seen as a knowl-
edge management task between software systems. On the other hand, math-
ematical knowledge management will almost certainly be web-based, dis-
tributed, modular, and integrated into the emerging math services architec-
ture. So the two fields constrain and cross-fertilize each other at the same
time. A shared fundamental task that has to be solved for the vision of a “web
of mathematical knowledge” (MathWeb) to become reality is to define an
open markup language for the mathematical objects and knowledge exchanged
between mathematical services. The OMDoc format (Open Mathematical
Documents) presented here is an answer to this challenge, it attempts to pro-
vide an infrastructure for the communication and storage of mathematical
knowledge.

Mathematics – with its long tradition in the pursuit of conceptual clarity
and representational rigor – is an interesting test case for general knowledge

1 We find mathematical knowledge written down on Sumerian clay tablets, and even
Euclid’s Elements, an early rigorous development of a larger body of mathematics,
is over 2000 years old.

preface.tex 8685 2010-08-23 08:55:17Z kohlhase

XI

management, since it abstracts from vagueness of other knowledge without
limiting its inherent complexity. The concentration on mathematics in OM-
Doc and this book does not preclude applications in other areas. On the
contrary, all the material directly extends to the STEM (science, technology,
education, and mathematics) fields, once a certain level of conceptualization
has been reached.

This book tries to be a one-stop information source about the OMDoc
format, its applications, and best practices. It is intended for authors of math-
ematical documents and for application developers. The book is divided into
four parts: an introduction to markup for mathematics (Part I), an OMDoc
primer with paradigmatic examples for many kinds of mathematical docu-
ments (Part II), the rigorous specification of the OMDoc document format
(Part III), and an XML document type definition and schema (Part IV).

The book can be read in multiple ways:

• for users that only need a casual exposure to the format, or authors that
have a specific text category in mind, it may be best to look at the examples
in the OMDoc primer (Part II of this book),

• for an in-depth account of the format and all the possibilities of modeling
mathematical documents, the rigorous specification in Part III is indis-
pensable. This is particularly true for application developers, who will
also want to study the external resources, existing OMDoc applications
and projects, in Part ??.

• Application developers will also need to familiarize themselves with the
OMDoc Schema in the Appendix.

acknowledgements.tex 8685 2010-08-23 08:55:17Z kohlhase

acknowledgements.tex 8685 2010-08-23 08:55:17Z kohlhase

Acknowledgments

Of course the OMDoc format has not been developed by one person alone.
The original proposal was taken up by several research groups, most no-
tably the Ωmega group at Saarland University, the Maya and ActiveMath
projects at the German Research Center of Artificial Intelligence (DFKI),
the MoWGLI EU Project, the RIACA group at the Technical University of
Eindhoven, and the CourseCapsules project at Carnegie Mellon University.
They discussed the initial proposals, represented their materials in OMDoc
and in the process refined the format with numerous suggestions and discus-
sions.

The author specifically would like to thank Serge Autexier, Bernd Krieg-
Brückner, Olga Caprotti, David Carlisle, Claudio Sacerdoti Coen, Arjeh Co-
hen, Armin Fiedler, Andreas Franke, George Goguadze, Alberto González
Palomo, Dieter Hutter, Andrea Kohlhase, Christoph Lange, Paul Libbrecht,
Erica Melis, Till Mossakowski, Normen Müller, Immanuel Normann, Martijn
Oostdijk, Martin Pollet, Julian Richardson, Manfred Riem, and Michel Volle-
bregt for their input, discussions, and feedback from implementations and
applications.

Special thanks are due to Alan Bundy and Jörg Siekmann. The first trig-
gered the work on OMDoc, has lent valuable insight over the years, and has
graciously consented to write the foreword to this book. Jörg continually sup-
ported the OMDoc idea with his abundant and unwavering enthusiasm. In
fact the very aim of the OMDoc format: openness, cooperation, and philo-
sophic adequateness came from the spirit in his Ωmega group, which the
author has had the privilege to belong to for more than 10 years.

The work presented in this book was supported by the “Deutsche For-
schungsgemeinschaft” in the special research action “Resource-adaptive cog-
nitive processes” (SFB 378), and a three-year Heisenberg Stipend to the au-
thor. Carnegie Mellon University, SRI International, and Jacobs University
Bremen have supported the author while working on revisions for versions 1.1
to 1.3.

acknowledgements.tex 8685 2010-08-23 08:55:17Z kohlhase

acknowledgements.tex 8685 2010-08-23 08:55:17Z kohlhase

Contents

Foreword . VIII
Preface . X

Part I Setting the Stage for Open Mathematical Documents

1 Document Markup for the Web . 3
1.1 Structure vs. Appearance in Markup . 3
1.2 Markup for the World Wide Web . 5
1.3 XML, the eXtensible Markup Language . 6

2 Markup for Mathematical Knowledge . 13
2.1 Mathematical Objects and Formulae . 14
2.2 Mathematical Texts and Statements . 21
2.3 Large-Scale Structure and Context in Mathematics 22

3 Open Mathematical Documents . 25
3.1 A Brief History of the OMDoc Format . 25
3.2 Three Levels of Markup . 28
3.3 Situating the OMDoc Format . 29
3.4 The Future: An Active Web of (Mathematical) Knowledge 31

Part II An OMDoc Primer

4 Textbooks and Articles . 37
4.1 Minimal OMDoc Markup . 39
4.2 Structure and Statements . 41
4.3 Marking up the Formulae . 43
4.4 Full Formalization . 48

acknowledgements.tex 8685 2010-08-23 08:55:17Z kohlhase

XVI Contents

5 OpenMath Content Dictionaries . 53

6 Structured and Parametrized Theories . 59

7 A Development Graph for Elementary Algebra 65

8 Courseware and the Narrative/Content Distinction 71
8.1 A Knowledge-Centered View . 73
8.2 A Narrative-Structured View . 77
8.3 Choreographing Narrative and Content OMDoc 79
8.4 Summary . 80

9 Communication between Systems . 81

Part III The OMDoc Document Format

10 General Aspects of the OMDoc Format . 89
10.1 OMDoc as a Modular Format . 89
10.2 The OMDoc Namespaces . 89
10.3 Common Attributes in OMDoc . 91
10.4 Structure Sharing . 93

11 Document Infrastructure . 97
11.1 The Document Root . 98
11.2 Front/Backmatter . 99
11.3 Metadata . 100
11.4 Document Comments . 101
11.5 Document Structure . 102

12 Metadata . 105
12.1 General Metadata . 105
12.2 The Dublin Core Elements (Module DC) 113
12.3 Roles in Dublin Core Elements . 116
12.4 Managing Rights . 117

13 Mathematical Objects . 121
13.1 OpenMath . 121
13.2 Content MathML. 128
13.3 Representing Types in Content-MathML and OpenMath . . . 130
13.4 Semantics of Variables . 133
13.5 Legacy Representation for Migration . 134

acknowledgements.tex 8685 2010-08-23 08:55:17Z kohlhase

Contents XVII

14 Mathematical Text . 137
14.1 Multilingual Mathematical Vernacular . 137
14.2 Formal Mathematical Properties . 139
14.3 Text Fragments and their Rhetoric/Mathematical Roles 141
14.4 Phrase-Level Markup of Mathematical Vernacular 142
14.5 Paragraph-Level Text Markup . 146

15 Mathematical Statements . 149
15.1 Types of Statements in Mathematics . 149
15.2 Theory-Constitutive Statements in OMDoc 152
15.3 The Unassuming Rest . 158
15.4 Mathematical Examples in OMDoc . 162
15.5 Inline Statements . 164
15.6 Theories as Structured Contexts . 165

16 Abstract Data Types . 171

17 Representing Proofs . 175
17.1 Proof Structure . 177
17.2 Proof Step Justifications . 179
17.3 Scoping and Context in a Proof . 183
17.4 Formal Proofs as Mathematical Objects . 185

18 Complex Theories . 189
18.1 Inheritance via Translations . 190
18.2 Postulated Theory Inclusions . 193
18.3 Local/Required Theory Inclusions . 195
18.4 Induced Assertions . 196
18.5 Development Graphs . 198

19 Notation and Presentation . 203

20 Auxiliary Elements . 205
20.1 Non-XML Data and Program Code in OMDoc 206
20.2 Applets and External Objects in OMDoc 208

21 Exercises . 213

22 Document Models for OMDoc . 217
22.1 XML Document Models . 217
22.2 The OMDoc Document Model . 219
22.3 OMDoc Sub-Languages . 221

Part IV Appendix

acknowledgements.tex 8685 2010-08-23 08:55:17Z kohlhase

XVIII Contents

A Changes to the specification . 227
A.1 Changes from 1.2 to 1.3 . 228
A.2 Changes from 1.1 to 1.2 . 228
A.3 Changes from 1.0 to 1.1 . 237

B Quick-Reference . 243

C Table of Attributes . 251

D The RelaxNG Schema for OMDoc . 259
D.1 Common Parts of the Schema . 259
D.2 Module MOBJ: Mathematical Objects and Text 260
D.3 Module MTXT: Mathematical Text . 261
D.4 Module DOC: Document Infrastructure . 262
D.5 Module DC: Dublin Core Metadata . 264
D.6 Module ST: Mathematical Statements . 265
D.7 Module ADT: Abstract Data Types . 267
D.8 Module PF: Proofs and Proof objects . 268
D.9 Module CTH: Complex Theories . 268
D.10 Module DG: Development Graphs . 269
D.11 Module RT: Rich Text Structure . 270
D.12 Module EXT: Applets and non-XML data 272
D.13 Module PRES: Adding Presentation Information 273
D.14 Module QUIZ: Infrastructure for Assessments 275

E The RelaxNG Schemata for Mathematical Objects 277
E.1 The RelaxNG Schema for OpenMath . 277
E.2 The RelaxNG Schema for MathML . 278

Index . 309

partintro.tex 8685 2010-08-23 08:55:17Z kohlhase

Part I

Setting the Stage for Open Mathematical
Documents

In this part of the book we will look at the problem of marking up mathe-
matical knowledge and mathematical documents in general, situate the OM-
Doc format, and compare it to other formats like OpenMath and MathML.

The OMDoc format is an open markup language for mathematical doc-
uments and the knowledge encapsulated in them. The representation in OM-
Doc makes the document content unambiguous and their context transparent.

OMDoc approaches this goal by embedding control codes into mathe-
matical documents that identify the document structure, the meaning of text
fragments, and their relation to other mathematical knowledge in a process
called document markup. Document markup is a communication form that
has existed for many years. Until the computerization of the printing indus-
try, markup was primarily done by a copy editor writing instructions on a
manuscript for a typesetter to follow. Over a period of time, a standard set
of symbols was developed and used by copy editors to communicate with
typesetters on the intended appearance of documents. As computers became
widely available, authors began using word processing software to write and

partintro.tex 8685 2010-08-23 08:55:17Z kohlhase

2

edit their documents. Each word processing program had its own method of
markup to store and recall documents.

Ultimately, the goal of all markup is to help the recipient of the document
better cope with the content by providing additional information e.g. by visual
cues or explicit structuring elements. Mathematical texts are usually very
carefully designed to give them a structure that supports understanding of the
complex nature of the objects discussed and the argumentations about them.
Such documents are usually structured according to the argument made and
enhanced by specialized notation (mathematical formulae) for the particular
objects.2 In contrast, the structure of texts like novels or poems normally obey
different (e.g. aesthetic) constraints.

In mathematical discourses, conventions about document form, number-
ing, typography, formula structure, choice of glyphs for concepts, etc. and
the corresponding markup codes have evolved over a long scientific history
and by now carry a lot of the information needed to understand a particular
text. But since they pre-date the computer age, they were developed for the
consumption by humans (mathematicians) and mainly with “ink-on-paper”
representations (books, journals, letters) in mind, which turns out to be too
limited in many ways.

In the age of Internet publication and mathematical software systems, the
universal accessibility of the documents breaks an assumption implicit in the
design of traditional mathematical documents: namely that the reader will
come from the same (scientific) background as the author and will directly
understand the notations and structural conventions used by the author. We
can also rely less and less on the premise that mathematical documents are
primarily for human consumption as mathematical software systems are more
and more embedded into the process of doing mathematics. This, together
with the fact that mathematical documents are primarily produced and stored
on computers, places a much heavier burden on the markup format, since it
has to make all of this implicit information explicit in the communication.

In the next two chapters we will set the stage for the OMDoc approach.
We will first discuss general issues in markup formats (see Section 1.1), existing
solutions (see Section 1.2), and the current XML-based framework for markup
languages on the web (see Section 1.3). Then we will elaborate the special
requirements for marking up the content of mathematics (see Chapter 2).

2 Of course this holds not only for texts in pure mathematics, but for any argumen-
tative text, including texts from the sciences and engineering disciplines. We will
use the adjective “mathematical” in an inclusive way to make this distinction on
text form, not strictly on the scientific labeling.

web-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

1

Document Markup for the Web

Document markup is the process of adding codes to a document to identify the
structure of a document and to specify the format in which its fragments are
to appear. We will discuss two conflicting aspects — structure and appearance
— in document markup. As the Internet imposes special constraints imposed
on markup formats, we will reflect its influence.

In the past few years the XML format has established itself as a general ba-
sis for markup languages. As OMDoc and all mathematical markup schemes
discussed here are XML applications (instances of the XML framework), we
will go more into the technical details to supply the technical prerequisites for
understanding the specification. We will briefly mention XML validation and
transformation tools, if the material reviewed in this section is not enough,
we refer the reader to [Har01].

1.1 Structure vs. Appearance in Markup

Text processors and desktop publishing systems (think for example of Mi-
crosoft Word) are software systems aiming to produce “ink-on-paper” or
“pixel-on-screen” representations of documents. They are very well-suited to
execute typographic conventions for the appearance of documents. Their inter-
nal markup scheme mainly defines presentation traits like character position,
font choice and characteristics, or page breaks. We will speak of presentation
markup for such markup schemes. They are perfectly sufficient for producing
high-quality presentations on paper or on screen, but for instance it does not
support document reuse (in other contexts or across the development cycle of
a text). The problem is that these approaches concentrate on the form and
not the function of text elements. Think e.g. of the notorious section renum-
bering problems in early (WYSIWYG1) text processors. Here, the text form

1 “What you see is what you get”; in the context of markup languages this means
that the document markup codes are hidden from the user, who is presented with
a presentation form of the text even during authoring.

web-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

4 1 Document Markup for the Web

of a numbered section heading was used to express the function of identifying
the position of the respective section in a sequence of sections (and maybe in
a larger structure like a chapter).

This perceived weakness has lead to markup schemes that concentrate
more on function than on form. We will call them content markup to dis-
tinguish them from presentation markup schemes, and discuss TEX/LATEX
[Knu84; Lam94] as an example.

TEX is a typesetting markup language that uses explicit markup codes
(strings beginning with a backslash) in a document, for instance, the markup
$\sqrt{\sin x}$ stands for the mathematical expression

√
sinx in TEX. To

determine from this functional specification the visual form (e.g. the character
placement and font information), we need a document formatting engine. This
program will transform the document that contains the content markup (the
“source” document) into a presentation markup scheme that specifies the
appearance (the “target” document) like DVI [Knu84], postscript [Rei87],
or PDF [PDFReference] that can directly be presented on paper or on
screen. This two-stage approach allows the author to mark up the function
of a text fragment and leave the conversion of this markup into presentation
information to the formatter. The specific form of translation is either hard-
wired into the formatter, or given externally in style files or style sheets.

LATEX [Lam94] is a comprehensive set of style files for the TEX formatter,
the heading for a section with the title “The Joy of TEX” would be marked
up as

\section[{\TeX}]{The Joy of {\TeX}\index{tex@\TeX}}\label{sec:TeX}

This piece of markup specifies the function of the text element: The title of
the section should be “The Joy of TEX”, which (if needed e.g. in the table
of contents) can be abbreviated as “TEX”, the glyph “TEX” is inserted into
the index, where the word tex would have been, and the section number
can be referred to using the label sec:TeX. Note that renumbering is not
a problem in this approach, since the actual numbers are only inferred by
the formatter at run-time. This, together with the ability to simply change
style file for a different context, yields much more manageable and reusable
documents, and has led to a wide adoption of the function-based approach.
So that even word-processors like MS Word now include functional elements.
Pure presentation markup schemes like DVI or PostScript are normally only
used for document delivery. On the other hand, many form-oriented markup
schemes allow to “fine-tune” documents by directly controlling presentation.
For instance, LATEX allows to specify traits such as font size information, or
using

{\bf proof}:. . . \hfill\Box

to indicate the extent of a proof (the formatter only needs to “copy” them to
the target format). The general experience in such mixed markup schemes is
that presentation markup is more easily specified, but that content markup

web-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

1.2 Markup for the World Wide Web 5

will enhance maintainability and reusability. This has led to a culture of style
file development (specifying typographical and structural conventions), which
now gives us a wealth of style options to choose from in LATEX.

1.2 Markup for the World Wide Web

The Internet, where screen presentation, hyperlinking, computational limita-
tions, and bandwidth considerations are much more important than in the
“ink-on-paper” world of publishing, has brought about a whole new set of
markup schemes. The problems that need to be addressed are that

• the size, resolution, and color depth of a given screen are not known at
the time the document is marked up,

• the structure of a text is no longer limited to a linear text with (e.g.
numbered) cross-references as in a traditional book or article: Internet
documents are usually hypertexts,

• the computational resources of the computer driving the screen are not
known beforehand. Therefore the distribution of work (e.g. formatting
steps) between the client and the server has to be determined at run-time.
Finally, the related problem that

• the bandwidth of the Internet is ever-growing but always limited.

These issues impose somewhat conflicting demands on markup languages
for the Web. The first two seem to favor content markup languages, since low-
level presentational traits like glyph placement and font availability cannot be
pre-meditated on the server. However, the amount of formatting that can be
delegated to the client, and the availability of style files is limited by the latter
two concerns.

In response the “Hypertext Markup Language” (HTML [RHJ98]) evolved
as the original markup format for the World Wide Web. This is a markup
scheme that addresses the problem of variable screen size and hyperlinking
by exporting the decision of character placement and page order to a browser
running on the client. It ensures a high degree of reusability of documents on
the Internet while conserving bandwidth, so that HTML carries most of the
text markup on the Internet today.

The major innovation in HTML was the use of uniform resource lo-
cators (URL) to reference documents provided by web servers. URLs are
strings in a special format that can be interpreted by browsers or other web
agents to request documents from web servers, e.g. to be displayed to the
user in the browser as a new node in the current hypertext document. Since
URLs are global references, they are the means that make the Internet into a
“world-wide” web (of references). Since uniform resource locators are closely
tied to the physical location of a document on the Internet, which can change
over time, they have since been generalized to uniform resource identifier
(URI; see [BLFM98]). These are strings of similar structure, that only identify

web-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

6 1 Document Markup for the Web

resources on the Internet, see [Har01], i.e. their structure need not be directly
translatable to an Internet location (we call this act de-referencing). Indeed,
URIs need not even correspond to a physical manifestation of a resource at
all, they can identify a virtual resource, that is produced by a web service on
demand.

The concrete syntax and architecture of HTML is derived from the
“Simple Generalized Markup Language” SGML [Gol90], which is similar to
TEX/LaTeX in spirit, but tries to give the markup scheme a more declara-
tive semantics (as opposed to the purely procedural – and rather baroque –
semantics of TEX) to make it simpler to reason about (and thus reuse) doc-
uments. In particular unlike TEX, SGML separates content markup codes
from directives to the formatting engine. SGML has a separate style sheet
language DSSSL [DuC97], which was not adopted by HTML, because of re-
source limitations in the client. Instead, HTML has been augmented with
its own (limited) style sheet language CSS [Bos+98] that is executed by the
browser.

1.3 XML, the eXtensible Markup Language

The need for content markup schemes for maintaining documents on the
server, as well as for specialized presentation of certain text parts (e.g. for
mathematical or chemical formulae), has led to a profusion of markup schemes
for the Internet, most of which share the basic SGML syntax with HTML.
To organize this zoo of markup languages, the World Wide Web Consortium
(W3C [W3c], an international interest group of universities and web indus-
try) has developed a language framework for Internet markup languages called
XML (eXtensible Markup Language) [BPSM97]. XML is a set of grammar
rules that allows to interpret certain sequences of Unicode [Inc03] charac-
ters as document trees. These grammar rules are shared by all XML-based
markup languages (called XML applications) and are very well-supported by
a great variety of XML processors. The XML format is accompanied by a
set of specialized vocabularies (most of them XML applications) that stan-
dardize various aspects of document management and web services. These are
canonicalized by the W3C as “recommendations”. We will briefly review the
ones that are relevant for understanding the OMDoc format and make the
book self-contained. For details see one of the many XML books, e.g. [Har01].

1.3.1 XML Document Trees

Conceptually speaking, XML views a document as a tree whose nodes consist
of elements, attributes, text nodes, namespace declarations, XML comments,
etc. (see Figure 1.1 for an example2). For communication this tree is serialized

2 This tree representation glosses over namespace nodes in the tree, but the con-
ceptual tree is sufficient for the application in this book.

web-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

1.3 XML, the eXtensible Markup Language 7

<omtext xml:id=”foo” xmlns=”http://omdoc.org/ns”
xmlns:om=”http://www.openmath.org/OpenMath”>

<CMP xml:lang=’en’>
The number
<om:OMOBJ><om:OMS cd=”nums1” name=”pi”/><om:OMOBJ>
is irrational .
</CMP>

</omtext>

omtext

CMP

xml:id foo

xml:lang en

text

The number

text

is irrational.

om:OMOBJ

om:OMS

cd nums1

name pi

Fig. 1.1. An XML Document as a Tree

into a balanced bracketing structure (see the listing at the top of Figure 1.1),
where an element el is represented by the brackets <el> (called the open-
ing tag) and </el> (called the closing tag). The leaves of the tree are
represented by empty elements (serialized as <el></el>, which can be ab-
breviated as <el/>), and text nodes (serialized as a sequence of Unicode
characters). An element node can be annotated by further information us-
ing attribute nodes — serialized as an attribute in its opening tag: for
instance <el visible="no"> might add the information for a formatting en-
gine to hide this element. As a document is a tree, the XML specification
mandates that there must be a unique document root.

Let us now come to a feature that we have glossed over so far: XML
namespaces [BHL99]. In many XML applications, we need to mix several
XML vocabularies or languages. In our example in Figure 1.1 we have three:
the OMDoc vocabulary with the elements omtext and CMP, the OpenMath
vocabulary with the elements om:OMOBJ and om:OMS, and the general XML
vocabulary for the attributes xml:id and xml:lang.

To allow a safe mixing of independent XML vocabularies, XML can as-
sociate elements and attributes3 with a namespace, which is simply a URI
that uniquely identifies the intended vocabulary4. In XML syntax, namespace
membership is represented by namespace declarations and qualified names.

3 Traditionally most XML applications use attributes that are not namespaced.
4 Note that it need not be a valid URL (uniform resource locator; i.e. a pointer to

a document provided by a web server).

web-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

8 1 Document Markup for the Web

A namespace declaration is a pseudo-attribute with name xmlns whose
value is a namespace URI 〈〈nsURI〉〉 (see e.g. the first line in Figure 1.1). In
a nutshell, a namespace declaration specifies that this element and all its
descendants are in the namespace 〈〈nsURI〉〉, unless they have a namespace
declaration of their own or there is a namespace declaration in a closer ancestor
that overwrites it.

Similarly, a namespace abbreviation can be declared on any element
by a pseudo-attribute of the form xmlns:〈〈nsa〉〉="〈〈nsUR〉〉", where 〈〈nsa〉〉 is an
XML simple name, and 〈〈nsURI〉〉 is the namespace URI. In the scope of this
declaration (in all descendants, where it is not overwritten) we can specify that
an element or attribute is in the namespace 〈〈nsURI〉〉 by using a qualified
name: a pair 〈〈nsa〉〉:〈〈el〉〉, where 〈〈nsa〉〉 is a namespace abbreviation and 〈〈el〉〉 is
a simple name (i.e. one that does not contain a colon). In Figure 1.1, we have a
namespace abbreviation in the second line, which is used for the OpenMath
objects in line five. This rule has one exception: the namespace abbreviation
xml is reserved for the XML namespace and does not have to be declared.

Since XML elements only encode trees, the distribution of whitespace (in-
cluding line-feeds) in non-text elements has no meaning in XML, and can
therefore be added and deleted without effecting the semantics. XML con-
siders anything between <!-- and --> in a document as a comment. They
should be used with care, since they are not necessarily passed on by the XML
parser, and therefore might not survive processing by XML applications.

Material that is relevant to the document, but not valid XML, e.g. binary
data or data that contains angle brackets or elements that are unbalanced or
not part of the XML application can be encoded by embedding it into CDATA

sections. A CDATA section begins with the string <[CDATA[and suspends the
XML parser until the string]]> is found. The result of parsing a CDATA section
is equivalent to escaping the five XML-specific characters <, > ", ’, and & to
the XML entities <, >, ", ', and &. For instance, we
have the following correspondence between a CDATA section and XML-escaped
content:

<[CDATA[a<b³]]> =̂ a<b<sup>3</sup>

As a consequence, an XML application is free to choose the form of its output
and the particular form should not be relied upon.

1.3.2 Validating XML Documents

XML offers various mechanisms for specifying a subset of trees (or well-
bracketed XML documents) as admissible in a given XML application: the
most commonly used ones are document type definitions (DTD [BPSM97]),
XML schemata [Xml], and RelaxNG schemata [Vli03]. All of these are
context-free grammars for trees, that can be used by a validating parser to
reject XML documents that do not conform. Note that DTDs and schemata
cannot enforce all constraints that a particular XML application may want to

web-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

1.3 XML, the eXtensible Markup Language 9

impose on documents. Therefore validation is only a necessary condition for
validity with respect to that application. Since the XML schema languages
can express slightly stronger sets of constraints and are namespace-aware, they
allow stronger document validation, and usually take normative precedence
over the DTD if present.

Listing 1.1 shows part of an OMDoc document. The first line identifies the
document as an XML document (version 1.0 of the XML specification). The
second and third lines constitute the document type declaration which
specifies the DTD and the document root element. In this case the omdoc

element starting in line 4 is the root element and will be validated against
the DTD identified by the public Identifier5 in line two and which can be
found at the URI in line three. See Chapter ?? for an in-depth discussion of
the OMDoc DTD and validation.

Listing 1.1. The Structure of an XML Document with DTD

<?xml version=”1.0”?>
<!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc V1.3//EN”

”http://omdoc.org/dtd/omdoc.dtd”>
4 <omdoc xml:id=”example−omdoc” xmlns=”http://omdoc.org/ns”>

. . .
</omdoc>

Note that it is not mandatory to have a document type declaration in an XML
document, or that an XML parser even read it (we call an XML parser
validating if it does). If no document type declaration is present, then a
parser will just check for XML-well-formedness, and possibly rely on some
schema for further validation6. Note that if a validating parser reads an XML
document with a document type declaration, then it must process it and
validate the document.

But a DTD not only contains information for validation, it also

declares XML entities XML entities are strings of the form &〈〈abbr〉〉;,
which abbreviate sequences of Unicode characters and are expanded by
the parser as it reads the document.

supplies default values for attributes which are added to the represen-
tation of the parsed document by the parser as it reads the document.

declares types of attributes This is is relevant for attribute types ID and
IDREF. The former are required to be document-unique (as well as being
XML simple names [BPSM97, section 2.3]) and the latter must point to
an existing ID-type attribute in the same document.

5 A string that allows to identify an XML resource, it can be mapped to a concrete
URI via the XML catalog; see Section ?? for details.

6 Note that RelaxNG schemata do not have a specified in-document means for
associating a schema with elements. For the way to associate an XML schema
with a document we refer to XML schema recommendation [Xml] or the XML
literature.

web-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

10 1 Document Markup for the Web

ID-type attributes are commonly used to identify elements in XML documents
(see the discussion in Subsection 1.3.3), which raises a subtle point with re-
spect to DTDs. If an XML document is processed without a document type
declaration or by a non-validating parser, the information which attributes
are ID-type ones is lost, and referencing does not work as as expected. Fortu-
nately, there is a recent W3C-solution to this problem: Following the XML
ID recommendation [MVW05] XML parsers must recognize attributes of the
form xml:id as ID-type attributes, even if no DTD is present.

However DTDs may still serve an important role, even if they are su-
perseded by schema-based approaches for pure validation. For instance a
format like Presentation-MathML (see Subsection 2.1.1) seems dependent
on a DTD, since it needs to define a rich set of mnemonic entities for
mathematical symbols in Unicode and uses ID-type attributes for cross-
referencing. Formats like Content-MathML (Subsection 2.1.1), OpenMath
(Subsection 2.1.2) or OMDoc proper can live without DTDs, since they do
not.

1.3.3 XML Fragments and URI References

As documents are construed as trees in XML, the notion of a document
fragment becomes definable simply as a sets of well-formed sub-trees. Building
on this, URLs and URIs can be extended to references of document fragments.
These URI references are traditionally considered to consist of two parts:
A proper URI and a specific fragment identifier separated by the hash
character #. The URI identifies an XML document on the web, whereas the
fragment identifier identifies a specific fragment of that document.

XML provides the XPointer framework [Gro+03a] for fragment identi-
fiers. It specifies multiple schemes for fragment identifiers. Fragment iden-
tifiers of the form xpointer(〈〈path〉〉) use an XPath [CD99] expression
〈〈path〉〉 to specify a path through the document tree leading to the de-
sired element (see [DeRMal:xxs03]). Fragment identifiers in the element()

scheme [Gro+03b] use expressions of the form element(〈〈cpath〉〉), where
〈〈cpath〉〉 is an ID-type identifier together with a simple child-path; e.g. element(foo/3/7)
identifies the 7th child of the 3rd child of the (unique) element that has ID-type
attribute with value foo.

URI references of the form 〈〈uri〉〉#〈〈id〉〉 as they are used in HTML to refer to
named anchors () are regained as a special case (the short-
hand xpointer): If 〈〈uri〉〉 is a URI of an XML document D then 〈〈uri〉〉#〈〈id〉〉
refers to the unique element in D, that has an attribute of type ID with value
〈〈id〉〉.

1.3.4 Summary

In summary, XML provides a widely standardized infrastructure for defining
Internet markup languages based on tree structures rather than on sequences

web-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

1.3 XML, the eXtensible Markup Language 11

of characters. XML processors like parsers, serializers, XML databases, and
XSLT transformation engines are widely deployed and incorporated into
many programming languages. Building XML applications on top of this
infrastructure frees the implementers from dealing with low-level details of
parsing, validation, and mass storage. It is no surprise that XML has become
one of the most successful interoperability formats in information technology.

Note that the use of XML does not give any support for mathematics in
itself, since the tree models are completely general. It is the role of specific
XML applications like the ones we will present in the next two chapters to
specialize the XML tree structures to representations that can be interpreted
as mathematical objects and documents.

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

2

Markup for Mathematical Knowledge

Mathematicians make use of various kinds of documents (e.g. e-mails, letters,
pre-prints, journal articles, and textbooks) for communicating mathematical
knowledge. Such documents employ specialized notational conventions and
visual representations to convey the mathematical knowledge reliably and
efficiently. The respective representations are supported by pertinent markup
systems like TEX/LATEX.

Even though mathematical documents can vary greatly in their level of
presentation, formality and rigor, there is a level of deep semantic structure
that is common to all forms of mathematics and that must be represented
to capture the essence of the knowledge. As John R. Pierce has written in
his book on communication theory [Pie80], mathematics and its notations
should not be viewed as one and the same thing. Mathematical ideas exist
independently of the notations that represent them. However, the relation
between meaning and notation is subtle, and part of the power of mathematics
to describe and analyze derives from its ability to represent and manipulate
ideas in symbolic form. The challenge in putting mathematics on the World
Wide Web is to capture both notation and content (that is, meaning) in such a
way that documents can utilize the highly-evolved notational forms of written
and printed mathematics, and the potential for interconnectivity in electronic
media.

In this chapter, we present the state of the art for representing math-
ematical documents on the web and analyze what is missing to mark up
mathematical knowledge. We posit that there are three levels of informa-
tion in mathematical knowledge: formulae, mathematical statements, and the
large-scale theory structure (constructing the context of mathematical knowl-
edge). The first two are immediately visible in marked up mathematics, e.g.
textbooks, the third is largely left to an implicit meta-level of mathematical
communication, or the organization of mathematical libraries. We will discuss
these three levels in the next sections.

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

14 2 Markup for Mathematical Knowledge

2.1 Mathematical Objects and Formulae

A distinguishing feature of mathematical documents is the use of a complex
and highly evolved system of two-dimensional symbolic notations, commonly
called (mathematical) formulae. Formulae serve as representations of math-
ematical objects, such as functions, groups, or differential equations, and also
of statements about them, like the “Fundamental Theorem of Algebra”.

The two best-known open markup formats for representing mathematical
formulae for the Web are MathML [Aus+03a] and OpenMath [Bus+04].
There are various other formats that are proprietary or based on specific math-
ematical software packages like Wolfram Research’s Mathematica® [Wol02].
We will not concern ourselves with them, since we are only interested in open
formats. Furthermore, we will only give a general overview for the open for-
mats here to survey the state of the art, since content MathML and Open-
Math are used for formula representation in the OMDoc format and thus
the technical details of the two markup schemes are covered in more detail in
the OMDoc specification in Chapter 13. Figure 2.1 gives an overview over
the current state of the standardization activities.

language MathML OpenMath

by W3C Math WG OpenMath society

origin math for HTML integration of CAS

coverage content + presentation; K-
14

content; extensible

status Version 2.2e (VI 2003) Version 2 (VI 2004)

activity maintenance maintenance

Info http://w3c.org/Math/ http://www.openmath.org/

Fig. 2.1. The Status of Markup Standardization for Mathematical Formulae

OpenMath was originally a development driven mainly by the Computer
Algebra community in Europe trying to standardize the communication of
mathematical objects between Computer Algebra Systems. The format has
been discussed in a series of workshops and has been funded by a series of
grants by the European Union. This process led to the OpenMath 1 standard
in June 1999 and eventually to the incorporation of the OpenMath society
as the institutional guardian of the OpenMath standard. MathML has de-
veloped out of the effort to include presentation primitives for mathematical
notation (in TEX quality) into HTML, and was the first XML application to
reach recommendation status1 at the W3C [Bus+99].

1 As such, MathML played a great role as technology driver in the development
of XML. This role gives MathML a somewhat peculiar status at the W3C; it is
the only “vertical” (application/domain-driven) XML application standardized

http://w3c.org/Math/
http://www.openmath.org/

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

2.1 Mathematical Objects and Formulae 15

The competition and collaboration between these two approaches to rep-
resentation of mathematical formulae and objects has led to a large overlap
between the two developer communities. MathML deals principally with the
presentation of mathematical objects, while OpenMath is solely concerned
with their semantic meaning or content . While MathML does have some
limited facilities for dealing with content, it also allows semantic information
encoded in OpenMath to be embedded inside a MathML structure. Thus
the two technologies may be seen as highly compatible2 and complementary
(in aim).

2.1.1 MathML

MathML is an XML application for describing mathe-
matical notation and capturing both its structure and con-
tent . The goal of MathML is to enable mathematics to be
served, received, and processed on the World Wide Web,
just as HTML has enabled this functionality for text.

from the MathML2 Recommendation [Aus+03a]

To reach this goal, MathML offers two sub-languages: Presentation-
MathML for marking up the two-dimensional, visual appearance of mathe-
matical formulae, and Content-MathML as a markup infrastructure for the
functional structure of mathematical formulae.

To mark up the visual appearance of formulae Presentation-MathML
represents mathematical formulae as a tree of layout primitives. For instance
the expression 3

x+2 would be represented as the layout tree in Figure 2.2.
The layout primitives arrange “inner boxes” (given in black) and provide an
outer box (given in gray here) for the next level of layout. In Figure 2.2 we
see the general layout schemata for numbers (m:mn), identifiers (m:mi), op-
erators (m:mo), bracketed groups (m:mfence), and fractions (m:mfrac); oth-
ers include horizontal grouping (m:mrow), roots (m:mroot), scripts (m:msup,
m:msub, m:msubsup), bars and arrows (m:munder, m:mover, m:munderover),
and scoped CSS styling (m:mstyle). Mathematical symbols are taken from
Unicode and provided with special mnemonic entities by the MathML DTD,
e.g. ∑ for Σ.

Since the aim of MathML is to do most of the formatting inside the
browser, where resource considerations play a large role, it restricts itself to a
fixed set of mathematical concepts – the K-14 fragment (Kindergarten to 14th

grade; i.e. undergraduate college level) of mathematics. K-14 contains a large
set of commonly used glyphs for mathematical symbols and very general and

by the W3C, which otherwise concentrates on “horizontal” (technology-driven)
standards.

2 e.g. MathML is the preferred presentation format for OpenMath objects
and OpenMath content dictionaries are the primary specification language for
MathML semantics.

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

16 2 Markup for Mathematical Knowledge

<m:mfrac>
<m:mn>3</m:mn>
<m:mfenced>
<m:mi>x</m:mi>
<m:mo>+</m:mo>
<m:mn>2</m:mn>

</m:mfenced>
</m:mfrac>

3

(x+2)

3 (x+2)

x + 2

<mfrac>...</mfrac>

<mn>3</mn>

<mfenced>...</mfenced>

<mi>x</mi><mo>+</mo><mn>2</mn>

Fig. 2.2. The Layout Tree for the Formula 3
x+2

powerful presentation primitives, similar to those that make up the lower level
of TEX. However, it does not offer the programming language features of TEX3

for the obvious computing resource considerations. Presentation-MathML is
supported by current versions of the browsers Amaya [Vat], MS Internet
Explorer [Cor] (via the MathPlayer plug-in [Mat]), and Mozilla [Org].

MathML also offers content markup for mathematical formulae, a sub-
language called Content-MathML to contrast it from the Presentation-
MathML described above. Here, a mathematical formula is represented as a
tree as well, but instead of marking up the visual appearance, we mark up the
functional structure. For our example 3

x+2 we obtain the tree in Figure 2.3,
where we use @ as the function application operator (it interprets the first
child as a function and applies it to the rest of the children as arguments).

<m:apply>
<m:divides/>
<m:cn>3</m:cn>
<m:apply>
<m:plus/>
<m:ci>x</m:ci>
<m:cn>2</m:cn>

</m:apply>
</m:apply>

@(·, ·)

division 3 @(·, ·)

addition x 2

Fig. 2.3. The functional Structure of 3
x+2

Content-MathML offers around 80 specialized elements for the most com-
mon K-14 functions and individuals. In Figure 2.3 we see function application
(m:apply), content identifiers (m:ci), content numbers (m:cn) and the func-
tions for division (m:divide) and addition (m:plus).

3 TEX contains a full, Turing-complete – if somewhat awkward – programming
language that is mainly used to write style files. This is separated out by MathML
to the CSS and XSLT style languages it inherits from XML.

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

2.1 Mathematical Objects and Formulae 17

Finally, MathML offers a specialized m:semantics element that allows
to annotate MathML formulae with alternative representations. This feature
can be used to provide combined content- and presentation-MathML repre-
sentations. Figure 2.4 shows an example of this for our expression 3

x+2 . The
outermost m:semantics element is used for mixing presentation and content
markup. The first child of the m:semantics element contains Presentation-
MathML (this is used by the MathML-aware browser), the subsequent
m:annotation-xml element contains Content-MathML markup for the same
formula. Corresponding sub-expressions are co-referenced by cross-references:
The presentation element carries an id attribute, which serves as the tar-
get for an xlink:href attribute in the content markup. This technique is
called parallel markup, it allows to select logical sub-expressions by select-
ing layout sub-schemata in the browser, e.g. for copy and paste. Note that a
m:semantics element can have more than one m:annotation-xml child, so
that other content formats such as OpenMath can also be incorporated.

<semantics>...</semantics>

<annotation-xml>...</annotation-xml>

<mfrac id="M">...</mfrac>

<mn id="3">3</mn>

<mfenced id="f">...</mfenced>

<mi id="x">x</mi>

<mo id="p">+</mo>

<mn id="2">2</mn>

<apply href="M">...</apply>

<divides/> <ci href="3">3<ci/>

<apply href="f">...</apply>

<plus href="tp"/>

<ci href="x">x</ci>

<cn href="2">2</cn>

Fig. 2.4. Mixing Presentation and Content-MathML

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

18 2 Markup for Mathematical Knowledge

2.1.2 OpenMath

[. . .] OpenMath: a standard for the representation and
communication of mathematical objects. [. . .]
OpenMath allows the meaning of an object to be encoded
rather than just a visual representation. It is designed to
allow the free exchange of mathematical objects between
software systems and human beings. On the worldwide web
it is designed to allow mathematical expressions embedded
in web pages to be manipulated and computed with in a
meaningful and correct way. It is designed to be machine-
generatable and machine-readable, rather than written by
hand.

from the OpenMath2 Standard [Bus+04]

Driven by the intention of representing the meaning of mathematical ob-
jects expressed in the quote above, the OpenMath format is not primarily
an XML application. Rather, OpenMath defines an abstract (mathematical)
object model for mathematical objects and specifies an XML encoding (and
a binary4 encoding) for that5.

The central construct of OpenMath is that of an OpenMath ob-
ject (realized by the element om:OMOBJ in the XML encoding), which has
a tree-like representation made up of applications (om:OMA), binding struc-
tures (om:OMBIND using om:OMBVAR to specify the bound variables6), variables
(om:OMV), and symbols (om:OMS).

The handling of symbols — which are used to represent the multitude of
mathematical domain constants — is maybe the largest difference between
OpenMath and Content-MathML. Instead of providing elements for all K-
14 concepts, the OpenMath standard adds an extension mechanism for math-
ematical concepts, the content dictionaries. These are machine-readable
documents that define the meaning of mathematical concepts expressed by
OpenMath symbols. Just like the library mechanism of the C programming
language, they allow OpenMath to externalize the definition of extended lan-
guage concepts. As a consequence, K-14 need not be part of the OpenMath
language, but can be defined in a set of content dictionaries (see [Urle]).

The om:OMS element carries the attributes cd and name. The name attribute
gives the name of the symbol, the cd attribute specifies the content dictionary.

4 The binary encoding allows to optimize encoding size and (more importantly)
parsing time for large OpenMath objects. The binary encoding for OpenMath
objects will not play a role for the OMDoc format, so we will not pursue this
here.

5 The MathML specification is very vague on what the meaning of Content-
MathML fragments might be; we have to assume that its XML document object
model [Urlb] or the or its infoset [CT04] must be.

6 Binding structures are somewhat awkwardly realized via the m:apply element
with an m:bvar child in Content-MathML.

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

2.1 Mathematical Objects and Formulae 19

As variables do not carry a meaning independent of their local content, om:OMV
only carries a name attribute. See Listing 2.1 for an example that uses most
of the elements.

Listing 2.1. OpenMath Representation of ∀a, b.a+ b = b+ a

1 <OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
<OMBIND cdbase=”http://www.openmath.org/cd”>
<OMS cd=”quant1” name=”forall”/>
<OMBVAR><OMV name=”a”/><OMV name=”b”/></OMBVAR>
<OMA><OMS cd=”relation” name=”eq”/>

6 <OMA><OMS cd=”arith1” name=”plus”/>
<OMV name=”a”/>
<OMV name=”b”/>

</OMA>
<OMA><OMS cd=”arith1” name=”plus”/>

11 <OMV name=”b”/>
<OMV name=”a”/>

</OMA>
</OMA>

</OMBIND>
16 </OMOBJ>

Listing 2.1 shows the XML encoding of the law of commutativity for addition
(the formula ∀a, b.a+ b = b+ a) in OpenMath. Note that as we have dis-
cussed above, this representation is not self-contained but relies on the avail-
ability of content dictionaries quant1, relation1, and arith1. Note that in
this example they can be accessed via the URL specified in the cdbase at-
tribute, but in general, the content dictionaries are only used for identification
of symbols. In particular, in the classical OpenMath model, content dictio-
naries are only viewed as a resource for system developers, who use them as a
reference decide which symbol to use in an export/import facility for a com-
puter algebra system. In the communication between mathematical software
systems, they are no longer needed: If two systems agree on a set of con-
tent dictionaries, then they agree on the meaning of all OpenMath objects
that can be constructed using their symbols (the meaning of applications and
bindings is known from the folklore).

The content dictionary architecture is the greatest strength of the Open-
Math format. It establishes an object model and XML encoding based on
what we call “semantics by pointing”. Two OpenMath objects have the same
meaning in this model, iff they have the same structure and all symbols point
to the same content dictionaries7.

In the standard encoding of OpenMath content dictionary, the meaning
of a symbol is specified by a set of

“formal mathematical properties” The omcd:FMP element contains an
OpenMath object that expresses the desired property.

7 Note that we can interpret the Content-MathML model as a “semantics by point-
ing” model as well. Only that here the K-14 elements do not point to machine-
readable content dictionaries, but at the (human-readable) MathML specifica-
tion, which specifies their meaning.

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

20 2 Markup for Mathematical Knowledge

“commented mathematical properties” The omcd:CMP element contains
a natural language description of a desired property.

For instance, the specification in Listing 2.2 is part of the standard Open-
Math content dictionary arith1.ocd [Urle] for the elementary arithmetic
operations.8

Listing 2.2. Part of the OpenMath Content Dictionary arith1.

<CDDefinition>
<Name>plus</Name>
<CDDescription>

4 The symbol representing an n−ary commutative function plus.
</CDDescription>
<CMP> for all a,b | a + b = b + a </CMP>
<FMP>∀a, b.a+ b = b+ a</FMP>

</CDDefinition>

On the other hand, the content dictionary encoding defined in the Open-
Math standard (and the particular content dictionaries blessed by the Open-
Math society) are the greatest weakness of OpenMath. The represent the
knowledge in a very unstructured way — to name just a few problems:

• in the omcd:CMP, we can only make use of ASCII representation of formu-
lae.

• The relation between a particular omcd:CMP and omcd:FMP elements is
unclear.

• For properties like the distributivity of addition over multiplication it is
unclear, whether we should express this in the definition of the symbol
plus or the symbol times.

• Are all properties constitutive for the meaning of the symbol? Should they
be verified for an implementation of a content dictionary?

• What is the relationship between content dictionaries? Are they translation-
equivalent? Does one entail the other?

The OpenMath2 standards acknowledges these problems and explicitly
opens up the content dictionary format allowing other representations that
meet certain minimal criteria relegating the standard encoding above to a
reference implementation of the minimal model.

We will analyze the questions raised above from a general standpoint when
discussing the remaining two levels of mathematical knowledge. This analysis
constitutes the basic intuitions for the OMDoc format.

8 The content of the omcd:FMP element is actually the OpenMath object in the
representation in Listing 2.1, we have abbreviated it here in the usual mathemat-
ical notation, and we will keep doing this in the remaining document: wherever
an XML element in a figure contains mathematical notation, it stands for the
corresponding OpenMath element.

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

2.2 Mathematical Texts and Statements 21

2.2 Mathematical Texts and Statements

The mathematical markup languages OpenMath and MathML we have
discussed in the last section have dealt with mathematical objects and for-
mulae. The formats either specify the semantics of the mathematical object
involved in the standards document itself (MathML) or in a fixed set of
generally agreed-upon documents (OpenMath content dictionaries). In both
cases, the mathematical knowledge involved is relatively fixed. Even in the
case of OpenMath, which has an extensible library mechanism, the content
dictionaries are not in themselves objects of communication (they are mainly
background reference for the implementation of OpenMath interfaces).

For the communication among mathematicians (rather than computation
systems) this level of support is insufficient, because the mathematical knowl-
edge expressed in definitions, theorems (stating properties of defined objects),
their proofs, and even whole mathematical theories is the primary focus of
mathematical communication. For content markup of mathematical knowl-
edge, we have to turn implicit or presentational structuring devices in math-
ematical documents into explicit ones. For instance, mathematical state-
ments like the ones in the document fragment in Figure 2.5 are delimited by
keywords (e.g. Definition, Lemma and) or by changes in text font.

Definition 3.2.5 (Monoid)
A monoid is a semigroup S = (G, ◦) with an element e ∈ G, such that
e ◦ x = x for all x ∈ G. e is called a left unit of S.

Lemma 3.2.6
A monoid has at most one left unit.
Proof: We assume that there is another left unit f . . .
This contradicts our assumption, so we have proven the claim.

Fig. 2.5. A Fragment of a Traditional Mathematical Document

Of course, the content of a mathematical statement, e.g. the statement of
an assertion that “addition is commutative” can be expressed by a Content-
MathML or OpenMath formula like the one in Listing 2.1, but the infor-
mation that this formula is a theorem that has a proof, cannot be directly
expressed without extending the formalism. Even formalizations of mathe-
matics like Russell and Whitehead’s famous “Principia Mathematica” [WR10]
treat this information on the meta-level. If we are willing to extend the math-
ematical formalism to include primitives for such information, we arrive at
formalisms called logical frameworks (see [Pfe01] for an overview), where
they are treated as the primary objects of study. The most prevalent approach
here uses the “formulae as types” idea that delegates mathematical formulae

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

22 2 Markup for Mathematical Knowledge

to the status of types. Logical frameworks capture mathematical statements
in formulae and as such can be expressed in Content-MathML or Open-
Math. However, this approach relies on full formalization of the mathemati-
cal content, and cannot be directly used to capture mathematical practice. In
particular, the gap between formal mathematics and informal (but rigorous)
treatments of mathematics that rely on natural language as we find them in
textbooks and journal articles is wide. The formalization process is so tedious,
that it is seldom executed in practice (the “Principia Mathematica” and the
Mizar mathematical library [Miz] are solitary examples).

2.3 Large-Scale Structure and Context in Mathematics

The large-scale structure of mathematical knowledge is much less apparent
than that for formulae and even statements. Experienced mathematicians are
nonetheless aware of it, and use it for navigating the vast space of mathemat-
ical knowledge and to anchor their communication.

Much of this structure can be found in networks of mathematical the-
ories: groups of mathematical statements, e.g. those in a monograph “In-
troduction to Group Theory” or a chapter or section in a textbook. The
relations among such theories are described in the text, sometimes supported
by mathematical statements called representation theorems. We can observe
that mathematical texts can only be understood with respect to a particular
mathematical context given by a theory which the reader can usually infer
from the document. The context can be stated explicitly (e.g. by the title of a
book) or implicitly (e.g. by the fact that the e-mail comes from a person that
we know works on finite groups, and that she is talking about math).

If we make the structure of the context as explicit as the structure of
the mathematical objects (we will speak of context markup), then math-
ematical software systems will be able to provide novel services that rely on
this structure. We contend that without an explicit representation of context
structure, tasks like semantics-based searching and navigation or object classi-
fication can only be performed by human mathematicians that can understand
the implicitly given structure.

Mathematical theories have been studied by mathematicians and logi-
cians in the search of a rigorous foundation for mathematical practice. They
have been formalized as collections of symbol declarations — giving names to
mathematical objects that are particular to the theory — and logical formu-
lae, which state the laws governing the properties of the theory. A key research
question was to determine conditions for the consistency of mathematical the-
ories. In inconsistent theories all statements are vacuously valid9, and there-
fore only consistent theories make interesting statements about mathematical
objects.

9 A statement is valid in a theory, iff it is true for all models of the theory. If there
are none, it is vacuously valid.

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

2.3 Large-Scale Structure and Context in Mathematics 23

It is one of the critical observations of meta-mathematics that theories
can be extended without endangering consistency, if the added formulae can
be proven from the formulae already in the theory (such formulae are called
theorems). As a consequence, consistency of a theory can be determined by
examining the axioms (formulae without a proof) alone. Thus the role of
proofs is twofold, they allow to push back the assumptions about the world
to simpler and simpler axioms, and they allow to test the model by deriving
consequences of these basic assumptions that can be tested against the data.

A second important observation is that new symbols together with axioms
defining their properties can be added to a theory without endangering consis-
tency, if they are of a certain restricted syntactical form. These definitional
forms mirror the various types of mathematical definitions (e.g. equational,
recursive, implicit definitions). This leads to the “principle of conservative ex-
tension”, which states that conservative extensions to theories (by theorems
and definitions) are safe for mathematical theories, and that possible sources
for inconsistencies can be narrowed down to small sets of axioms.

Even though all of this has theoretically been known to (meta)-mathema-
ticians for almost a century, it has only been an explicit object of formal study
and exploited by mathematical software systems in the last decades. Much of
the meta-mathematics has been formally studied in the context of proof de-
velopment systems like AutoMath [Bru80] NuPrL [Con+86], Hol [GM93],
Mizar [Rud92] andΩmega [Ben+97] which utilize strong logical systems that
allow to express both mathematical statements and proofs as mathematical
objects. Some systems like Isabelle [PN90] and Twelf [Pfe91] even allow
the specification of the logic language itself, in which the reasoning takes place.
Such semi-automated theorem proving systems have been used to formalize
substantial parts of mathematics and mechanically verify many theorems in
the respective areas. These systems usually come with a library system that
manages and structures the body of mathematical knowledge formalized in
the system so far.

In software engineering, mathematical theories have been studied under
the label of “(algebraic) specifications”. Theories are used to specify the be-
havior of programs and software components. Under the pressure of industrial
applications, the concept of a theory (specification) has been elaborated from
a practical point of view to support the structured development of specifi-
cations, theory reuse, and modularization. Without this additional structure,
real world specifications become unwieldy and unmanageable in practice. Just
as in the case of the theorem proving systems, there is a whole zoo of specifica-
tion languages, most of them tied to particular software systems. They differ
in language primitives, theoretical expressivity, and the level of tool support.

Even though there have been standardization efforts, the most recent
one being the Casl standard (Common Algebraic Specification Language;
see [Mos04]) there have been no efforts of developing this into a general
markup language for mathematics with attention to web communication
and standards. The OMDoc format attempts to provide a content-oriented

math-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

24 2 Markup for Mathematical Knowledge

markup scheme that supports all the aspects and structure of mathematical
knowledge we have discussed in this section. Before we define the language
in the next chapter, we will briefly go over the consequences of adopting a
markup language like OMDoc as a standard for web-based mathematics.

omdoc-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

3

OMDoc: Open Mathematical Documents

Based on the analysis of the structure inherent in mathematical knowledge
and existing content markup systems for mathematics we will now briefly in-
troduce basic design assumptions and the development history of the OMDoc
format, situate it, and discuss possible applications.

3.1 A Brief History of the OMDoc Format

OMDoc initially developed from the quest for a solution of the problem of
representing knowledge on the one hand and integrating external mathemat-
ical reasoning systems in the Ωmega project at Saarland University on the
other. Ωmega [Sie+02] is a large-scale proof development environment that
integrates various reasoning engines (automated theorem provers, decision
procedures, computer algebra systems) via knowledge-based proof planning
with the aim of creating a mathematical assistant system.

3.1.1 The Design Problem

One of the hard practical problems of building such systems is to represent,
provision, and manage the relevant (factual, tactic, and intuitive) knowledge
human mathematicians use in developing mathematical theories and proofs:
Knowledge-based reasoning systems use explicit representations of this knowl-
edge to automate the search for a proof, and before a system can be applied
to a mathematical domain it must be formalized, the proof tactics of this do-
main must be identified, and the intuitions of when to use which tactic must
be coaxed from practitioners. Ideally, as a valuable and expensive resource,
this knowledge would be shared between mathematical assistant systems to be
able to compare the relative strength of the systems and to enhance practical
coverage. This poses the problem that the knowledge must be represented at
a level that would accommodate the different systems’ representational quirks
and bridge between them.

omdoc-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

26 3 Open Mathematical Documents

Developing an agent-oriented framework for distributed reasoning via re-
mote procedure calls to achieve system scalability (MathWeb-SB [FK99;
ZK02]; see Chapter 9 for an OMDoc-based reformulation) revealed that the
underlying problem in integrating mathematical systems is a semantic one:
all the reasoning systems make differing ontological assumptions that have
to be reconciled to achieve a correct (i.e. meaning-preserving) integration.
This integration problem is quite similar to the one at the knowledge level:
if the knowledge ingrained in the system design could be explicitly described,
then it would be possible to find applicable systems and deploy the necessary
(syntactic) and (semantic) bridges automatically.

The approaches and solutions offered by the automated reasoning com-
munities at that time were insular at best: They standardized character-level
syntax standardizing on first-order logic [SSY94; HKW96], or explored bilat-
eral system integrations overcoming deep ontological discrepancies between
the systems [FH97].

At the same time, (ca 1998) the Computer Algebra Community was grap-
pling with similar integration problems. The OpenMath standard that was
emerging shad solved the web-scalability problem in representing mathemat-
ical formulae by adopting the emerging XML framework as a syntactical
basis and providing structural markup with explicit context references as a
syntax-independent representation approach. First attempts by the author to
influence OpenMath standardization so that the format would allow mathe-
matical knowledge representation (i.e. the statements and context level) were
unsuccessful. The OpenMath community had intensively discussed similar
issues under the heading of “content dictionary inheritance” and “confor-
mance specification”, and had decided that they were too controversial for
standardization.

3.1.2 Design Principles

The start of the development of OMDoc as a content-based representation
format for mathematical knowledge was triggered by an e-mail by Alan Bundy
to the author in 1998, where he lamented the fact that one of the great hin-
drances of knowledge-based reasoning is the fact that formalizing mathemat-
ical knowledge is very time-consuming and that it is very hard for young
researchers to gain recognition for formalization work. This led to the idea of
developing a global repository of formalized mathematics, which would even-
tually allow peer-reviewed publication of formalized mathematical knowledge,
thus generating academic recognition for formalization work and eventually
lead to the much enlarged corpus of formalized mathematics that is necessary
for knowledge-based formal mathematical reasoning. Young researchers would
contribute formalizations of mathematical knowledge in the form of mathe-

omdoc-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

3.1 A Brief History of the OMDoc Format 27

matical documents that would be both formal and thus machine-readable, as
well as human-readable, so that humans could find and understand them1.

This idea brought the final ingredient to the design principles: in a nutshell,
the OMDoc format was to

1. be Ontologically uncommitted (like the OpenMath format), so that it
could serve as a integration format for mathematical software systems.

2. provide a representation format for mathematical documents that com-
bined formal and informal views of all the mathematical knowledge con-
tained in them.

3. be based on sound logic/representational principles (as not to embarrass
the author in front of his colleagues from automated reasoning)

4. be based on structural/content markup to guarantee both 1.) and 2.).

3.1.3 Development History

Version 1.0 of the OMDoc format was released on November 1st 2000 to
give users a stable interface to base their documents and systems on. It was
adopted by various projects in automated deduction, algebraic specification,
and computer-supported education. The experience from these projects un-
covered a multitude of small deficiencies and extension possibilities of the
format, that have been subsequently discussed in the OMDoc community.

OMDoc1.1 was released on December 29th 2001 as an attempt to roll
the uncontroversial and non-disruptive part of the extensions and corrections
into a consistent language format. The changes to version 1.0 were largely
conservative, adding optional attributes or child elements. Nevertheless, some
non-conservative changes were introduced, but only to less used parts of the
format or in order to remedy design flaws and inconsistencies of version 1.0.

OMDoc1.2 is the mature version in the OMDoc1 series of specifications.
It contains almost no large-scale changes to the document format, except that
Content-MathML is now allowed as a representation for mathematical ob-
jects. But many of the representational features have been fine-tuned and
brought up to date with the maturing XML technology (e.g. ID attributes
now follow the XML ID specification [MVW05], and the Dublin Core ele-
ments follow the official syntax [DUB03a]). The main development is that the
OMDoc specification, the DTD, and schema are split into a system of interde-
pendent modules that support independent development of certain language
aspects and simpler specification and deployment of sub-languages. Version

1 Here the strong influence of the Mizar project under Andrzej Trybulec must be
acknowledged, at that time, the project had already realized these two goals. They
had even established the “Journal of Formalized Mathematics”, where LATEX ar-
ticles were generated from the automatically verified Mizar source. However, the
Mizar mathematical language [Urld] used a human-oriented syntax that defied
outside parsing and web-integration, had a tightly integrated largely undocu-
mented sort system, and made very strong ontological commitments.

omdoc-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

28 3 Open Mathematical Documents

1.2 of OMDoc freezes the development so that version 2 can be started off
on the modules.

3.2 Three Levels of Markup

To achieve content and context markup for mathematical knowledge, OMDoc
uses three levels of modeling corresponding to the concerns raised previously.
We have visualized this architecture in Figure 3.1.

Level of Representation OMDoc Example

Theory Level : Development Graph

• Inheritance via symbol-mapping
• Theory inclusion via proof-

obligations
• Local (one-step) vs. global links

NatOrdList
cons, nil,
0, s, N, <

NatOrd
0, s, N, <

TOSet
Elem,<

OrdList
cons, nil,
Elem,<

imports imports

theory-inclusion

Actualization

imports

induces

Statement Level :

• Axiom, definition, theorem,
proof, example,. . .

• Structure explicit in statement
forms and references

<definition for=”plus” type=”recursive”>
<CMP>Addition is defined by

recursion on the second argument
</CMP>
<FMP>X + 0 = 0</FMP>
<FMP>X + s(Y) = s(X + Y)</FMP>
</definition>

Object Level : OpenMath/MathML

• Objects as logical formulae
• Semantics by pointing to theory

level

<OMA>
<OMS cd=”arith1” name=”plus”/>
<OMV name=”X”/>
<OMS cd=”nat” name=”zero”/>
</OMA>

Fig. 3.1. OMDoc in a Nutshell (the Three Levels of Modeling)

Building on the discussion in Chapter 2 we distinguish three levels of
representation in OMDoc

Mathematical Theories (see Section 2.1) At this level, OMDoc supplies orig-
inal markup for clustering sets of statements into theories, and for spec-
ifying relations between theories by morphisms. By using this scheme,
mathematical knowledge can be structured into reusable chunks. Theo-
ries also serve as the primary notion of context in OMDoc, they are the
natural target for the context aspect of formula and statement markup.

Mathematical Statements (see Section 2.2) OMDoc provides original mark-
up infrastructure for making the structure of mathematical statements
explicit. Again, we have content and context markup aspects. For instance
the definition in the right hand side of the second row of Figure 3.1 con-
tains an informal description of the definition as a first child and a formal

omdoc-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

3.3 Situating the OMDoc Format 29

description in the two recursive equations in the second and third children
supported by the type attribute, which states that this is a recursive def-
inition. The context markup in this example is simple: it states that this
piece of markup pertains to a symbol declaration for the symbol plus in
the current theory (presumably the theory arith1).

Mathematical Formulae (see Section 2.3) At the level of mathematical for-
mulae, OMDoc uses the established standards OpenMath [Bus+04]
and Content-MathML [Aus+03a]. These provide content markup for the
structure of mathematical formulae and context markup in the form of
URI references in the symbol representations (see Chapter 13 for an in-
troduction).

All levels are augmented by markup for various auxiliary information that
is present in mathematical documents, e.g. notation declarations, exercises,
experimental data, program code, etc.

3.3 Situating the OMDoc Format

The space of representation languages for mathematical knowledge reaches
from the input languages of computer algebra systems (CAS) to presentation
markup languages for mathematical vernacular like TEX/LATEX. We have or-
ganized some of the paradigmatic examples in a diagram mapping coverage
(which kinds of mathematical knowledge can be expressed) against machine
support (which services the respective software system can offer) in Figure 3.2.

On the left hand side we see CAS like Mathematica®[Wol02] or Maple™
[Cha+92] that are relatively restricted in the mathematical objects — they
can deal with polynomials, group representations, differential equations only,
but in this domain they can offer sophisticated services like equation solving,
factorization, etc. More to the right we see systems like automated theorem
provers, whose language — usually first-order logic — covers much more of
mathematics, but that cannot perform computational services2 like the CAS
do.

In the lower right hand corner, we find languages like “mathematical ver-
nacular”, which is just the everyday mathematical language. Here coverage is
essentially universal: we can use this language to write international treaties,
math books, and love letters; but machine support is minimal, except for type-
setting systems for mathematical formulae like TEX, or keyword search in the
natural language part.

The distribution of the systems clusters around the diagonal stretching
from low-coverage, high-support systems like CAS to wide-coverage, low-
support natural language systems. This suggests that there is a trade-off

2 Of course in principle, the systems could, since computation and theorem proving
are inter-reducible, but in practice theorem provers get lost in the search spaces
induced by computational tasks.

omdoc-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

30 3 Open Mathematical Documents

Math
Vernacular

human
interaction

Logical Frameworks

OMDoc

F.O. Logic
Logics
Description

wants this

Holy
Grail

Nobody

CAS

solving

model
comp.

Proof
search

Coverage

M
ac

hi
ne

 S
up

po
rt

MKM
(semantics)

(content/context)

checking
proof

Fig. 3.2. Situating Content Markup: Math. Knowledge Management

between coverage and machine support. All of the representation languages
occupy legitimate places in the space of representation languages, trying to
find sweet-spots along this coverage/support trade-off. OMDoc tries to oc-
cupy the “content markup” position. To understand this position better, let us
contrast it to the “semantic markup” position immediately to the left of and
above it. This is an important distinction, since it marks the border between
formal and informal mathematics.

We define a semantic markup format (aka formal system) as a rep-
resentation system that has a way of specifying when a formula is a conse-
quence of another. Many semantic markup formats express the consequence
relation by means of a formal calculus, which allows the mechanization of
proof checking or proof verification. It is a widely held belief in mathematics,
that all mathematical knowledge can in principle be expressed in a formal
system, and various systems have been proposed and applied to specific areas
of mathematics. The advantage of having a well-defined consequence relation
(and proof-checking) has to be paid for by committing to a particular logical
system.

Content markup does not commit to a particular consequence relation,
and concentrates on providing services based on the marked up structure
of the content and the context. Consider for instance the logical formula in
Listing 2.1, where the OpenMath representation does not specify the full
consequence relation (or the formal system) for the formula. It does some-

omdoc-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

3.4 The Future: An Active Web of (Mathematical) Knowledge 31

thing less but still useful, which is what we could call semantics by pointing :
The symbols used in the representation are identified by a pointer (the URI
jointly specified in the cd and name attributes) to a defining document (in
this case an OpenMath content dictionary). Note that URI equality is a suf-
ficient condition for two symbols to be equal, but not a necessary condition:
Two symbols can be semantically equal without pointing to the same docu-
ment, e.g. if the two defining documents are semantically marked up and the
definitions are semantic consequences of each other.

In this sense, content markup offers a more generic markup service (for all
formal systems; we do not have to commit ourselves) at the cost of being less
precise (we for instance miss out on some symbol equalities). Thus, content
markup is placed to the lower right of semantic markup in Figure 3.2. Note
however, that content markup can easily be turned into semantic markup by
adding a consequence relation, e.g. by pointing to defining documents that
are marked up semantically. Unlike OpenMath and Content-MathML, the
OMDoc format straddles the content/semantics border by closing the loop
and providing a content markup format for both formulae and the defining
documents. In particular, an OMDoc document is semantic if all the docu-
ments it references are.

As a consequence, OMDoc can serve as a migration format from for-
mal to informal mathematics (and thus from representations that for human
consumption to such that can be supported by machines). A document collec-
tion can be marked for content and context structure, making the structures
and context references explicit in a first pass. Note that this pass may in-
volve creating additional documents or identifying existing documents that
serve as targets for the context references so that the document collection is
self-contained. In a second (and possible semi-automatic) step, we can turn
this self-contained document collection into a formal representation (semantic
markup) by committing on consequence relations and adding the necessary
detail to the referenced documents.

3.4 The Future: An Active Web of (Mathematical)
Knowledge

It is a crucial – if relatively obvious – insight that true cooperation of mathe-
matical services is only feasible if they have access to a joint corpus of math-
ematical knowledge. Moreover, having such a corpus would allow to develop
added-value services like

• Cut and paste on the level of computation (take the output from a web
search engine and paste it into a computer algebra system),

• Automatically proof checking published proofs,
• Math explanation (e.g. specializing a proof to an example that simplifies

the proof in this special case),

omdoc-markup.tex 8685 2010-08-23 08:55:17Z kohlhase

32 3 Open Mathematical Documents

• Semantic search for mathematical concepts (rather than keywords),
• Data mining for representation theorems (are there unnoticed groups out

there?),
• Classification: Given a concrete mathematical structure, is there a general

theory for it?

As the online mathematical knowledge is presently only machine-readable,
but not machine-understandable, all of these services can currently only be
performed by humans, limiting the accessibility and thus the potential value of
the information. Services like this will transform the now passive and human-
centered fragment of the Internet that deals with mathematical content, into
an active (supported by semantic services) web of mathematical knowledge.

This promise of activating a web of knowledge is not limited to mathe-
matics: the task of transforming the current presentation-oriented world-wide
web into a “Semantic Web” [BL98] has been identified as one of the main
challenges by the world W3C. With the OMDoc format we pursue an alter-
native vision of a ‘Semantic Web’ for Mathematics. Like Tim Berners-Lee’s
vision we aim to make the Web (here mathematical knowledge) machine-
understandable instead of merely machine-readable. However, instead of a
top-down metadata-driven approach, which tries to approximate the content
of documents by linking them to web ontologies (expressed in terminologic
logics), we explore a bottom-up approach and focus on making explicit the
intrinsic structure of the underlying scientific knowledge. A connection of doc-
uments to web ontologies is still possible, but a secondary effect.

The direct applications of OMDoc (apart from the general effect to-
wards a Semantic Web) are not confined to mathematics proper either. The
MathML working group in the W3C has led the way in many web technolo-
gies (presenting mathematics on the web taxes the current web technology to
its limits); the endorsement of the MathML standard by the W3 Commit-
tee is an explicit testimony to this. We expect that the effort of creating an
infrastructure for digital mathematical libraries will play a similar role, since
mathematical knowledge is the most rigorous and condensed form of knowl-
edge and will therefore pinpoint the problems and possibilities of the semantic
web.

All modern sciences have a strongly mathematicised core and will benefit.
The real market and application area for the techniques developed in this
project lies with high-tech and engineering corporations that rely on huge
formula databases. Currently, both the content markup as well as the added-
value services alluded to above are very underdeveloped, limiting the useful-
ness of vital knowledge. The content-markup aspect needed for mining this
information treasure is exactly what we are developing in OMDoc.

partprimer.tex 8685 2010-08-23 08:55:17Z kohlhase

Part II

An OMDoc Primer

This part of the book provides an easily approachable description of the
OMDoc format by way of paradigmatic examples of OMDoc documents.
The primer should be used alongside the formal descriptions of the language
contained in Part III.

The intended audience for the primer are users who only need a casual
exposure to the format, or authors that have a specific text category in mind.
The examples presented here also serve as specifications of “best practice”, to
give the readers an intuition for how to encode various kinds of mathematical
knowledge.

Each chapter of the OMDoc primer deals with a different category of
mathematical document and introduces new features of the OMDoc format
in the context of concrete examples.

Chapter 4: Mathematical Textbooks and Articles

discusses the markup process for an informal but rigorous mathematical texts.
We will use a fragment of Bourbaki’s “Algebra” as an example. The devel-
opment marks up the content in four steps, from the document structure to
a full formalization of the content that could be used by automated theorem
provers. The first page of Bourbaki’s “Algebra” serves as an example of the

partprimer.tex 8685 2010-08-23 08:55:17Z kohlhase

34

treatment of a rigorous presentation of pure mathematics, as it can be found
in textbooks and articles.

Chapter 5 OpenMath Content Dictionaries

transforms an OpenMath content dictionary into an OMDoc document.
OpenMath content dictionaries are semi-formal documents that serve as ref-
erences for mathematical symbols in OpenMath encoded formulae. As of
OpenMath2, OMDoc is an admissible OpenMath content dictionary for-
mat. They are a good example for mathematical glossaries, and background
references, both formal and informal.

Chapter 6 Structured and Parametrized Theories

shows the power of theory markup in OMDoc for theory reuse and modular
specification. The example builds a theory of ordered lists of natural numbers
from a generic theory of ordered lists and the theory of natural numbers which
acts as a parameter in the actualization process.

Chapter 7 A Development Graph for Elementary Algebra

extends the range of theory-level structure by specifying the elementary al-
gebraic hierarchy. The rich fabric of relations between these theories is made
explicit in the form of theory morphisms, and put to use for proof reuse.

Chapter 8 Courseware and the Narrative/Content Distinction

covers markup for a fragment of a computer science course in the OMDoc
format, dwelling on the difference between the narrative structure of the course
and the background knowledge. Course materials like slides or writings on
blackboards are usually much more informal than textbook presentations of
mathematics. They also openly structure materials by didactic criteria and
leave out important parts of the rigorous development, which the student is
required to pick up from background materials like textbooks or the teacher’s
recitation.

Chapter 9 Communication with and between Mathematical Software Systems

uses an OMDoc fragment as content for communication protocols between
mathematical software systems on the Internet. Since the communicating par-
ties in this situation are machines, OMDoc fragments are embedded into
other XML markup that serves as a protocol for the distribution layer.

Together these examples cover many of the mathematical documents in-
volved in communicating mathematics. As the first two chapters build upon
each other and introduce features of the OMDoc format, they should be read
in succession. The remaining three chapters build on these, but are largely in-
dependent.

partprimer.tex 8685 2010-08-23 08:55:17Z kohlhase

35

To keep the presentation of the examples readable, we will only present
salient parts of the OMDoc representations in the discussion. The full text
of the examples can be accessed at https://svn.omdoc/repos/omdoc/doc/

spec/examples/spec.

https://svn.omdoc/repos/omdoc/doc/spec/examples/spec
https://svn.omdoc/repos/omdoc/doc/spec/examples/spec

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

4

Mathematical Textbooks and Articles

In this chapter we will work an example of a stepwise formalization of math-
ematical knowledge. This is the task of e.g. an editor of a mathematical text-
book preparing it for web-based publication. We will use an informal, but
rigorous text: a fragment of Bourbaki’s Algebra [Bou74], which we show in
Figure 4.1. We will mark it up in four stages, discussing the relevant OMDoc
elements and the design decisions in the OMDoc format as we go along.
Even though the text was actually written prior to the availability of the
TEX/LATEX system, we will take a LATEX representation as the starting point
of our markup experiment, since this is the prevalent source markup format
in mathematics nowadays.

Section 4.1 discusses the minimal markup that is needed to turn an ar-
bitrary document into a valid OMDoc document — albeit one, where the
markup is worthless of course. It discusses the necessary XML infrastructure
and adds some meta-data to be used e.g. for document retrieval or archiving
purposes.

In Section 4.2 we mark up the top-level structure of the text and classify
the paragraphs by their category as mathematical statements. This level of
markup already allows us to annotate and extract some meta-data and would
allow applications to slice the text into individual units, store it in databases
like MBase (see Section ??), or the In2Math knowledge base [Dah01; BB01],
or assemble the text slices into individualized books e.g. covering only a sub-
topic of the original work. However, all of the text itself, still contains the
LATEX markup for formulae, which is readable only by experienced humans,
and is fixed in notation. Based on the segmentation and meta-data, suitable
systems like the ActiveMath system described in Section ?? can re-assemble
the text in different orders.

In Section 4.3, we will map all mathematical objects in the text into Open-
Math or Content-MathML objects. To do this, we have to decide which
symbols we want to use for marking up the formulae, and how to structure
the theories involved. This will not only give us the ability to generate spe-
cialized and user-adaptive notation for them (see Chapter ??), but also to

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

38 4 Textbooks and Articles

1. LAWS OF COMPOSITION

Definition 1. Let E be a set. A mapping of E×E is called a law of composition
on E. The value f(x, y) of f for an ordered pair (x, y) ∈ E × E is called the
composition of x and y under this law. A set with a law of composition is called
a magma.

The composition of x and y is usually denoted by writing x and y in a definite
order and separating them by a characteristic symbol of the law in question (a
symbol which it may be agreed to omit). Among the symbols most often used
are + and ·, the usual convention being to omit the latter if desired; with these
symbols the composition of x and y is written respectively as x+ y, x.y or xy.
A law denoted by the symbol + is usually called addition (the composition
x+ y being called the sum of x and y) and we say that it is written additively ;
a law denoted by the symbol . is usually called multiplication (the composition
x.y = xy being called the product for x and y) and we say that it is written
multiplicatively .
In the general arguments of paragraphs 1 to 3 of this chapter we shall generally
use the symbols > and ⊥ to denote arbitrary laws of composition.
By an abuse of language, a mapping of a subset of E ×E into E is sometimes
called a law of composition not everywhere defined on E.

Examples. (1) The mappings (X,Y) 7→ X ∪ Y and (X,Y) 7→ X ∩ Y are
laws of composition on the set of subsets of a set E.

(2) On the set N of natural numbers addition, multiplication, and expo-
nentiation are laws of composition (the compositions of x ∈ N and y ∈ N
under these laws being denoted respectively by x+ y, xy, or x.y and xy) (Set
Theory, III, §3, no. 4).

(3) Let E be a set; the mapping (X,Y) 7→ X ◦ Y is a law of composition
on the set of subsets of E × E (Set Theory , II, §3, no. 3, Definition 6); the
mapping (f, g) 7→ f ◦ g is a law of composition on the set of mappings from E
into E (Set Theory , II, §5, no. 2).

Fig. 4.1. A fragment from Bourbaki’s algebra [Bou74]

copy and paste them to symbolic math software systems. Furthermore, an
assembly into texts can now be guided by the semantic theory structure, not
only by the mathematical text categories or meta-data.

Finally, in Section 4.4 we will fully formalize the mathematical knowl-
edge. This involves a transformation of the mathematical vernacular in the
statements into some logical formalism. The main benefit of this is that we
can verify the mathematical contents in theorem proving environments like
NuPrL [Con+86], Hol [GM93], Mizar [Rud92] and OMEGA [Ben+97].

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

4.1 Minimal OMDoc Markup 39

4.1 Minimal OMDoc Markup

It actually takes very little change to an existing document to make it a valid
OMDoc document. We only need to wrap the text into the appropriate XML
document tags. In Listing 4.1, we have done this and also added meta-data.
Actually, since the metadata and the document type declaration are optional
in OMDoc, just wrapping the original text with lines 1, 4, 7, 31, 32, and 36
to 38 is the simplest way to create an OMDoc document.

Listing 4.1. The outer part of the document

<?xml version=”1.0” encoding=”utf−8”?>
<!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc Basic V1.3//EN”

”http://omdoc.org/dtd/omdoc−basic.dtd” []>

5 <omdoc xml:id=”algebra1.omdoc” version=”1.3” modules=”@basic”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:cc=”http://creativecommons.org/ns”
xmlns=”http://omdoc.org/ns”>

<metadata>
10 <dc:title>Laws of Composition</dc:title>

<dc:creator role=”trl”>Michael Kohlhase</dc:creator>
<dc:date action=”created”>2002−01−03T07:03:00</dc:date>
<dc:date action=”updated”>2002−11−23T18:17:00</dc:date>
<dc:description>

15 A first migration step for a fragment of Bourbaki’s Algebra
</dc:description>
<dc:source>

Nicolas Bourbaki, Algebra, Springer Verlag 1989, ISBN 0−387−19373−1
</dc:source>

20 <dc:type>Text</dc:type>
<dc:format>application/omdoc+xml</dc:format>
<dc:rights>Copyright (c) 2005 Michael Kohlhase</dc:rights>
<cc:license>
<cc:permissions reproduction=”permitted” distribution=”permitted”

25 derivative works=”permitted”/>
<cc:prohibitions commercial use=”permitted”/>
<cc:requirements notice=”required” copyleft=”required” attribution=”required”/>

</cc:license>
</metadata>

30

<omtext xml:id=”all”>
<CMP xml:lang=”en”>
{\sc Definition 1.} Let E be a set. A mapping E × E is called a law of
. . .

35 mappings from E into E ({\emph{Set Theory}}, II, §5, no. 2).
</CMP>

</omtext>
</omdoc>

We will now explain the general features of the OMDoc representation in
detail by line numbers. The references point to the relevant sections in the
OMDoc specification; details and normative rules for using the elements in
questions can be found there.

We will now explain the general features of the OMDoc representation
in detail by line numbers. The references point to the relevant sections in the
OMDoc specification; details and normative rules for using the elements in
questions can be found there.

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

40 4 Textbooks and Articles

line Description ref.

1 This document is an XML 1.0 file that is encoded in the
UTF-8 encoding.

2,3 The parser is told to use a document type definition for val-
idation. The string omdoc specifies the name of the root el-
ement, the identifier PUBLIC specifies that the DTD (we use
the “OMDoc basic” DTD; see Subsection 22.3.1), which can
be identified by the public identifier in the first string and
looked up in an XML catalog or (if that fails) can be found
at the URL specified in the second string.
A DTD declaration is not strictly needed for an OMDoc doc-
ument, but is recommended, since the DTD supplies default
values for some attributes.

??
p. ??

4 In general, XML files can contain as much whitespace as they
want between elements, here we have used it for structuring
the document.

5 Start tag of the root element of the document. It declares the
version (OMDoc1.3) via the version, and an identifier of the
document using the xml:id attribute. The optional modules
specifies the sub-language used in this document. This is used
when no DTD is present (see Subsection 22.3.1).

11.1
p. 98

6,7 the namespace prefix declarations for the Dublin Core, Cre-
ative Commons, and OpenMath namespaces. They declare
the prefixes dc:, cc:, and om:, and bind them to the speci-
fied URIs. We will need the OpenMath namespace only in
the third markup step described in Section 4.3, but spurious
namespace prefix declarations are not a problem in the XML
world.

10
p. 89

8 the namespace declaration for the document; if not prefixed,
all elements live in the OMDoc namespace.

10.2
p. 89

9–29 The metadata for the whole document in Dublin Core format 11.3
p. 100

10 The title of the document 12.2
p. 113

11 The document creator, here in the role of a translator 12.3
p. 116

12 The date and time of first creation of the document in ISO
8601 norm format.

12.2
p. 114

13 The date and time of the last update to the document in ISO
8601 norm format.

12.2
p. 114

14–16 A short description of the contents of the document 12.2
p. 114

17–19 Here we acknowledge that the OMDoc document is just a
translation from an earlier work.

12.2
p. 115

20 The type of the document, this can be Dataset (un-ordered
mathematical knowledge) or Text (arranged for human con-
sumption).

12.2
p. 115

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

4.2 Structure and Statements 41

21 The format/MIME type [FB96] of the document, for OM-
Doc, this is application/omdoc+xml.

12.2
p. 115

22 The copyright resides with the creator of the OMDoc docu-
ment

12.2
p. 115

23–28 The creator licenses the document to the world under cer-
tain conditions as specified in the Creative Commons license
specified in this element.

12.4
p. 118

24,25 The cc:permissions element gives the world the permission
to reproduce and distribute it freely. Furthermore the license
grants the public the right to make derivative works under
certain conditions.

12.4
p. 119

26 The cc:prohibitions can be used to prohibit certain uses of
the document, but this one is unencumbered.

12.4
p. 119

27 The cc:requirements states conditions under which the li-
cense is granted. In our case the licensee is required to keep
the copyright notice and license notices intact during distri-
bution, to give credit to the copyright holder, and that any
derivative works derived from this document must be licensed
under the same terms as this document (the copyleft clause).

12.4
p. 119

31-37 The omtext element is used to mark up text fragments. Here,
we have simply used a single omtext to classify the whole text
in the fragment as unspecific “text”.

14.3
p. 141

32-36 The CMP element holds the actual text in a multilingual group.
Its xml:lang specifies the language. If the document is used
with a DTD or an XML schema (as we are) this attribute
is redundant, since the default value given by the DTD or
schema is en. More keywords in other languages can be given
by adding more CMP elements.

14.1
p. 138

33–35 The text of the LATEX fragment we are migrating. For simplic-
ity we do not change the text, and leave that to later stages
of the migration.

38 The closing tag of the root omdoc element. There may not be
text after this in the file.

11.1
p. 98

4.2 Marking up the text structure and statements

In the next step, we analyze and mark up the structure of the text of the
further, and embed the paragraphs into markup for mathematical statements
or text segments. Instead of lines 32–36 in Listing 4.1, we will now have the
representation in Listing 4.2.

Listing 4.2. The segmented text

<omtext xml:id=”magma.def” type=”definition”>
2 <CMP>Let <legacy format=”TeX”>E</legacy> be a set . . . called a magma.</CMP>

</omtext>

<omtext xml:id=”t1”>
<CMP>The composition of <legacy format=”TeX”>x</legacy> . . . multiplicatively.</CMP>

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

42 4 Textbooks and Articles

7 </omtext>
<omtext xml:id=”t2”>
<CMP>In the general . . . composition.</CMP>

</omtext>
<omtext xml:id=”t3”>

12 <CMP>By an abuse . . . on <legacy format=”TeX”>E.</legacy></CMP>
</omtext>

<omgroup xml:id=”magma−ex” type=”enumeration”>
<metadata><dc:title>Examples</dc:title></metadata>

17

<omtext type=”example” xml:id=”e1.magma”>
<CMP>

The mappings <legacy format=”TeX”>(X,Y)</legacy>
. . . subsets of a set <legacy format=”TeX”>E</legacy>.

22 </CMP>
</omtext>
<omtext type=”example” xml:id=”e2.magma”>
<CMP>

On the set <legacy format=”TeX”>N</legacy> . . . III, §3, no. 4).
27 </CMP>

</omtext>
<omtext type=”example” xml:id=”e3.magma”>
<CMP>

Let <legacy format=”TeX”>E</legacy> be a set; . . . II, §5, no. 2).
32 </CMP>

</omtext>
</omgroup>

In summary, we have sliced the text into omtext fragments and individu-
ally classified them by their mathematical role. The formulae inside have been
encapsulated into legacy elements that specify their format for further pro-
cessing. The higher-level structure has been captured in OMDoc grouping
elements and the document as well as some of the slices have been annotated
by metadata.

line Description ref.

1 The omtext element classifies the text fragment as a
definition, other types for mathematical statements include
axiom, example, theorem, and lemma. Note that the number-
ing of the original text is lost, but can be re-created in the text
presentation process. The optional xml:id attribute specifies
a document-unique identifier that can be used for reference
later.

14.3
p. 141

2 A multilingual group of CMP elements that hold the text (in
our case, there is only the English default). Here the TEX
formulae have been marked up with legacy elements charac-
terizing them as such. This might simplify a later automatic
transformation to OpenMath or Content-MathML.

13.5
p. 134

4–13 We have classified every paragraph in the original as a sep-
arate omtext element, which does not carry a type since it
does not fit any other mathematical category at the moment.

14.3
p. 141

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

4.3 Marking up the Formulae 43

15 The three examples in the original in Figure 4.1 are grouped
into an enumeration. We use the OMDoc omgroup element
for this. The optional attribute xml:id can be used for ref-
erencing later. We have chosen enumeration for the type at-
tribute to specify the numbering of the examples in the orig-
inal.

15.6
p. 166

16 We can use the metadata of the omgroup element to accom-
modate the title “Examples” in the original. We could enter
more metadata at this level.

12.2
p. 113

18 The type attribute of this omtext element classifies this text
fragment as an example.

14.3
p. 141

4.3 Marking up the Formulae

After we have marked up the top-level structure of the text to expose the
content, the next step will be to mark up the formulae in the text to content
mathematical form. Up to now, the formulae were still in TEX notation, which
can be read by TEX/LATEX for presentation to the human user, but not used by
symbolic mathematics software. For this purpose, we will re-represent the for-
mulae as OpenMath objects or Content-MathML, making their functional
structure explicit.

So let us start turning the TEX formulae in the text into OpenMath
objects. Here we use the hypothetical mbc.mathweb.org as repository for
theory collections.

Listing 4.3. The definition of a magma with OpenMath objects

1 <!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc CD V1.3//EN”
”http://omdoc.org/dtd/omdoc−cd.dtd”

[<!ENTITY % om.prefixed ”INCLUDE”>]>

<theory xml:id=”magmas”>
6 <imports from=”background.omdoc#products”/>

<imports from=”http://mbc.mathweb.org/omstd/relation1.omdoc#relation1”/>

<symbol name=”magma”>
<metadata><dc:description>Magma</dc:description></metadata>

11 </symbol>
<symbol name=”law of composition”/>

<definition xml:id=”magma.def” for=”magma law of composition”>
<CMP>

16 Let <om:OMOBJ><om:OMV name=”E”/></om:OMOBJ> be a set. A mapping of
<om:OMOBJ>
<om:OMA><om:OMS cd=”products” name=”Cartesian−product”/>
<om:OMV name=”E”/><om:OMV name=”E”/>

</om:OMA>
21 </om:OMOBJ> is called a

<term cd=”magmas” name=”magma” role=”definiendum”>law of composition</term>
on <om:OMOBJ><om:OMV name=”E”/></om:OMOBJ>. The value
<om:OMOBJ>
<om:OMA><om:OMV name=”f”/>

26 <om:OMV name=”x”/><om:OMV name=”y”/>
</om:OMA>

mbc.mathweb.org

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

44 4 Textbooks and Articles

</om:OMOBJ>
of <om:OMOBJ><om:OMV name=”f”/></om:OMOBJ> for an ordered pair
<om:OMOBJ>

31 <om:OMA><om:OMS cd=”sets” name=”in”/>
<om:OMA><om:OMS cd=”products” name=”pair”/>
<om:OMV name=”x”/><om:OMV name=”y”/>

</om:OMA>
<om:OMA><om:OMS cd=”products” name=”Cartesian−product”/>

36 <om:OMV name=”E”/><om:OMV name=”E”/>
</om:OMA>

</om:OMA>
</om:OMOBJ> is called the
<term cd=”magmas” name=”law of composition”

41 role=”definiendum−applied”>composition</term>
of <om:OMOBJ><om:OMV name=”x”/></om:OMOBJ> and
<om:OMOBJ><om:OMV name=”y”/></om:OMOBJ> under this law.
A set with a law of composition is called a
<term cd=”magmas” name=”magma” role=”definiendum”>magma</term>.

46 </CMP>
</definition>

. . .
</theory>
. . .

Of course all the other mathematical statements in the documents have to
be treated in the same way.

line Description ref.

1–4 The omdoc-basic document type definition is no longer suf-
ficient for our purposes, since we introduce new symbols that
can be used in other documents. The DTD for OMDoc con-
tent dictionaries (see Chapter 5), which allows this. Corre-
spondingly, we would specify the value cd for the attribute
module.
The part in line 4 is the internal subset of the DTD, which
sets a parameter entity for the modularized DTD to instruct
it to accept OpenMath elements in their namespace prefixed
form. Of course a suitable namespace prefix declaration is
needed as well.

22.3.2
p. 222

5 The start tag of a theory. We need this, since symbols and
definitions can only appear inside theory elements.

15.6
p. 165

6,7 We need to import the theory products to be able to use sym-
bols from it in the definition below. The value of the from is
a relative URI reference to a theory element much like the
one in line 5. The other imports element imports the theory
relation1 from the OpenMath standard content dictionar-
ies1. Note that we do not need to import the theory sets

here, since this is already imported by the theory products.

15.6.1
p. 166

1 The originals are available at http://www.openmath.org/cd; see Chapter 5 for a
discussion of the differences of the original OpenMath format and the OMDoc
format used here.

http://www.openmath.org/cd

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

4.3 Marking up the Formulae 45

9–11 A symbol declaration: For every definition, OMDoc requires
the declaration of one or more symbol elements for the con-
cept that is to be defined. The name attribute is used to iden-
tify it. The dc:description element allows to supply a mul-
tilingual (via the xml:lang attribute) group of keywords for
the declared symbol

15.2.1
p. 152

12 Upon closer inspection it turns out that the definition in List-
ing 4.3 actually defines three concepts: “law of composition”,
“composition”, and “magma”. Note that “composition” is
just another name for the value under the law of composi-
tion, therefore we do not need to declare a symbol for this.
Thus we only declare one for “law of composition”.

15.2.1
p. 152

14 A definition: the definition element carries a name attribute
for reference within the theory. We need to reference the two
symbols defined here in the for attribute of the definition

element; it takes a whitespace-separated list of name at-
tributes of symbol elements in the same theory as values.

15.2.4
p.155

16 We use an OpenMath object for the set E. It is an om:OMOBJ

element with an om:OMV daughter, whose name attribute spec-
ifies the object to be a variable with name E. We have chosen
to represent the set E as a variable instead of a constant (via
an om:OMS element) in the theory, since it seems to be local to
the definition. We will discuss this further in the next section,
where we talk about formalization.

13.1.1
p. 122

17–21 This om:OMOBJ represents the Cartesian product E×E of the
set E with itself. It is an application (via an om:OMA element)
of the symbol for the binary Cartesian product relation to E.

13.1.1
p. 122

18 The symbol for the Cartesian product constructor is repre-
sented as an om:OMS element. The cd attribute specifies the
theory that defines the symbol, and the name points to the
symbol element in it that declares this symbol. The value of
the cd attribute is a theory identifier. Note that this theory
has to be imported into the current theory, to be legally used.

13.1.1
p. 122

22 We use the term element to characterize the defined terms in
the text of the definition. Its role attribute can used to mark
the text fragment as a definiens, i.e. a concept that is under
definition.

14.4.3
p. 145

24–28 This object stands for f(x, y)

30–39 This object represents (x, y) ∈ E×E. Note that we make use
of the symbol for the elementhood relation from the Open-
Math core content dictionary set1 and of the pairconstructor
from the theory of products from the Bourbaki collection
there.

The rest of the representation in Listing 4.3 is analogous. Thus we have treated
the first definition in Figure 4.1. The next two paragraphs contain notation
conventions that help the human reader to understand the text. They are

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

46 4 Textbooks and Articles

annotated as omtext elements. The third paragraph is really a definition (even
if the wording is a bit bashful), so we mark it up as one in the style of
Listing 4.3 above.

Finally, we come to the examples at the end of our fragment. In the markup
shown in Listing 4.4 we have decided to construct a new theory for these
examples since the examples use concepts and symbols that are independent of
the theory of magmas. Otherwise, we would have to add the imports element
to the theory in Listing 4.3, which would have mis-represented the actual
dependencies. Note that the new theory has to import the theory magmas

together with the theories from which examples are taken, so their symbols
can be used in the examples.

Listing 4.4. Examples for magmas with OpenMath objects

<theory xml:id=”magmas−examples”>
<metadata><dc:title>Examples</dc:title></metadata>

<imports from=”http://mbc.mathweb.org/omstd/fns1.omdoc##fns1”/>
5 <imports from=”background.omdoc#nat”/>

<imports from=”background.omdoc#functions”/>
<imports from=”#magmas”/>

<omgroup xml:id=”magma−ex” type=”enumeration”>
10 <metadata><dc:title>Examples</dc:title></metadata>

<example xml:id=”e1.magma” for=”#law of composition” type=”for”>
<CMP>The mappings
<om:OMOBJ>

15 <om:OMBIND><om:OMS cd=”fns1” name=”lambda”/>
<om:OMBVAR>
<om:OMV name=”X”/><om:OMV name=”Y”/>

</om:OMBVAR>
<om:OMA><om:OMS cd=”functions” name=”pattern−defined”/>

20 <om:OMA><om:OMS cd=”products” name=”pair”/>
<om:OMV name=”X”/>
<om:OMV name=”Y”/>

</om:OMA>
<om:OMA><om:OMS cd=”sets” name=”union”/>

25 <om:OMV name=”X”/>
<om:OMV name=”Y”/>

</om:OMA>
</om:OMA>

</om:OMBIND>
30 </om:OMOBJ> and

<om:OMOBJ>
<om:OMBIND><om:OMS cd=”fns1” name=”lambda”/>
<om:OMBVAR>
<om:OMV name=”X”/><om:OMV name=”Y”/>

35 </om:OMBVAR>
<om:OMA><om:OMS cd=”functions” name=”pattern−defined”/>
<om:OMA><om:OMS cd=”products” name=”pair”/>
<om:OMV name=”X”/>
<om:OMV name=”Y”/>

40 </om:OMA>
<om:OMA><om:OMS cd=”sets” name=”intersection”/>
<om:OMV name=”X”/>
<om:OMV name=”Y”/>

</om:OMA>
45 </om:OMA>

</om:OMBIND>
</om:OMOBJ>
are <term cd=”magmas” name=”law of composition>laws of composition</term>

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

4.3 Marking up the Formulae 47

on the set of subsets of a set
50 <om:OMOBJ><om:OMS cd=”magmas” name=”E”/></om:OMOBJ>.

</CMP>
</example>

<example xml:id=”e2.magma” for=”#law of composition” type=”for”>
55 <CMP>

On the set <om:OMOBJ><om:OMS cd=”nat” name=”Nat”/></om:OMOBJ>
of <term cd=”nats” name=”nats”>natural numbers</term>,
<term cd=”nats” name=”plus”>addition</term>,
<term cd=”nats” name=”times”>multiplication</term>, and

60 <term cd=”nats” name=”power”>exponentiation</term> are . . .
</CMP>

</example>
</omgroup>

</theory>

The example element in line 13 is used for mathematical examples of a spe-
cial form in OMDoc: objects that have or fail to have a specific property. In
our case, the two given mappings have the property of being a law of com-
position. This structural property is made explicit by the for attribute that
points to the concept that these examples illustrate, in this case, the symbol
law of composition. The type attribute has the values for and against.
In our case for applies, against would for counterexamples. The content of
an example is a multilingual CMP group. For examples of other kinds — e.g.
usage examples, OMDoc does not supply specific markup, so we have to fall
back to using an omtext element with type example as above.

In our text fragment, where the examples are at the end of the section
that deals with magmas, creating an independent theory for the examples (or
even multiple theories, if examples from different fields are involved) seems
appropriate. In other cases, where examples are integrated into the text, we
can equivalently embed theories into other theories. Then we would have the
following structure:

Listing 4.5. Examples embedded into a theory

1 <theory xml:id=”magmas”>
<imports xml:id=”imp3” from=”background.omdoc#products”/>
<imports from=”http://mbc.mathweb.org/omstd/relation1.omdoc#relation1”/>
. . .
<theory xml:id=”magmas−examples”

6 <imports xml:id=”imp4”
from=”http://omdoc.org/examples/omstd/fns1.omdoc#fns1”/>

<imports xml:id=”imp5” from=”background.omdoc#nat”/>
<imports xml:id=”imp6” from=”background.omdoc#functions”/>
. . .

11 </theory>
. . .

</theory>

Note that the embedded theory (magmas-examples) has access to all the sym-
bols in the embedding theory (magmas), so it does not have to import it. How-
ever, the symbols imported into the embedded theory are only visible in it,
and do not get imported into the embedding theory.

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

48 4 Textbooks and Articles

4.4 Full Formalization

The final step in the migration of the text fragment involves a transformation
of the mathematical vernacular in the statements into some logical formalism.
The main benefit of this is that we can verify the mathematical contents in
theorem proving environments. We will start out by dividing the first defi-
nition into two parts. The first one defines the symbol law of composition

(see Listing 4.6), and the second one magma (see Listing 4.7).

Listing 4.6. The formal definition of a law of composition

<symbol name=”law of composition”>
2 <metadata><dc:description>A law of composition on a set.</dc:description></metadata>

</symbol>
<definition xml:id=”magma.def” for=”law of composition” type=”simple”>
<CMP>

Let <om:OMOBJ><om:OMV name=”E”/></om:OMOBJ> be a set. A mapping of
7 <om:OMOBJ><om:OMR href=”#comp.1”/></om:OMOBJ>

is called a <term cd=”magmas” name=”law of composition”
role=”definiens”>law of composition</term>

on <om:OMOBJ><om:OMV name=”E”/></om:OMOBJ>.
</CMP>

12 <om:OMOBJ>
<om:OMBIND>
<om:OMS cd=”fns1” name=”lambda”/>
<om:OMBVAR>
<om:OMV name=”E”/><om:OMV name=”F”/>

17 </om:OMBVAR>
<om:OMA><om:OMS cd=”pl0” name=”and”/>
<om:OMA><om:OMS cd=”sets” name=”set”/>

<om:OMV name=”E”/>
</om:OMA>

22 <om:OMA>
<om:OMS cd=”functions” name=”function”/>
<om:OMA id=”comp.1”>
<om:OMS cd=”products” name=”Cartesian−product”/>
<om:OMV name=”E”/>

27 <om:OMV name=”E”/>
</om:OMA>
<om:OMV name=”E”/>

</om:OMA>
</om:OMA>

32 </om:OMBIND>
</om:OMOBJ>
</definition>

The main difference of this definition to the one in the section above is the
om:OMOBJ element, which now accompanies the CMP element. It contains a
formal definition of the property of being a law of composition in the form
of a λ-term λE,F .set(E) ∧ F : E × E → E2. The value simple of the type

attribute in the definition element signifies that the content of the om:OMOBJ
element can be substituted for the symbol law of composition, wherever
it occurs. So if we have law of composition(A,B) somewhere this can be

2 We actually need to import the theories pl1 for first-order logic (it imports the
theory pl0) to legally use the logical symbols here. Since we did not show the
theory element, we assume it to contain the relevant imports elements.

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

4.4 Full Formalization 49

reduced to (λE,F .set(E) ∧ F : E ×E → E)(A,B) which in turn reduces3 to
set(A)∧B : A×A→ A or in other words law of composition(A,B) is true,
iff A is a set and B is a function from A×A to A. This definition is directly
used in the second formal definition, which we depict in Listing 4.7.

Listing 4.7. The formal definition of a magma

1 <definition xml:id=”magma.def” for=”magma” type=”implicit”>
<CMP> A set with a law of composition is called a
<term cd=”magmas” name=”magma” role=”definiendum”>magma</term>.

</CMP>
<FMP>

6 <om:OMOBJ>
<om:OMBIND><om:OMS cd=”pl1” name=”forall”/>
<om:OMBVAR><om:OMV name=”M”/></om:OMBVAR>
<om:OMA><om:OMS cd=”pl0” name=”iff”/>
<om:OMA><om:OMS cd=”magmas” name=”magma”/>

11 <om:OMV name=”M”/>
</om:OMA>
<om:OMBIND>
<om:OMS cd=”pl1” name=”exists”/>
<om:OMBVAR>

16 <om:OMV name=”E”/><om:OMV name=”C”/>
</om:OMBVAR>
<om:OMA><om:OMS cd=”pl0” name=”and”/>
<om:OMA><om:OMS cd=”relation1” name=”eq”/>
<om:OMV name=”M”/>

21 <om:OMA><om:OMS cd=”products” name=”Cartesian−product”/>
<om:OMV name=”E”/>
<om:OMV name=”C”/>

</om:OMA>
</om:OMA>

26 <om:OMA><om:OMS cd=”magmas” name=”law of composition”/>
<om:OMV name=”E”/>
<om:OMV name=”F”/>

</om:OMA>
</om:OMA>

31 </om:OMBIND>
</om:OMA>

</om:OMBIND>
</om:OMOBJ>

</FMP>
36 </definition>

Here, the type attribute on the definition element has the value implicit,
which signifies that the content of the FMP element should be understood as a
logical formula that is made true by exactly one object: the property of being
a magma. This formula can be written as

∀M.magma(M)⇔ ∃E,F .M = (E,F) ∧ law of composition(E,F)

in other words: M is a magma, iff it is a pair (E,F), where F is a law of
composition over E.

3 We use the λ-calculus as a formalization framework here: If we apply a λ-term of
the form λX.A to an argument B, then the result is obtained by binding all the
formal parameters X to the actual parameter B, i.e. the result is the value of A,
where all the occurrences of X have been replaced by B. See [Bar80; And02] for
an introduction.

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

50 4 Textbooks and Articles

Finally, the examples get a formal part as well. This mainly consists of
formally representing the object that serves as the example, and making the
way it does explicit. The first is done simply by adding the object to the
example as a sibling node to the CMP. Note that we are making use of the
OpenMath reference mechanism here that allows to copy subformulae by
linking them with an om:OMR element that stands for a copy of the object
pointed to by the href attribute (see Section 13.1), which makes this very
simple. Also note that we had to split the example into two, since OMDoc
only allows one example per example element. However, the example contains
two om:OMOBJ elements, since the property of being a law of composition is
binary.

The way this object is an example is made explicit by adding an assertion
that makes the claim of the example formal (in our case that for every set E,
the function (X,Y) 7→ X ∪ Y is a law of composition on the set of subsets
of E). The assertion is referenced by the assertion attribute in the example

element.

Listing 4.8. A formalized magma example

<example xml:id=”e11.magma” for=”#law of composition”
type=”for” assertion=”e11.magma.ass”>

<CMP> The mapping <om:OMOBJ><om:OMR href=”#e11.magma.1”/></om:OMOBJ> is
4 a law of composition on the set of subsets of a set

<om:OMOBJ><om:OMS cd=”magmas” name=”E”/></om:OMOBJ>.
</CMP>
<om:OMOBJ>
<om:OMA id=”e11.magma.2”><om:OMS cd=”sets” name=”subset”/>

9 <om:OMV name=”E”/>
</om:OMA>

</om:OMOBJ>
<om:OMOBJ>
<om:OMBIND id=”e11.magma.1”>

14 <om:OMS cd=”fns1” name=”lambda”/>
<om:OMBVAR><om:OMV name=”X”/><om:OMV name=”Y”/></om:OMBVAR>
<om:OMA>
<om:OMS cd=”functions” name=”pattern−defined”/>
<om:OMA><om:OMS cd=”products” name=”pair”/>

19 <om:OMV name=”X”/>
<om:OMV name=”Y”/>

</om:OMA>
<om:OMA><om:OMS cd=”sets” name=”union”/>
<om:OMV name=”X”/>

24 <om:OMV name=”Y”/>
</om:OMA>

</om:OMA>
</om:OMBIND>

</om:OMOBJ>
29 </example>

<assertion xml:id=”e11.magma.ass”>
<FMP>
<om:OMOBJ>

34 <om:OMBIND>
<om:OMS cd=”pl1” name=”forall”/>
<om:OMBVAR><om:OMV name=”E”/></om:OMBVAR>
<om:OMA>
<om:OMS cd=”magmas” name=”law of composition”/>

39 <om:OMR href=”#e11.magma.2”/>
<om:OMR href=”#e11.magma.1”/>

algebra.tex 8685 2010-08-23 08:55:17Z kohlhase

4.4 Full Formalization 51

</om:OMA>
</om:OMBIND>

</om:OMOBJ>
44 </FMP>

</assertion>

n

cd.tex 8685 2010-08-23 08:55:17Z kohlhase

cd.tex 8685 2010-08-23 08:55:17Z kohlhase

5

OpenMath Content Dictionaries

Content Dictionaries are structured documents used by the OpenMath stan-
dard [Bus+04] to codify knowledge about mathematical symbols and concepts
used in the representation of mathematical formulae. They differ from the
mathematical documents discussed in the last chapter in that they are less
geared towards introduction of a particular domain, but act as a reference/-
glossary document for implementing and specifying mathematical software
systems. Content Dictionaries are important for the OMDoc format, since
the OMDoc architecture, and in particular the integration of OpenMath
builds on the equivalence of OpenMath content dictionaries and OMDoc
theories.

Concretely, we will look at the content dictionary arith1.ocd which de-
fines the OpenMath symbols abs, divide, gcd, lcm, minus, plus, power,
product, root, sum, times, unary minus (see [Urle] for the original). We will
discuss the transformation of the parts listed below into OMDoc and see
from this process that the OpenMath content dictionary format is (isomor-
phic to) a subset of the OMDoc format. In fact, the OpenMath2 standard
only presents the content dictionary format used here as one of many encod-
ings and specifies abstract conditions on content dictionaries that the OM-
Doc encoding below also meets. Thus OMDoc is a valid content dictionary
encoding.

Listing 5.1. Part of the OpenMath content dictionary arith1.ocd

<CD>
<CDName> arith1 </CDName>
<CDURL> http://www.openmath.org/cd/arith1.ocd </CDURL>
<CDReviewDate> 2003−04−01 </CDReviewDate>

5 <CDStatus> official </CDStatus>
<CDDate> 2001−03−12 </CDDate>
<CDVersion> 2 </CDVersion>
<CDRevision> 0 </CDRevision>
<dc:description>

10 This CD defines symbols for common arithmetic functions.
</dc:description>

<CDDefinition>

cd.tex 8685 2010-08-23 08:55:17Z kohlhase

54 5 OpenMath Content Dictionaries

<Name> lcm </Name>
15 <Description>

The symbol to represent the n−ary function to return the least common
multiple of its arguments.

</Description>

20 <CMP> lcm(a,b) = a∗b/gcd(a,b) </CMP>
<FMP>. . . </FMP>

<CMP>
for all integers a,b |

25 There does not exist a c>0 such that c/a is an Integer and c/b is an
Integer and lcm(a,b) > c.

</CMP>
<FMP>. . .</FMP>
. . .

30 </CD>

Generally, OpenMath content dictionaries are represented as mathematical
theories in OMDoc. These act as containers for sets of symbol declarations
and knowledge about them, and are marked by theory elements. The result
of the transformation of the content dictionary in Listing 5.1 is the OMDoc
document in Listing 5.2.

The first 25 lines in Listing 5.1 contain administrative information and
metadata of the content dictionary, which is mostly incorporated into the
metadata of the theory element. The translation adds further metadata to
the omdoc element that were left implicit in the original, or are external to
the document itself. These data comprise information about the translation
process, the creator, and the terms of usage, and the source, from which this
document is derived (the content of the omcd:CDURL element is recycled in
Dublin Core metadata element dc:source in line 12.

The remaining administrative data is specific to the content dictionary
per se, and therefore belongs to the theory element. In particular, the
omcd:CDName goes to the xml:id attribute on the theory element in line
36. The dc:description element is directly used in the metadata in line 38.
The remaining information is encapsulated into the cd* attributes.

Note that we have used the OMDoc sub-language “OMDoc Content
Dictionaries” described in Subsection 22.3.2 since it suffices in this case, this
is indicated by the modules attribute on the omdoc element.

Listing 5.2. The OpenMath content dictionary arith1 in OMDoc form

<?xml version=”1.0” encoding=”utf−8”?>
<omdoc xml:id=”arith1.omdoc” modules=”@cd”

xmlns:dc=”http://purl.org/dc/elements/1.1/”>

5 <metadata>
<dc:title>The OpenMath Content Dictionary arith1.ocd in OMDoc Form</dc:title>
<dc:creator role=”trl”>Michael Kohlhase</dc:creator>
<dc:creator role=”ant”>The OpenMath Society</dc:creator>
<dc:date action=”updated”> 2004−01−17T09:04:03Z </dc:date>

10 <dc:source>
Derived from the OpenMath CD http://www.openmath.org/cd/arith1.ocd.

</dc:source>
<dc:type>Text</dc:type>
<dc:format>application/omdoc+xml</dc:format>

cd.tex 8685 2010-08-23 08:55:17Z kohlhase

5 OpenMath Content Dictionaries 55

15 <dc:rights>Copyright (c) 2000 Michael Kohlhase;
This OMDoc content dictionary is released under the OpenMath license:
http://www.openmath.org/cdfiles/license.html

</dc:rights>
</metadata>

20

<theory xml:id=”arith1”
cdstatus=” official ” cdreviewdate=”2003−04−01” cdversion=”2” cdrevision=”0”>

<metadata>
<dc:title>Common Arithmetic Functions</dc:title>

25 <dc:description>This CD defines symbols for common arithmetic functions.</dc:description>
<dc:date action=”updated”> 2001−03−12 </dc:date>

</metadata>
<imports from=”#sts”/>

30 <symbol name=”lcm”>
<metadata>
<dc:description>The symbol to represent the n−ary function to return the least common

multiple of its arguments.
</dc:description>

35 <dc:description xml:lang=”de”>
Das Symbol für das kleinste gemeinsame Vielfache (als n-äre Funktion).

</dc:description>
<dc:subject>lcm, least common mean</dc:subject>
<dc:subject xml:lang=”de”>kgV, kleinstes gemeinsames Vielfaches</dc:subject>

40 </metadata>
<type system=”sts”>
<OMOBJ>
<OMA><OMS name=”mapsto” cd=”sts”/>
<OMA><OMS name=”nassoc” cd=”sts”/><OMV name=”SemiGroup”/></OMA>

45 <OMV name=”SemiGroup”/>
</OMA>

</OMOBJ>
</type>

</symbol>
50

<presentation xml:id=”pr lcm” for=”#lcm”>
<use format=”default”>lcm</use>
<use format=”default” xml:lang=”de”>kgV</use>
<use format=”cmml” element=”lcm”/>

55 </presentation>

<definition xml:id=”lcm−def” for=”lcm” type=”pattern”>
<CMP>We define <OMOBJ><OMR href=”#lcm−def.O”/></OMOBJ>

as <OMOBJ><OMR href=”#lcm−def.1”/></OMOBJ></CMP>
60 <CMP xml:lang=”de”>

Wir definieren <OMOBJ><OMR href=”#lcm−def.O”/></OMOBJ>
als <OMOBJ><OMR href=”#lcm−def.1”/></OMOBJ></CMP>

<requation>
<OMOBJ>

65 <OMA id=”lcm−def.O”>
<OMS cd=”arith1” name=”lcm”/>
<OMV name=”a”/><OMV name=”b”/>

</OMA>
</OMOBJ>

70 <OMOBJ>
<OMA id=”lcm−def.1”>
<OMS cd=”arith1” name=”divide”/>
<OMA><OMS cd=”arith1” name=”times”/>
<OMV name=”a”/>

75 <OMV name=”b”/>
</OMA>
<OMA><OMS cd=”arith1” name=”gcd”/>
<OMV name=”a”/>
<OMV name=”b”/>

80 </OMA>
</OMA>

cd.tex 8685 2010-08-23 08:55:17Z kohlhase

56 5 OpenMath Content Dictionaries

</OMOBJ>
</requation>

</definition>
85

<theory>
<imports from=”#relation1”/>
<imports from=”#quant1”/>
<imports from=”#logic1”/>

90

<assertion xml:id=”lcm−prop−3” type=”lemma”>
<CMP>For all integers <OMOBJ><OMV name=”a”/></OMOBJ>,
<OMOBJ><OMV name=”b”/></OMOBJ> there is no
<OMOBJ><OMR href=”#lcm−prop−3.1”/></OMOBJ> such that

95 <OMOBJ><OMR href=”#lcm−prop−3.2”/></OMOBJ> and
<OMOBJ><OMR href=”#lcm−prop−3.3”/></OMOBJ> and
<OMOBJ><OMR href=”#lcm−prop−3.4”/></OMOBJ>.

</CMP>
<CMP xml:lang=”de”>Für alle ganzen Zahlen

100 <OMOBJ><OMV name=”a”/></OMOBJ>,
<OMOBJ><OMV name=”b”/></OMOBJ>
gibt es kein <OMOBJ><OMR href=”#lcm−prop−3.1”/></OMOBJ> mit
<OMOBJ><OMR href=”#lcm−prop−3.2”/></OMOBJ> und
<OMOBJ><OMR href=”#lcm−prop−3.3”/></OMOBJ> und

105 <OMOBJ><OMR href=”#lcm−prop−3.4”/></OMOBJ>.
</CMP>
<FMP>
<OMOBJ><OMBIND><OMS cd=”quant1” name=”forall”/>

<OMBVAR><OMV name=”a”/><OMV name=”b”/></OMBVAR>
110 <OMA><OMS cd=”logic1” name=”implies”/>

<OMA>. . .</OMA>
<OMA><OMS cd=”logic1” name=”not”/>
<OMBIND><OMS cd=”quant1” name=”exists”/>
<OMBVAR><OMV name=”c”/></OMBVAR>

115 <OMA><OMS cd=”logic1” name=”and”/>
<OMA id=”lcm−prop−3.1”>. . .</OMA>
<OMA id=”lcm−prop−3.2”>. . .</OMA>
<OMA id=”lcm−prop−3.3”>. . .</OMA>
<OMA id=”lcm−prop−3.4”>. . .</OMA>

120 </OMA>
</OMBIND>

</OMA>
</OMA>

</OMBIND>
125 </OMOBJ>

</FMP>
</assertion>
. . .

</theory>
130 . . .

</theory>

One important difference between the original and the OMDoc version of
the OpenMath content dictionary is that the latter is intended for machine
manipulation, and we can transform it into other formats. For instance, the
human-oriented presentation of the OMDoc version might look something
like the following1:

1 These presentation was produced by the style sheets discussed in Section ??.

cd.tex 8685 2010-08-23 08:55:17Z kohlhase

5 OpenMath Content Dictionaries 57

The OpenMath Content Dictionary arith1.ocd in OMDoc Form
Michael Kohlhase, The OpenMath Society

January 17. 2004
This CD defines symbols for common arithmetic functions.

Concept 1. lcm (lcm, least common mean)
Type (sts): SemiGroup∗ → SemiGroup
The symbol to represent the n-ary function to return the least common mul-
tiple of its arguments.

Definition 2.(lcm-def)
We define lcm(a, b) as a·b

gcd(a,b)

Lemma 3. For all integers a, b there is no c > 0 such that (a|c) and (b|c) and
c < lcm(a, b).

Fig. 5.1. A human-oriented presentation of the OMDoc CD

The OpenMath Content Dictionary arith1.ocd in OMDoc form
Michael Kohlhase, The OpenMath Society

17. Januar 2004
This CD defines symbols for common arithmetic functions.

Konzept 1. lcm (kgV, kleinstes gemeinsames Vielfaches)
Typ (sts): SemiGroup∗ → SemiGroup
Das Symbol für das kleinste gemeinsame Vielfache (als n-äre Funktion).

Definition 2.(lcm-def)
Wir definieren kgV (a, b) als a·b

ggT (a,b)

Lemma 3. Für alle ganzen Zahlen a, b gibt es kein c > 0 mit (a|c) und (b|c)
und c < kgV (a, b).

Fig. 5.2. A human-oriented presentation in German

natlist.tex 8685 2010-08-23 08:55:17Z kohlhase

natlist.tex 8685 2010-08-23 08:55:17Z kohlhase

6

Structured and Parametrized Theories

In Chapter 5 we have seen a simple use of theories in OpenMath content
dictionaries. There, theories have been used to reference OpenMath sym-
bols and to govern their visibility. In this chapter we will cover an extended
example showing the structured definition of multiple mathematical theories,
modularizing and re-using parts of specifications and theories. Concretely, we
will consider a structured specification of lists of natural numbers. This exam-
ple has been used as a paradigmatic example for many specification formats
ranging from Casl (Common Abstract Specification Language [Mos04]) stan-
dard to the Pvs theorem prover [ORS92], since it uses most language elements
without becoming too unwieldy to present.

NatOrdList

cons, nil,
0, s,N, <

NatOrd

0, s,N, <
TOSet

Elem,<

OrdList

cons, nil,
Elem,<

imports imports

theory-inclusion

Actualization

imports

induces

Fig. 6.1. A Structured Specification of Lists (of Natural Numbers)

In this example, we specify a theory OrdList of lists that is generic in the
elements (which is assumed to be a totally ordered set, since we want to talk
about ordered lists). Then we will instantiate OrdList by applying it to the
theory NatOrd of natural numbers to obtain the intended theory NatOrdList

of lists of natural numbers. The advantage of this approach is that we can
re-use the generic theory OrdList to apply it to other element theories like

natlist.tex 8685 2010-08-23 08:55:17Z kohlhase

60 6 Structured and Parametrized Theories

that of “characters” to obtain a theory of lists of characters. In algebraic
specification languages, we speak of parametric theories. Here, the theory
OrdList has a formal parameter (the theory TOSet) that can be instantiated
later with concrete values to get a theory instance (in our example the
theory NatOrdList). We call this process theory actualization.

We begin the extended example with the theories in the lower half of
Figure 6.1. The first is a (mock up of a) theory of totally ordered sets. Then
we build up the theory of natural numbers as an abstract data type (see
Chapter 16 for an introduction to abstract data types in OMDoc and a
more elaborate definition of N). The sortdef element posits that the set of
natural numbers is given as the sort NatOrd, with the constructors zero and
succ. Intuitively, a sort represents an inductively defined set, i.e. it contains
exactly those objects that can be represented by the constructors only, for
instance the number three is represented as s(s(s(0))), where s stands for the
successor function (given as the constructor succ) and 0 for the number zero
(represented by the constructor zero). Note that the theory nat does not have
any explicitly represented axioms. They are implicitly given by the abstract
data type structure, in our case, they correspond to the five Peano Axioms
(see Figure 15.1). Finally, the argument elements also introduce one partial
inverse to the constructor functions per argument; in our case the predecessor
function.

<theory xml:id=”TOSet”>
<symbol name=”set”/>
<symbol name=”ord”/>

4 <axiom xml:id=”toset”><CMP>ord is a total order on set.</CMP></axiom>
</theory>

<theory xml:id=”nat”>
<adt>

9 <sortdef name=”Nat”>
<constructor name=”zero”/>
<constructor name=”succ”>
<argument>
<type><OMOBJ><OMS name=”Nat” cd=”nat”/></OMOBJ></type>

14 <selector name=”pred”/>
</argument>

</constructor>
</sortdef>

</adt>
19 </theory>

<theory xml:id=”NatOrd”>
<imports from=”#nat”/>
<imports from=”#TOSet”/>

24 <symbol name=”leq”/>
<definition xml:id=”leq.def” for=”leq” type=”implicit”

existence=”#leq.ex” uniqueness=”#leq.uniq”>
<FMP>∀x.0 ≤ x ∧ ∀x, y.x ≤ y ⇒ s(x) ≤ s(y)</FMP>

</definition>
29 <assertion xml:id=”leq.ex”><CMP>≤ exists.</CMP></assertion>

<assertion xml:id=”leq.unique”><CMP>≤ is unique</CMP></assertion>
<assertion xml:id=”leq.TO”><CMP>≤ is a total order on Nat.</CMP></assertion>

</theory>

natlist.tex 8685 2010-08-23 08:55:17Z kohlhase

6 Structured and Parametrized Theories 61

Finally we have extended the natural numbers by an ordering function
≤ (symbol leq) which we show to be a total ordering function in assertion
leq.TO. Note that to state the assertion, we had to import the notion of a
total ordering from theory TOSet. We can directly use this result to establish
a theory inclusion between TOSet as the source theory and NatOrd as the
target theory. A theory inclusion is a formula mapping between two theories,
such that the translations of all axioms in the source theory are provable in
the target theory. In our case, the mapping is given by the recursive function
given in the morphism element in Listing 6 that maps the respective base
sets and the ordering relations to each other. The obligation element just
states that translation of the only theory-constitutive (see Subsection 15.2.4)
element of the source theory (the axiom toset) has been proven in the target
theory, as witnessed by the assertion leq.TO1.

<theory−inclusion xml:id=”elem−nat−incl” to=”#NatOrd” from=”#TOSet”>
<morphism xml:id=”elem−nat” type=”pattern”>

3 <requation>
<OMOBJ><OMS cd=”TOSet” name=”set”/></OMOBJ>
<OMOBJ><OMS cd=”NatOrd” name=”Nat”/></OMOBJ>

</requation>
<requation>

8 <OMOBJ><OMS cd=”TOSet” name=”ord”/></OMOBJ>
<OMOBJ><OMS cd=”NatOrd” name=”leq”/></OMOBJ>

</requation>
</morphism>
<obligation induced−by=”#toset” assertion=”#leq.TO”/>

13 </theory−inclusion>

We continue our example by building a generic theory OrdList of ordered
lists. This is given as the abstract data type generated by the symbols cons

(construct a list from an element and a rest list) and nil (the empty list)
together with a defined symbol ordered: a predicate for ordered lists. Note
that this symbol cannot be given in the abstract data type, since it is not a
constructor symbol. Note that OrdList imports theory TOSet for the base set
of the lists and the ordering relation ≤.

<theory xml:id=”OrdList”>
2 <imports from=”#TOSet”/>

<adt xml:id=”list−adt”>
<sortdef name=”lists”>
<constructor name=”cons”>
<argument>

7 <type><OMOBJ><OMS name=”set” cd=”TOSet”/></OMOBJ></type>
<selector name=”head”/>

</argument>
<argument>
<type><OMOBJ><OMS name=”lists” cd=”OrdList”/></OMOBJ></type>

12 <selector name=”rest”/>
</argument>

</constructor>
<constructor name=”nil”/>

1 Note that as always, OMDoc only cares about the structural aspects of this: The
OMDoc model only insists that there is the statement of an assertion, whether
the author chooses to prove it or indeed whether the statement is true at all is
left to other levels of modeling.

natlist.tex 8685 2010-08-23 08:55:17Z kohlhase

62 6 Structured and Parametrized Theories

</sortdef>
17 </adt>

<symbol name=”ordered”/>
<definition xml:id=”ordered−def” for=”ordered” type=”informal”>
<CMP>A list l is called ordered, iff head(l) ≤ z for all elements z ∈ rest(l) and

22 rest(l) is ordered.</CMP>
</definition>

</theory>

The theory NatOrdList of lists of natural numbers is built up by import-
ing from the theories NatOrd and OrdList. Note that the attribute type of
the imports element nat-list.im-elt is set to local, since we only want
to import the local axioms of the theory OrdList and not the whole the-
ory OrdList (which would include the axioms from TOSet; see Section 18.3
for a discussion). In particular the symbols set and ord are not imported
into theory NatOrdList: the theory TOSet is considered as a formal param-
eter theory, which is actualized to the actual parameter theory with
this construction. The effect of the actualization comes from the morphism
elem-nat in the import of OrdList that renames the symbol set (from the-
ory TOSet) with Nat (from theory NatOrd). The actualization from OrdList

to NatOrdList only makes sense, if the parameter theory NatOrd also has a
suitable ordering function. This can be ensured using the OMDoc inclusion

element.

1 <theory xml:id=”NatOrdList”>
<imports xml:id=”natordlist.im−natord” from=”#NatOrd”/>
<imports xml:id=”natordlist.im−elt” from=”#OrdList” type=”local”>
<morphism base=”#elem−nat”/>

</imports>
6 <inclusion via=”elem−nat−incl”/>

</theory>

The benefit of this inclusion requirement is twofold: If the theory inclu-
sion from TOSet to NatOrd cannot be verified, then the theory NatOrdList

is considered to be undefined, and we can use the development graph tech-
niques presented in Section 18.5 to obtain a theory inclusion from OrdList

to NatOrdList: We first establish an axiom inclusion from theory TOSet to
NatOrdList by observing that this is induced by composing the theory inclu-
sion from TOSet to NatOrd with the theory inclusion given by the imports

from NatOrd to NatOrdList. This gives us a decomposition situation: every
theory that the source theory OrdList inherits from has an axiom inclusion
to the target theory NatOrdList, so the local axioms of those theories are
provable in the target theory. Since we have covered all of the inherited ones,
we actually have a theory inclusion from the source- to the target theory.

<axiom−inclusion xml:id=”toset−natordlist−incl” from=”#TOSet” to=”#NatOrdList”>
<morphism base=”#elem−nat”/>

3 <path−just local=”#elem−nat−incl” globals=”#natordlist.im−natord”/>
</axiom−inclusion>

<theory−inclusion from=”#OrdList” to=”#NatOrdList”>
<morphism base=”#elem−nat”/>

8 <decomposition links=”#toset−natordlist−incl #elem−nat−incl”/>

natlist.tex 8685 2010-08-23 08:55:17Z kohlhase

6 Structured and Parametrized Theories 63

</theory−inclusion>

This concludes our example, since we have seen that the theory OrdList

is indeed included in NatOrdList via renaming.
Note that with this construction we could simply extend the graph by

actualizations for other theories, e.g. to get lists of characters, as long as we
can prove theory inclusions from TOSet to them.

elalg.tex 8685 2010-08-23 08:55:17Z kohlhase

elalg.tex 8685 2010-08-23 08:55:17Z kohlhase

7

A Development Graph for Elementary Algebra

We will now use the technique presented in the last chapter for the elementary
algebraic hierarchy. Figure 7.1 gives an overview of the situation. We will
build up theories for semigroups, monoids, groups, and rings and a set of
theory inclusions from these theories to themselves given by the converse of
the operation.

semigroup

(M, ◦)

monoid

(M, ◦, e)

group

(M, ◦, e, ·−1)

ring

(R,+, 0,−, ∗, 1)

σ: =


M 7→ R∗

◦ 7→ ∗
e 7→ 1



τ : =



M 7→ R
◦ 7→ +
e 7→ 0
·−1 7→ −



ρ: = {x ◦ y 7→ y ◦ x}

σ ◦ ρ = {x ∗ y 7→ y ∗ x}

τ ◦ ρ = {x+ y 7→ y + x}

σ

τ

σ ◦ ρ

τ ◦ ρ

ρ

ρ

ρ

ρ

ρ

{x+ y 7→ y + x, x ∗ y 7→ y ∗ x}

Fig. 7.1. A Development Graph for Elementary Algebra

elalg.tex 8685 2010-08-23 08:55:17Z kohlhase

66 7 A Development Graph for Elementary Algebra

We start off with the theory for semigroups. It introduces two symbols,
the base set M and the operation ◦ on M together with two axioms that
state that M is closed under ◦ and that ◦ is associative on M . We have a
structural theory inclusion from this theory to itself that uses the fact that
M together with the converse σ(◦) of ◦ is also a semigroup: the obligation
for the axioms can be justified by themselves (for the closure axiom we have
σ(∀x, y ∈M.x ◦ y ∈M) = ∀y, x ∈M.x ◦ y ∈M , which is logically equivalent
to the axiom.)

1 <theory xml:id=”semigroup”>
<symbol name=”base−set”/>
<presentation for=”#base−set”><use format=”default”>M</use></presentation>
<symbol name=”op”/>
<presentation for=”#op”><use format=”default”>◦</use></presentation>

6 <axiom xml:id=”closed.ax”><FMP>∀x, y ∈M.x ◦ y ∈M</FMP></axiom>
<axiom xml:id=”assoc.ax”>
<FMP>∀x, y, z ∈M.(x ◦ y) ◦ z = x ◦ (y ◦ z)</FMP>

</axiom>
</theory>

11

<theory−inclusion xml:id=”sg−conv−sg” from=”#semigroup” to=”#semigroup”>
<morphism xml:id=”sg−conv−sg.morphism”>
<requation>X ◦ Y ; Y ◦X</requation>

</morphism>
16 <obligation assertion=”conv.closed” induced−by=”#closed.ax”/>

<obligation assertion=”#assoc.ax” induced−by=”#assoc.ax”/>
</theory−inclusion>

The theory of monoids is constructed as an extension of the theory of semi-
groups with the additional unit axiom, which states that there is an element
that acts as a (right) unit for ◦. As always, we state that there is a unique such
unit, which allows us to define a new symbol e using the definite description
operator τx.: If there is a unique x, such that A is true, then the construction
τx.A evaluates to x, and is undefined otherwise. We also prove that this e
also acts as a left unit for ◦.
<theory xml:id=”monoid”>

2 <imports xml:id=”sg2mon” from=”#semigroup”/>
<axiom xml:id=”unit.ax”><FMP>∃x ∈M.∀y ∈M.y ◦ x = y</FMP></axiom>
<assertion xml:id=”unit.unique”><FMP>∃1x ∈M.∀y ∈M.y ◦ x = y</FMP></assertion>
<symbol name=”unit” xml:id=’’unit’’/>
<presentation for=”#unit”><use format=”default”>e</use></presentation>

7 <definition xml:id=”unit.def” for=”unit” type=”simple” existence=”#unit.unique”>
τx ∈M.∀y ∈M.y ◦ x = y

</definition>
<assertion xml:id=”left.unit”><FMP>∀x ∈M.e ◦ x = x</FMP></assertion>
<symbol name=”setstar” xml:id=’’setstar’’/>

12 <presentation for=”#setstar” fixity=”postfix”>
<use format=”default”>∗</use>

</presentation>
<definition xml:id=”ss.def” for=”setstar” type=”implicit”>
∀S ⊆M.S∗ = S\{e}

17 </definition>
</theory>

Building on this, we first establish an axiom-selfinclusion from the theory of
monoids to itself. We can make this into a theory selfinclusion using the theory-
selfinclusion for semigroups as the local part of a path justification (recall that

elalg.tex 8685 2010-08-23 08:55:17Z kohlhase

7 A Development Graph for Elementary Algebra 67

theory inclusions are axiom inclusions by construction) and the definitional
theory inclusion induced by the import from semigroups to monoids as the
global path.

<axiom−inclusion xml:id=”mon−conv−mon.local” from=”#monoid” to=”#monoid”>
2 <morphism base=”#sg−conv−sg.morphism”/>

<obligation assertion=”#left.unit” induced−by=”#unit.ax”/>
</axiom−inclusion>

<axiom−inclusion xml:id=”sg−conv−mon” from=”#semigroup” to=”#monoid”>
7 <morphism base=”#sg−conv−sg.morphism”/>

<path−just local=”#sg−conv−sg” globals=”#sg2mon”/>
</axiom−inclusion>
<theory−inclusion xml:id=”mon−conv−mon.global” from=”#monoid” to=”#monoid”>
<morphism base=”#sg−conv−sg.morphism”/>

12 <decomposition links=”#sg−conv−sg #sg−conv−mon”/>
</theory−inclusion>

Note that all of these axiom inclusions have the same morphism (denoted by
ρ in Figure 7.1), in OMDoc we can share this structure using the base on
the morphism element. This normally points to a morphism that is the base
for extension, but if the morphism element is empty, then this just means that
the morphisms are identical.

For groups, the situation is very similar: We first build a theory of groups
by adding an axiom claiming the existence of inverses and constructing a new
function ·−1 from that via a definite description.

<theory xml:id=”group”>
2 <imports xml:id=”mon2grp” from=”#monoid”/>

<axiom xml:id=”inv.ax”><FMP>∀x ∈M.∃y ∈M.x ◦ y = e</FMP></axiom>
<symbol name=”inv” xml:id=’’inv’’/>
<presentation for=”#inv” role=”applied”>

<use format=”default” lbrack=”” rbrack=”” fixity=”postfix”>−1</use>
7 </presentation>

<definition xml:id=”inv.def” for=”inv” type=”pattern”>

<requation>x−1 ; τy.x ◦ y = e</value></requation>
</definition>
<assertion xml:id=”conv.inv”><FMP>∀x ∈M.∃y ∈M.y ◦ x = e</FMP></assertion>

12 </theory>

Again, we have to establish a couple of axiom inclusions to justify the
theory inclusion of interest. Note that we have one more than in the case for
monoids, since we are one level higher in the inheritance structure, also, the
local chains are one element longer.

<axiom−inclusion xml:id=”grp−conv−grp.local” from=”#group” to=”#group”>
<morphism base=”#sg−conv−sg.morphism”/>

3 <obligation assertion=”conv.inv” induced−by=”#inv.ax”/>
</axiom−inclusion>
<axiom−inclusion xml:id=”sg−conv−grp” from=”#semigroup” to=”#group”>
<morphism base=”#sg−conv−sg.morphism”/>
<path−just local=”#sg−conv−sg” globals=”#mon2grp #sg2mon”/>

8 </axiom−inclusion>
<axiom−inclusion xml:id=”mon−conv−grp” from=”#monoid” to=”#group”>
<morphism base=”#sg−conv−sg.morphism”/>
<path−just local=”#mon−conv−mon.local” globals=”#mon2grp”/>

</axiom−inclusion>
13 <theory−inclusion xml:id=”grp−conv−grp” from=”#group” to=”#group”>

<morphism base=”#sg−conv−sg.morphism”/>
<decomposition links=”#sg−conv−grp #mon−conv−grp #grp−conv−grp.local”/>

elalg.tex 8685 2010-08-23 08:55:17Z kohlhase

68 7 A Development Graph for Elementary Algebra

</theory−inclusion>

Finally, we extend the whole setup to a theory of rings. Note that we have
a dual import from group and monoid with different morphisms (they are
represented by σ and τ in Figure 7.1). These rename all of the imported
symbols apart (interpreting them as additive and multiplicative) except of
the punctuated set constructor ·∗, which is imported from the additive group
structure only. We avoid a name clash with the operator that would have
been imported from the multiplicative structure by specifying that this is
not imported using the hiding on the morphism in the respective imports

element1.

<theory xml:id=”ring”>
<symbol name=”R” xml:id=’’R’’/>
<presentation for=”#R”><use format=”default”>R</use></presentation>

4 <symbol name=”zero”/>
<presentation for=”#zero”><use format=”default”>0</use></presentation>
<symbol name=”plus”/>
<presentation for=”#plus” role=”applied”>

<use format=”default”>+</use>
9 </presentation>

<symbol name=”negative”/>
<presentation for=”#negative” role=”applied”>

<use format=”default”>−</use>
</presentation>

14 <symbol name=”times”/>
<presentation for=”#times” role=”applied”>
<use format=”default”>∗</use>

</presentation>
<symbol name=”one”/>

19 <presentation for=”#one”><use format=”default”>1</use></presentation>
<imports xml:id=”add.import” from=”#group”>

<morphism>M 7→ R, x ◦ y 7→ x ∗ y, e 7→ 1, ·−1 7→ −</morphism>
</imports>
<imports xml:id=”mult.import” from=”#monoid”>

24 <morphism hiding=”setstar”>M 7→M∗, x ◦ y 7→ x ∗ y, e 7→ 1</morphism>
</imports>
<axiom xml:id=”dist.ax”><FMP>x ∗ (y + z) = (x ∗ y) + (x ∗ z)</FMP></axiom>
<assertion xml:id=”dist.conv”><FMP>(z + y) ∗ x = (z ∗ x) + (y ∗ x)</FMP></assertion>

</theory>

Again, we have to establish some axiom inclusions to justify the theory
selfinclusion we are after in the example. Note that in the rings case, things
are more complicated, since we have a dual import in the theory of rings.
Let us first establish the additive part.

<axiom−inclusion xml:id=”sg−conv−rg.add” from=”#semigroup” to=”#ring”>
2 <morphism base=”#sg−conv−sg.morphism #add.import”/>

<path−just local=”#sg−conv−sg” globals=”#sg2mon #mon2grp #add.import ”/>
</axiom−inclusion>
<axiom−inclusion xml:id=”mon−conv−rg.add” from=”#monoid” to=”#group”>
<morphism base=”#sg−conv−sg.morphism #add.import”/>

7 <path−just local=”#mon−conv−mon.local” globals=”#mon2grp #add.import”/>
</axiom−inclusion>

1 An alternative (probably better) to this would have been to explicitly include
the operators in the morphisms, creating new operators for them in the theory
of rings. But the present construction allows us to exemplify the hiding, which
has not been covered in an example otherwise.

elalg.tex 8685 2010-08-23 08:55:17Z kohlhase

7 A Development Graph for Elementary Algebra 69

<axiom−inclusion xml:id=”grp−conv−rg.add” from=”#group” to=”#group”>
<morphism base=”#sg−conv−sg.morphism #add.import”/>
<path−just local=”#grp−conv−grp.local” globals=”#add.import”/>

12 </axiom−inclusion>

The multiplicative part is totally analogous, we will elide it to conserve space.
Using both parts, we can finally get to the local axiom self-inclusion and
extend it to the intended theory inclusion justified by the axiom inclusions
established above.

<axiom−inclusion xml:id=”rg−conv−rg.local” from=”#ring” to=”#ring”>
<morphism xml:id=”rg−conv−rg.morphism”>x+ y 7→ y + x, x ∗ y 7→ y ∗ x</morphism>

3 <obligation assertion=”#dist.conv” induced−by=”#dist.ax”/>
</axiom−inclusion>
<theory−inclusion xml:id=”rg−conv−rg” from=”#ring” to=”#ring”>
<morphism base=”#rg−conv−rg.morphism”/>
<decomposition links=”#rg−conv−rg.local

8 #sg−conv−rg.add #mon−conv−rg.add #grp−conv−rg.add
#sg−conv−rg.mult #mon−conv−rg.mult #grp−conv−rg.mult”/>

</theory−inclusion>

This concludes our example. It could be extended to higher constructs in
algebra like fields, magmas, or vector spaces easily enough using the same
methods, but we have seen the key features already.

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

8

Courseware and the Narrative/Content
Distinction

In this chapter we will look at another type of mathematical document: course-
ware; in this particular case a piece from an introductory course “Fundamen-
tals of Computer Science” (Course 15-211 at Carnegie Mellon University).
The OMDoc documents produced from such courseware can be used as in-
put documents for ActiveMath (see Section ??) and can be produced e.g.
by CPoint (see Section ??).

Fig. 8.1. Three slides from 15-211

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

72 8 Courseware and the Narrative/Content Distinction

We have chosen a fragment that is relatively far from conventional math-
ematical texts to present the possibility of semantic markup in OMDoc even
under such circumstances. We will highlight the use of OMDoc theories for
such an application. Furthermore, we will take seriously the difference between
marking up the knowledge (implicitly) contained in the slides and the slide
presentation as a structured document. As a consequence, we will capture the
slides in two documents:

• a knowledge-centered document , which contains the knowledge conveyed
in the course organized by its inherent logical structure

• a narrative-structured document references the knowledge items and adds
rhetorical and didactic structure of a slide presentation.

This separation of concerns into two documents is good practice in marking
up mathematical texts: It allows to make explicit the structure inherent in the
respective domain and at the same time the structure of the presentation that
is driven by didactic needs. We call knowledge-structured documents content
OMDocs and narrative-structured ones narrative OMDocs. The separa-
tion also simplifies management of academic content: The content OMDoc of
course will usually be shared between individual installments of the course, it
will be added to, corrected, cross-referenced, and kept up to date by different
authors. It will eventually embody the institutional memory of an organi-
zation like a university or a group of teachers. The accompanying narrative
OMDocs will capture the different didactic tastes and approaches by indi-
vidual teachers and can be adapted for the installments of the course. Since
the narrative OMDocs are relatively light-weight structures (they are largely
void of original content, which is referenced from the content OMDoc) con-
structing or tailoring a course to the needs of the particular audience becomes
a simpler endeavor of choosing a path through a large repository of marked
up knowledge embodied in the content OMDoc rather than re-authoring1

the content with a new slant.
Let us look at the four slides in Figure 8.1. The first slide shows a graphic

of a simple taxonomy of animals, the second one introduces first concepts
from object-oriented programming, the third one gives examples for these
interpreting the class hierarchy introduced in the first slide, finally the fourth
slide gives code concrete snippets as examples for the concepts introduced in
the first three ones.

We will first discuss content OMDoc and then the narrative OMDoc in
Section 8.2.

1 Since much of the re-authoring is done by copy and paste in the current model,
it propagates errors in the course materials rather than corrections.

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

8.1 A Knowledge-Centered View 73

8.1 A Knowledge-Centered View

In this section, we will take a look at how we can make the knowledge that
is contained in the slides in Figure 8.1 and its structure explicit so that a
knowledge management system like MBase (see Section ??) or knowledge
presentation system like ActiveMath (see Section ??) can take advantage
of it. We will restrict ourselves to knowledge that is explicitly represented in
the slides in some form, even though the knowledge document would probably
acquire more and more knowledge in the form of examples, graphics, variant
definitions, and explanatory text as it is re-used in many courses.

The first slide introduces a theory, which we call animals-tax; see List-
ing 8.1. It declares primitive symbols for all the concepts2 (the ovals), and for
all the links introduced in the graphic it has axiom elements stating that the
parent node in the tree extends the child node. The axiom uses the symbol
for concept extension from a theory kr for knowledge representation which
we import in the theory and which we assume in the background materials
for the course.

Listing 8.1. The OMDoc Representation for Slide 1 from Figure 8.1

<theory xml:id=”animals−tax”>
<imports xml:id=”tax imports taxonomy” from=”#taxonomies”/>
<imports xml:id=”tax imports kr” from=”#kr”/>
<symbol name=”human”>

5 <type system=”stlc”><OMOBJ><OMS cd=”kr” name=”concept”/></OMOBJ></type>
</symbol>
<symbol name=”mammal”>
<type system=”stlc”><OMOBJ><OMS cd=”kr” name=”concept”/></OMOBJ></type>

</symbol>
10 . . .

<axiom xml:id=”mammal−ext−human”>
<CMP>Humans are Animals.</CMP>
<FMP>
<OMOBJ>

15 <OMA><OMS cd=”kr” name=”extends”/>
<OMS cd=”animal−taxonomy” name=”mammal”/>
<OMS cd=”animal−taxonomy” name=”human”/>

</OMA>
</OMOBJ>

20 </FMP>
</axiom>
. . .

</theory>

25 <private xml:id=”tax−image” for=”#animals−tax” reformulates=”#animals−tax”>
<data format=”image/jpeg” href=”animals−taxonomy.jpg”/>
<data format=”application/postscript” href=”animals−taxonomy.ps”/>

</private>

The private element contains the reference to the image in various formats.
Its reformulates attribute hints that the image contained in this element
can be used to illustrate the theory above (in fact, it will be the only thing
used from this theory in the narrative OMDoc in Listing 8.6.)

2 The type information in the symbols is not strictly included in the slides, but may
represent the fact that the instructor said that the ovals represent “concepts”.

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

74 8 Courseware and the Narrative/Content Distinction

The second slide introduces some basic concepts in object oriented pro-
gramming. These give rise to the five primitive symbols of the theory. Note
that this theory is basic, it does not import any other. The three text blocks are
marked up as axioms, using the attribute for to specify the symbols involved
in these axioms. The value of the for attribute is a whitespace-separated list
of URI references to symbol elements.

Listing 8.2. The OMDoc Representation for Slide 2 from Figure 8.1

<theory xml:id=”cvi”>
2 <symbol name=”object” xml:id=”cvi.object”/>

<symbol name=”instance” xml:id=”cvi.instance”/>
<symbol name=”class” xml:id=”cvi.class”/>
<symbol name=”inherits” xml:id=”cvi.inherits”/>
<symbol name=”superclass” xml:id=”cvi.superclass”/>

7

<axiom xml:id=”ax1” for=”object instance class”>
<CMP>Every <phrase style=”font−style:italic;color:blue”>object</phrase>

is an <phrase style=”font−style:italic ; color:red”>instance</phrase>
of a <phrase style=”font−style:italic ; color:blue”>class</phrase>.

12 </CMP>
</axiom>

<axiom xml:id=”ax2” for=”class”>
<CMP>The characteristics of an object are defined by its class.</CMP>

17 </axiom>

<axiom xml:id=”ax3” for=”inherits superclass”>
<CMP> An object <phrase style=”font−style:italic;color:blue”>inherits</phrase>

characteristics from all of its
22 <phrase style=”font−style:italic ; color:red”>superclasses</phrase>.</CMP>

</axiom>
</theory>

For the third slide it is not entirely obvious which of the OMDoc elements
we want to use for markup. The intention of the slide is obviously to give
some examples for the concepts introduced in the second slide in terms of the
taxonomy presented in the first slide in Figure 8.1. However, the OMDoc
example element seems to be too specific to directly capture the contents
(see p. 163). What is immediately obvious is that the slide introduces some
new knowledge and symbols, so we have to have a separate theory for this
slide. The first item in the list headed by the word Example is a piece of new
knowledge, it is therefore not an example at all, but an axiom3. The second
item in the list is a statement that can be deduced from the knowledge we
already have at our disposal from theories animals-tax and cvi. Therefore,
the new theory cvi-examples in Listing 8.3 imports these two. Furthermore,
it introduces the new symbol danny for “Danny Sleator” which is clarified
in the axiom element with xml:id="ax1". Finally, the third item in the list
does not have the function of an example either, it introduces a new concept,
the “is a” relation4. So we arrive at the theory in Listing 8.3. Note that this

3 We could say that the function of being an example has moved up from mathe-
matical statements to mathematical theories; we will not pursue this here.

4 Actually, this text block introduces a new concept “by reference to examples”,
which is not a formal definition at all. We will neglect this for the moment.

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

8.1 A Knowledge-Centered View 75

markup treats the last text block on the third slide without semantic function
in the theory – it points out that there are other relations among humans –
and leaves it for the narrative-structured OMDoc in Section 8.25.

Listing 8.3. The OMDoc Representation for Slide 3 from Figure 8.1

1 <theory xml:id=”cvi−examples”>
<imports from=”#animals−tax”/><imports from=”#cvi”/>

<symbol name=”danny” xml:id=”cvi−examples.danny”>
<metadata><dc:description>Danny Sleator</dc:description></metadata>

6 </symbol>

<axiom xml:id=”danny−professor” for=”class instance danny”>
<CMP><phrase style=”font−style:italic;color:blue”>Danny Sleator</phrase>

is an <phrase style=”font−style:italic ; color:red”>instance</phrase>
11 of the <phrase style=”font−style:italic ; color:blue”>Professor</phrase>

class .
</CMP>

</axiom>

16 <assertion xml:id=”dannys−classes” type=”theorem”>
<CMP>He is therefore also an instance of the
<phrase style=”font−style:italic ; color:blue”>Human</phrase>,
<phrase style=”font−style:italic ; color:blue”>Mammal</phrase>,
<phrase style=”font−style:italic ; color:blue”>Animal</phrase> classes.

21 </CMP>
</assertion>

<symbol name=”is a” scope=”global”>
<metadata><dc:subject>’is a’ relation</dc:subject></metadata>

26 </symbol>

<definition xml:id=”is a−def” for=”is a” type=”informal”>
<CMP>Sometimes we say that Danny Sleator

“<phrase style=”font−style:italic;color:red”>is a</phrase>”
31 Professor (or Human or Mammal…)

</CMP>
</definition>

</theory>

An alternative, more semantic way to mark up the assertion element in
the theory above would be to split it into multiple assertion and example

elements, as in Listing 8.4, where we have also added formal content. We have
split the assertion dannys-classes into three — we have only shown one of
them in Listing 8.4 — separate assertions about class instances, and used them
to justify the explicit examples. These are given as OMDoc example elements.
The for attribute of an example element points to the concepts that are
exemplified here (in this case the symbols for the concepts “instance”, “class”
from the theory cvi and the concept “mammal” from the animal taxonomy).
The type specifies that this is not a counter-example, and the assertion

points to the justifying assertion. In this particular case, the reasoning behind
the example is pretty straightforward (therefore it has been omitted in the
slides), but we will make it explicit to show the mechanisms involved. The

5 Of course this design decision is debatable, and depends on the intuitions of the
author. We have mainly treated the text this way to show the possibilities of
semantic markup

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

76 8 Courseware and the Narrative/Content Distinction

assertion element just re-states the assertion implicit in the example, we
refrain from giving the formal statement in an FMP child here to save space.
The just-by can be used to point to set of proofs for this assertion, in this
case only the one given in Listing 8.4. We use the OMDoc proof element to
mark up this proof. It contains a series of derive proof steps. In our case, the
argument is very simple, we can see that Danny Sleator is an instance of the
human class, using the knowledge that

1. Danny is a professor (from the axiom in the cvi-examples theory)
2. An object inherits all the characteristics from its superclasses (from the

axiom ax3 in the cvi theory)
3. The human class is a superclass of the professor class (from the axiom

human-extends-professor in the animal-taxonomy theory).

The use of this knowledge in the proof step is made explicit by the premise

children of the derive element.
The information in the proof could for instance be used to generate very

detailed explanations for students who need help understanding the content
of the original slides in Figure 8.1.

Listing 8.4. An Alternative Representation Using example Elements

1 . . .
<example xml:id=”danny−mammal” type=”for” assertion=”#dannys−mammal−thm”

for=”#cvi.instance #cvi.class #animal−taxonomy.mammal”>
<CMP>Danny Sleator is an instance of the
<phrase style=”font−style:italic ; color:blue”>Mammal</phrase> class.

6 </CMP>
<OMOBJ><OMS cd=”cvi−examples” name=”danny”/></OMOBJ>

</example>

<assertion xml:id=”dannys−mammal−thm” type=”theorem” proofs=”#danny−mammal−pf”>
11 <CMP>Danny Sleator is an instance of the Human class.</CMP>

</assertion>

<proof xml:id=”danny−human−pf” for=”#dannys−mammal−thm”>
<derive xml:id=”d1”>

16 <CMP>Danny Sleator is an instance of the human class.</CMP>
<method>
<premise xref=”#danny−professor”/>
<premise xref=”#cvi.ax3”/>
<premise xref=”#animal−tax.human−extends−professor”/>

21 </method>
</derive>
<derive xml:id=”concl”>
<CMP>Therefore he is an instance of the human class.</CMP>
<method>

26 <premise xref=”#d1”/>
<premise xref=”#cvi.ax3”/>
<premise xref=”#animal−tax.mammal−extends−human”/>

</method>
</derive>

31 </proof>
. . .

The last slide contains a set of Java code fragments that are related to the
material before. We have marked them up in the code elements in Listing 8.5.
The actual code is encapsulated in a data element, whose format specifies the

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

8.2 A Narrative-Structured View 77

format the data is in. The program text is encapsulated in a CDATA section to
suspend the XML parser (there might be characters like < or & in there which
offend it). The code elements allow to document the input, output, and side-
effects in input, output, effect elements as children of the code elements.
Since the code fragments in question do not have input or output, we have
only described the side-effect (class declaration and class extension). As the
code elements do not introduce any new symbols, definitions or axioms, we
do not have to place them in a theory. The second code element also carries
a requires attribute, which specifies that to execute this code snippet, we
need the previous one. An application can use this information to make sure
that one is loaded before executing this code fragment.

Listing 8.5. OMDoc Representation of Program Code

<code xml:id=”cvic−code1”>
<data format=”Java”><![CDATA[public class Animal {. . . }]]></data>

3 <effect><CMP>class declaration</CMP></effect>
</code>

<code xml:id=”cvic−code2” requires=”cvic−code1” >
<data format=”Java”><![CDATA[public class Mammal extends Animal {. . .}]]></data>

8 <effect><CMP>class extension</CMP></effect>
</code>
. . .

8.2 A Narrative-Structured View

In this section we present an OMDoc document that captures the structure
of the slide show as a document. It references the knowledge items from the
theories presented in the last section and adds rhetorical and didactic structure
of a slide presentation.

The individual slides are represented as omgroup elements with type

slide.
The representation of the first slide in Figure 8.1 is rather straightforward:

we use the dc:title element in metadata to represent the slide title. Its
class attribute references a CSS class definition in a style file. To represent
the image with the taxonomy tree we use an omtext element with an omlet

element.
The second slide marks up the list structure of the slide with the omgroup

element (the value itemize identifies it as an itemizes list). The items in the
list are given by OMDoc references (see Section ??) to the axioms in the
knowledge-structured document (see Listing 8.2). The effect of this markup
is shared between the document: the content of the axioms are copied over
from the knowledge-structured document, when the narrative-structured is
presented to the user. However, the OMDoc references cascades its style

attribute (and the class attribute, if present) with the style and class at-
tributes of the target element, essentially adding style directives during the

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

78 8 Courseware and the Narrative/Content Distinction

copying process (see Section ?? for details). In our example, this adds posi-
tioning information and specifies a particular image for the list bullet type.

Listing 8.6. The Narrative OMDoc for Figure 8.1

. . .
<omgroup xml:id=”slide−847” type=”slide”>
<metadata>
<dc:title class=”15−211−title”>Inheritance: Taxonomy metaphor</dc:title>

5 </metadata>

<omtext xml:id=”the−tax”>
<CMP>
<omlet data=”#tax−image” style=”width:540;height:366”

10 action=”display” show=”embed”/>
</CMP>

</omtext>
</omgroup>

15 <omgroup xml:id=”slide−848” type=”slide”>
<metadata><dc:title class=”15−211−title”>Classes vs. instances</dc:title></metadata>
<omgroup type=”itemize” style=”list−style−type:url(square.gif)”>
<axiom style=”position:30% 10%” xml:id=”obj” xref=”slide1 content.omdoc#ax1”/>
<axiom style=”position:55% 10%” xml:id=”class” xref=”slide1 content.omdoc#ax2”/>

20 <axiom style=”position:80% 10%” xml:id=”inh” xref=”slide1 content.omdoc#ax3”/>
</omgroup>

</omgroup>

<omgroup xml:id=”slide−849” type=”slide”>
25 <metadata><dc:title class=”15−211−title”>Classes vs. instances</dc:title></metadata>

<omgroup type=”itemize” style=”list−style−type:url(square.gif)”>
<omtext style=”position:30% 10%” xml:id=”ex”><CMP>Example:</CMP></omtext>
<omgroup type=”itemize” style=”list−style−type:url(triangle.gif)”>
<axiom style=”position:400% 15%”

30 xml:id=”danny” xref=”slide1 content.omdoc#danny−professor”/>
<axiom style=”position:55% 15%”

xml:id=”inst” xref=”slide1 content.omdoc#dannys−classes”/>
<axiom style=”position:70% 15%” xml:id=”is a” xref=”slide1 content.omdoc#is a−def”/>

</omgroup>
35 <omtext style=”position:83% 10%” xml:id=”has a”>

<CMP>
Danny also “<phrase style=”font−style:italic;color:red”>has
a</phrase>” wife and son, who are also instances of the Human class

</CMP>
40 </omtext>

</omgroup>
</omgroup>

<omgroup xml:id=”slide−850” type=”slide”>
45 <metadata><dc:title class=”15−211−title”>In Java</dc:title></metadata>

<omgroup type=”itemize”>
<omtext xml:id=”slide−850.t1” style=”position:80% 10%;color:red”>
<CMP>Implicitly extends class object</CMP>

</omtext>
50 <omtext xml:id=”slide−850.t2”>

<CMP><omlet data=”#cvic−code1” action=”display” show=”embed”/></CMP>
</omtext>
<omtext xml:id=”slide−850.t3”>
<CMP><omlet data=”#cvic−code2” action=”display” show=”embed”/></CMP>

55 </omtext>
</omgroup>

</omgroup>
. . .

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

8.3 Choreographing Narrative and Content OMDoc 79

8.3 Choreographing Narrative and Content OMDoc

The interplay between the narrative and content OMDoc above was relatively
simple. The content OMDoc contained three theories that were linearized ac-
cording to the dependency relation. This is often sufficient, but more complex
rhetoric/didactic figures are also possible. For instance, when we introduce
a new concept, we often first introduce a naive reduced approximation N of
the real theory F , only to show an example EN of where this is insufficient.
Then we propose a first (straw-man) solution S, and show an example ES
of why this does not work. Based on the information we gleaned from this
failed attempt, we build the eventual version F of the concept or theory and
demonstrate that this works on EF .

Let us visualize the narrative- and content structure in Figure 8.2. The
structure with the solid lines and boxes at the bottom of the diagram repre-
sents the content structure, where the boxes N , EN , S, ES , F , and EF signify
theories for the content of the respective concepts and examples, much in the
way we had them in Section 8.1. The arrows represent the theory inheritance
structure, e.g. Theory F imports theory N .

N

EN FS

EFES

lecture

sl1 sl2 sl3 sl4 sl5 sl6 sl7

n1 n2 . . . n3

Fig. 8.2. An Introduction of a Concept via a Straw-Man Theory

The top part of the diagram with the dashed lines stands for the narrative
structure, where the arrows mark up the document structure. For instance,
the slides sli are grouped into a lecture. The dashed lines between the two
documents visualize OMDoc references with pointers into the content struc-
ture. In the example in Figure 8.2, the second slide of “lecture” presents the
first example: the text fragment n1 links the content EN , which is referenced
from the content structure, to slide 1. The fragment n2 might say something
like “this did not work in the current situation, so we have to extend the
conceptualization. . . ”.

courseware.tex 8754 2010-10-13 11:36:16Z kohlhase

80 8 Courseware and the Narrative/Content Distinction

Just as for content-based systems on the formula level, there are now MKM
systems that generate presentation markup from content markup, based on
general presentation principles, also on this level. For instance, the Active-
Math system [Mel+03] generates a simple narrative structure (the presenta-
tion; called a personalized book) from the underlying content structure (given
in OMDoc) and a user model.

8.4 Summary

As we have seen, the narrative and content fulfill different, but legitimate
content markup needs, that can coincide (as in the main example in this
chapter), but need not (as in the example in the last section). In the simple
case, where the dependency and narrative structure largely coincide, systems
like the ActiveMath system described in Section ?? can generate narrative
OMDocs from content OMDocs automatically. To generate more complex
rhetoric/didactic figures, we would have to have more explicit markup for
relations like “can act as a straw-man for”. Providing standardized markup
for such relations is beyond the scope of the OMDoc format, but could easily
be expressed as metadata, or as external, e.g. RDF-based relations.

xmlrpc.tex 8685 2010-08-23 08:55:17Z kohlhase

9

Communication with and between
Mathematical Software Systems

OMDoc can be used as content language for communication protocols be-
tween mathematical software systems on the Internet. The ability to specify
the context and meaning of the mathematical objects makes the OMDoc
format ideally suited for this task.

In this chapter we will discuss a message interface in a fictitious software
system MathWeb-WS1, which connects a wide-range of reasoning systems
(mathematical services), such as automated theorem provers, automated proof
assistants, computer algebra systems, model generators, constraint solvers, hu-
man interaction units, and automated concept formation systems, by a com-
mon mathematical software bus. Reasoning systems integrated in MathWeb-
WS can therefore offer new services to the pool of services, and can in turn
use all services offered by other systems.

On the protocol level, MathWeb-WS uses Soap remote procedure calls
with the HTTP binding [Gud+03] (see [Mit03] for an introduction to Soap)
interface that allows client applications to request service objects and to use
their service methods. For instance, a client can simply request a service object
for the automated theorem prover Spass [Wei97] via the HTTP GET request
in Listing 9.1 to a MathWeb-WS broker node.

Listing 9.1. Discovering Automated Theorem Provers (Request)

GET /ws.mathweb.org/broker/getService?name=SPASS HTTP/1.1
2 Host: ws.mathweb.org

1 “MathWeb Web Services”; The examples discussed in this chapter are inspired
by the MathWeb-SB [FK99; ZK02] (“MathWeb Software Bus”) service infras-
tructure, which offers similar functionality based on the XML-RPC protocol (an
XML encoding of Remote Procedure Calls (RPC) [Com]). We use the Soap-
based formulation, since Soap (Simple Object Access Protocol) is the relevant
W3C standard and we can show the embedding of OMDoc fragments into other
XML namespaces. In XML-RPC, the XML representations of the content lan-
guage OMDoc would be transported as base-64-encoded strings, not as embedded
XML fragments.

xmlrpc.tex 8685 2010-08-23 08:55:17Z kohlhase

82 9 Communication between Systems

Accept: application/soap+xml

As a result, the client receives a Soap message like the one in Listing 9.2
containing information about various instances of services embodying the
Spass prover known to the broker service.

Listing 9.2. Discovering Automated Theorem Provers (Response)

HTTP/1.1 200 OK
2 Content−Type: application/soap+xml

Content−Length: 990

<?xml version=’1.0’?>
<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap−envelope”>

7 <env:Body>
<ws:prover env:encodingStyle=”http://www.w3.org/2003/05/soap−encoding”

xmlns:ws=”http://www.mathweb.org/ws−fictional”>
<ws:name>SPASS</ws:name>
<ws:version>2.1</ws:version>

12 <ws:URL>http://spass.mpi−sb.mpg.de/webspass/soap</ws:URL>
<ws:uptime>P3D5H6M45S</ws:uptime>
<ws:sysinfo>
<ws:ostype>SunOS 5.6</ws:ostype>
<ws:mips>3825</ws:mips>

17 </ws:sysinfo>
</ws:prover>
<ws:prover env:encodingStyle=”http://www.w3.org/2003/05/soap−encoding”

xmlns:ws=”http://www.mathweb.org/ws−fictional”>
<ws:name>SPASS</ws:name>

22 <ws:version>2.0</ws:version>
<ws:URL>http://asuka.mt.cs.cmu.edu/atp/spass/soap</ws:URL>
<ws:uptime>P5M2D15H56M5S</ws:uptime>
<ws:sysinfo>
<ws:ostype>linux−2.4.20</ws:ostype>

27 <ws:mips>1468</ws:mips>
</ws:sysinfo>

<ws:prover>
</env:Body>

</end:Envelope>

The client can then select one of the provers (say the first one, because it
runs on the faster machine) and post theorem proving requests like the one
in Listing 9.32 to the URL which uniquely identifies the service object in the
Internet (this was part of the information given by the broker; see line 11 in
Listing 9.2).

Listing 9.3. A Soap RPC call to Spass

POST http://spass.mpi−sb.mpg.de/webspass/soap HTTP/1.1
Host: http://spass.mpi−sb.mpg.de/webspass/soap
Content−Type: application/soap+xml;

4 Content−Length: 1123

<?xml version=’1.0’?>
<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap−envelope”>
<env:Body>

9 <ws:prove env:encodingStyle=”http://www.w3.org/2003/05/soap−encoding”
xmlns:ws=”http://www.mathweb.org/ws−fictional”>

<omdoc:assertion xml:id=”peter−hates−somebody” type=”conjecture”

2 We have made the namespaces involved explicit with prefixes in the examples, to
show the mixing of different XML languages.

xmlrpc.tex 8685 2010-08-23 08:55:17Z kohlhase

9 Communication between Systems 83

xmlns:omdoc=”http://omdoc.org/ns”
theory=”http://mbase.mathweb.org:8080/RPC2#lovelife”>

14 <omdoc:CMP>Peter hates somebody</omdoc:CMP>
<omdoc:FMP>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMBIND>
<om:OMS cd=”quant1” name=”exists”/>

19 <om:OMBVAR><om:OMV name=”X”/></om:OMBVAR>
<om:OMA>
<om:OMS cd=”lovelife” name=”hate”/>
<om:OMS cd=”lovelife” name=”peter”/>
<om:OMV name=”X”/>

24 </om:OMA>
</om:OMBIND>

</om:OMOBJ>
</omdoc:FMP>

</omdoc:assertion>
29 <ws:replyWith><ws:state>proof</ws:state></ws:replyWith>

<ws:timeout>20</ws:timeout>
</ws:prove>

</env:Body>
</env:Envelope>

This Soap remote procedure call uses a generic method “prove” that can
be understood by the first-order theorem provers on MathWeb-SB, and in
particular the Spass system. This method is encoded as a ws:prove element;
its children describe the proof problem and are interpreted by the Soap RPC
node as a parameter list for the method invocation. The first parameter is an
OMDoc representation of the assertion to be proven. The other parameters
instruct the theorem prover service to reply with the proof (instead of e.g.
just a yes/no answer) and gives it a time limit of 20 seconds to find it.

Note that OMDoc fragments can be seamlessly integrated into an XML
message format like Soap. A Soap implementation in the client’s implementa-
tion language simplifies this process drastically since it abstracts from HTTP
protocol details and offers Soap nodes using data structures of the host lan-
guage. As a consequence, developing MathWeb clients is quite simple in
such languages. Last but not least, both MS Internet Explorer and the open
source WWW browser FireFox now allow to perform Soap calls within
JavaScript. This opens new opportunities for building user interfaces based
on web browsers.

Note furthermore that the example in Listing 9.3 depends on the infor-
mation given in the theory lovelife referenced in the theory attribute in
the assertion element (see Section 15.6 for a discussion of the theory struc-
ture in OMDoc). In our instance, this theory might contain formalizations
(in first-order logic) of the information that Peter hates everybody that Mary
loves and that Mary loves Peter, which would allow Spass to prove the as-
sertion. To get the information, the MathWeb-WS service based on Spass
would first have to retrieve the relevant information from a knowledge base
like the MBase system described in Section ?? and pass it to the Spass the-
orem prover as background information. As MBase is also a MathWeb-WS
server, this can be done by sending the query in Listing 9.4 to the MBase
service at http://mbase.mathweb.org:8080.

http://mbase.mathweb.org:8080

xmlrpc.tex 8685 2010-08-23 08:55:17Z kohlhase

84 9 Communication between Systems

Listing 9.4. Requesting a Theory from MBase

GET /mbase.mathweb.org:8080/soap/getTheory?name=lovelife HTTP/1.1
2 Host: mbase.mathweb.org:8080

Accept: application/soap+xml

The answer would be of the form given in Listing 9.5. Here, the Soap envelope
contains the OMDoc representation of the requested theory (irrespective of
what the internal representation of MBase was).

Listing 9.5. The Background Theory for Message 9.3

HTTP/1.1 200 OK
2 Content−Type: application/soap+xml

Content−Length: 602

<?xml version=’1.0’?>
<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap−envelope”>

7 <env:Body>
<theory xml:id=”lovelife” xmlns=”http://omdoc.org/ns”>
<symbol name=”peter”/><symbol name=”mary”/>
<symbol name=”love”/><symbol name=”hate”/>
<axiom xml:id=”opposite”>

12 <CMP>Peter hates everybody Mary loves</CMP>
<FMP>∀x.loves(mary, x)⇒ hates(peter, x)</FMP>

</axiom>
<axiom xml:id=”mary−loves−peter”>
<CMP>Mary loves Peter</CMP>

17 <FMP>loves(mary, peter)</FMP>
</axiom>

</theory>
</env:Body>

</env:Envelope>

This information is sufficient to prove the theorem in Listing 9.3; and the
Spass service might reply to the request with the message in Listing 9.6
which contains an OMDoc representation of a proof (see Chapter 17 for de-
tails). Note that the for attribute in the proof element points to the original
assertion from Listing 9.3.

Listing 9.6. A proof that Peter hates someone

HTTP/1.1 200 OK
Content−Type: application/soap+xml
Content−Length: 588

4

<?xml version=’1.0’?>
<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap−envelope”>
<env:Body>
<proof xml:id=”p347” for=”#peter−hates−somebody”

9 xmlns=”http://omdoc.org/ns”>
<derive xml:id=”d1”>
<FMP>hates(peter, peter)</FMP>
<method xref=”nd.omdoc#ND.chain”>
<premise xref=”#lovelife.mary−loves−peter”/>

14 <premise xref=”#lovelife.opposite”/>
</method>

</derive>
<derive xml:id=”concl”>
<method xref=”nd.omdoc#ND.ExI”><premise xref=”#d1”/></method>

19 </derive>
</proof>

xmlrpc.tex 8685 2010-08-23 08:55:17Z kohlhase

9 Communication between Systems 85

</env:Body>
</env:Envelope>

The proof has two steps: The first one is represented in the derive element,
which states that “Peter hates Peter”. This fact is derived from the two axioms
in the theory lovelife in Listing 9.5 (the premise elements point to them)
by the “chaining rule” of the natural deduction calculus. This inference rule is
represented by a symbol in the theory ND and referred to by the xref attribute
in the method element. The second proof step is given in the second derive

element and concludes the proof. Since the assertion of the conclusion is the
statement of the proven assertion, we do not have a separate FMP element that
states this here. The sole premise of this proof step is the previous one. For
details on the representation of proofs in OMDoc see Chapter 17.

Note that the Spass theorem prover does not in itself give proofs in the
natural deduction calculus, so the Spass service that provided this answer pre-
sumably enlisted the help of another MathWeb-WS service like the Tramp
system [Mei00] that transforms resolution proofs (the native format of the
Spass prover) to natural deduction proofs.

partomdoc.tex 8685 2010-08-23 08:55:17Z kohlhase

partomdoc.tex 8685 2010-08-23 08:55:17Z kohlhase

Part III

The OMDoc Document Format

The OMDoc (Open Mathematical Documents) format is a content markup
scheme for (collections of) mathematical documents including articles, text-
books, interactive books, and courses. OMDoc also serves as the content
language for agent communication of mathematical services on a mathemati-
cal software bus.

This part of the book is the specification of version 1.3 of the OMDoc for-
mat, the final and mature release of OMDoc version 1. It defines the OMDoc
language features and their meaning. The content of this part is normative
for the OMDoc format; an OMDoc document is valid as an OMDoc docu-
ment, iff it meets all the constraints imposed here. OMDoc applications will
normally presuppose valid OMDoc documents and only exhibit the intended
behavior on such.

spec-intro.tex 8754 2010-10-13 11:36:16Z kohlhase

spec-intro.tex 8754 2010-10-13 11:36:16Z kohlhase

10

General Aspects of the OMDoc Format

10.1 OMDoc as a Modular Format

A modular approach to design is generally accepted as best practice in the
development of any type of complex application. It separates the application’s
functionality into a number of ”building blocks” or ”modules”, which are sub-
sequently combined according to specific rules to form the entire application.
This approach offers numerous advantages: The increased conceptual clarity
allows developers to share ideas and code, and it encourages reuse by creating
well-defined modules that perform a particular task. Modularization also re-
duces complexity by decomposition of the application’s functionality and thus
decreases debugging time by localizing errors due to design changes. Finally,
flexibility and maintainability of the application are increased because single
modules can be upgraded or replaced independently of others.

The OMDoc vocabulary has been split by thematic role, which we will
briefly overview in Figures 10.1 and 10.2 before we go into the specifics of
the respective modules in Chapters 13 to 21. To avoid repetition, we will
introduce some attributes already in this chapter that are shared by elements
from all modules. In Chapter 22 we will discuss the OMDoc document model
and possible sub-languages of OMDoc that only make use of parts of the
functionality (Section 22.3).

The modules in Figure 10.1 are required (mathematical documents without
them do not really make sense), the ones in Figure 10.2 are optional.

The document-structuring elements in module DOC have an attribute
modules that allows to specify which of the modules are used in a particular
document (see Chapter 11 and Section 22.3).

10.2 The OMDoc Namespaces

The namespace for the OMDoc format is the URI http://omdoc.org/ns.
Note that the OMDoc namespace does not reflect the versions, this is done in

http://omdoc.org/ns

spec-intro.tex 8754 2010-10-13 11:36:16Z kohlhase

90 10 General Aspects of the OMDoc Format

Module Title Required? Chapter

MOBJ Mathematical Objects yes Chapter 13

Formulae are a central part of mathematical documents; this module integrates
the content-oriented representation formats OpenMath and MathML into
OMDoc

MTXT Mathematical Text yes Chapter 14

Mathematical vernacular, i.e. natural language with embedded formulae

DOC Document Infrastructure yes Chapter 11

A basic infrastructure for assembling pieces of mathematical knowledge into
functional documents and referencing their parts

RT Rich Text Structure no Section 14.5

Rich text structure in mathematical vernacular (lists, paragraphs, tables, . . .)

ST Mathematical Statements no Chapter 15

Markup for mathematical forms like theorems, axioms, definitions, and ex-
amples that can be used to specify or define properties of given mathematical
objects and theories to group mathematical statements and provide a notion of
context.

PF Proofs and proof objects no Chapter 17

Structure of proofs and argumentations at various levels of details and formal-
ity

PRES Presentation Information no Chapter 19

Limited functionality for specifying presentation and notation information for
local typographic conventions that cannot be determined by general principles
alone

Fig. 10.1. The OMDoc Modules

the version attribute on the document root element omdoc (see Chapter 11).
As a consequence, the OMDoc vocabulary identified by this namespace is not
static, it can change with each new OMDoc version. However, if it does, the
changes will be documented in later versions of the specification: the latest
released version can be found at [Kohb].

In an OMDoc document, the OMDoc namespace must be specified either
using a namespace declaration of the form xmlns="http://omdoc.org/ns" on
the omdoc element or by prefixing the local names of the OMDoc elements by
a namespace prefix (OMDoc customarily use the prefixes omdoc: or o:) that
is declared by a namespace prefix declaration of the form xmlns:o="http://

omdoc.org/ns" on some element dominating the OMDoc element in question
(see Section 1.3 for an introduction). OMDoc also uses the namespaces in
Figure 10.31 Thus a typical document root of an OMDoc document looks as
follows:

1 In this specification we will use the namespace prefixes above on all the elements
we reference in text unless they are in the OMDoc namespace.

http://omdoc.org/ns
http://omdoc.org/ns
http://omdoc.org/ns

spec-intro.tex 8754 2010-10-13 11:36:16Z kohlhase

10.3 Common Attributes in OMDoc 91

Module Title Required? Chapter

DC Dublin Core Metadata yes Sections 12.2 and 12.3

Contains bibliographical “data about data”, which can be used to annotate
many OMDoc elements by descriptive and administrative information that
facilitates navigation and organization

CC Creative Commons Metadata yes Section 12.4

Licenses for text use

ADT Abstract Data Types no Chapter 16

Definition schemata for sets that are built up inductively from constructor
symbols

CTH Complex Theories no Chapter 18

Theory morphisms; they can be used to structure mathematical theories

DG Development Graphs no Section 18.5

Infrastructure for managing theory inclusions, change management

EXT Applets, Code, and Data no Chapter 20

Markup for applets, program code, and data (e.g. images, measurements, . . .)

QUIZ Infrastructure for Assessments no Chapter 21

Markup for exercises integrated into the OMDoc document model

Fig. 10.2. The OMDoc Modules

Format namespace URI see

Dublin Core http://purl.org/dc/elements/1.1/ Sections 12.2 and 12.3
Creative Commons http://creativecommons.org/ns Section 12.4
MathML http://www.w3.org/1998/Math/MathML Section 13.2
OpenMath http://www.openmath.org/OpenMath Section 13.1
XSLT http://www.w3.org/1999/XSL/Transform Chapter 19

Fig. 10.3. OMDoc Namespaces

<?xml version=”1.0” encoding=”utf−8”?>
<omdoc xml:id=”test.omdoc” version=”1.3”

3 xmlns=”http://omdoc.org/ns”
xmlns:cc=”http://creativecommons.org/ns”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:om=”http://www.openmath.org/OpenMath”
xmlns:m=”http://www.w3.org/1998/Math/MathML”>

8 . . .
</omdoc>

10.3 Common Attributes in OMDoc

There are some attributes that are common to many OMDoc elements, so
we will describe them here before we go into the specifics of the respective
elements themselves

http://purl.org/dc/elements/1.1/
http://creativecommons.org/ns
http://www.w3.org/1998/Math/MathML
http://www.openmath.org/OpenMath
http://www.w3.org/1999/XSL/Transform

spec-intro.tex 8754 2010-10-13 11:36:16Z kohlhase

92 10 General Aspects of the OMDoc Format

10.3.1 Foreign-Namespace Attributes

Generally, the OMDoc format allows any attributes from foreign (i.e. non-
OMDoc) namespaces on the OMDoc elements. This is a commonly found
feature that makes the XML encoding of the OMDoc format extensible. Note
that the attributes defined in this specification are in the default (empty)
namespace: they do not carry a namespace prefix. So any attribute of the
form na:xxx is allowed as long as it is in the scope of a suitable namespace
prefix declaration.

10.3.2 XML Identifiers

Many OMDoc elements have optional xml:id attributes that can be used
as identifiers to reference them. These attributes are of type ID, they must
be unique in the document which is important, since many XML applica-
tions offer functionality for referencing and retrieving elements by ID-type at-
tributes. Note that unlike other ID-attributes, in this special case it is the name
xml:id [MVW05] that defines the referencing and uniqueness functionality,
not the type declaration in the DTD or XML schema (see Subsection 1.3.2
for a discussion).

Note that in the OMDoc format proper, all ID type attributes are of
the form xml:id. However in the older OpenMath and MathML standards,
they still have the form id. The latter are only recognized to be of type ID,
if a document type or XMLschema is present. Therefore it depends on the
application context, whether a DTD should be supplied with the OMDoc
document.

10.3.3 CSS Attributes

For many occasions (e.g. for printing OMDoc documents), authors want to
control a wide variety of aspects of the presentation. OMDoc is a content-
oriented format, and as such only supplies an infrastructure to mark up
content-relevant information in OMDoc elements. To address this dilemma
XML offers an interface to Cascading Style Sheets (CSS) [Bos+98], which
allow to specify presentational traits like text color, font variant, positioning,
padding, or frames of layout boxes, and even aural aspects of the text.

To make use of CSS, most OMDoc elements (all that have xml:id at-
tributes) have style attributes2 that can be used to specify CSS directives
for them. In the OMDoc fragment in Listing 10.1 we have used the style

attribute to specify that the text content of the omtext element should be for-
matted in a centered box whose width is 80% of the surrounding box (probably
the page box), and that has a 2 pixel wide solid frame of the specified RGB

2 The treatment of the CSS attributes has changed from OMDoc1.1, see the
discussion on page 229.

spec-intro.tex 8754 2010-10-13 11:36:16Z kohlhase

10.4 Structure Sharing 93

color. Generally CSS directives are of the form A:V, where A is the name of
the aspect, and V is the value, several CSS directives can be combined in one
style attribute as a semicolon-separated list (see [Bos+98] and the emerging
CSS 3 standard).

Listing 10.1. Basic CSS Directives in a style Attribute

1 <?xml version=”1.0” encoding=”utf−8”?>
<?xml−stylesheet type=”text/css” href=”http://example.org/style.css”?>
<omdoc xml:id=”stylish”>
. . .
<omtext xml:id=”t1” style=”width:80%;align:center;border:2px #006699 solid”>

6 <CMP>Here comes something
<phrase style=”font−weight:bold;color:green” class=”emphasize”>stylish</phrase>!

</CMP>
</omtext>
. . .

11 </omdoc>

Note that many CSS properties of parent elements are inherited by the
children, if they are not explicitly specified in the child. We could for instance
have set the font family of all the children of the omtext element by adding a
directive font-family:sans-serif there and then override it by a directive
for the property font-family in one of the children.

Frequently recurring groups of CSS directives can be given symbolic names
in CSS style sheets, which can be referenced by the class attribute. In List-
ing 10.1 we have made use of this with the class emphasize, which we assume
to be defined in the style sheet style.css associated with the document in
the “style sheet processing instruction” in the prolog3 of the XML document
(see [Cla99a] for details). Note that an OMDoc element can have both class

and style attributes, in this case, precedence is determined by the rules for
CSS style sheets as specified in [Bos+98]. In our example in Listing 10.1 the
directives in the style attribute take precedence over the CSS directives in
the style sheet referenced by the class attribute on the phrase element. As
a consequence, the word “stylish” would appear in green, bold italics.

10.4 Structure Sharing

OMDoc is a content markup format, from which documents are produced via
a presentation process. This “source character” of OMDoc documents allows
to utilize structure sharing technologies in the markup4. For structure sharing
OMDoc uses the tref attribute: all content elements can be used with the
tref whose value is a URI reference to an OMDoc element instead of the
normal element models. We call such an element an OMDoc reference. Se-
mantically, OMDoc references are just placeholders for the OMDoc objects

3 i.e. at the very beginning of the XML document before the document type dec-
laration

4 OMDoc1.2 used the ref element with type include for this purpose. The new
tref-based infrastructure supports validation much better.

spec-intro.tex 8754 2010-10-13 11:36:16Z kohlhase

94 10 General Aspects of the OMDoc Format

they reference via their tref attribute. OMDoc references require OMDoc
applications to process the document as if the OMDoc reference were re-
placed with the OMDoc fragment referenced in the tref attribute.

10.4.1 Ref-Reduction and Flattening

<omgroup xml:id=”text”
type=”sequence”>

<omtext xml:id=”t1”>T1</omtext>
<omgroup xml:id=”enum”

type=”enumeration”>
<omtext xml:id=”t2”>T2</omtext>
<omtext xml:id=”t3”>T3</omtext>

</omgroup>
<omtext xml:id=”t4”>T4</omtext>

</omgroup>

↔

<omgroup xml:id=”text” type=”sequence”>
<omtext tref=”#t1”/>
<omgroup tref=”#enum”/>
<omtext tref=”#t4”/>

</omgroup>

<ignore type=”targets”
comment=”already referenced”>

<omtext xml:id=”t1”>T1</omtext>
<omtext xml:id=”t2”>T2</omtext>
<omtext xml:id=”t3”>T3</omtext>
<omtext xml:id=”t4”>T4</omtext>

<omgroup xml:id=”enum”
type=”enumeration”>

<omtext tref=”#t2”/>
<omtext tref=”#t3”/>

</omgroup>
</ignore>

Fig. 10.4. Flattening a Tree Structure

Let R be an OMDoc reference, we call the element the URI in the tref

points to its target. We call the process of replacing an OMDoc reference
by its target in a document reference reduction, and the document re-
sulting from the process of systematically and recursively reducing all the
OMDoc references the ref normal form of the source document. Note that
ref-normalization may not always be possible, e.g. if the ref-targets do not
exist or are inaccessible — or worse yet, if the relation given by the OMDoc
references is cyclic. Moreover, even if it is possible to ref-normalize, this may
not lead to a valid OMDoc document, e.g. since ID type attributes that were
unique in the target documents are no longer in the ref-reduced one. We will
call a document ref-reducible, iff its ref-normal form exists, and ref-valid,
iff the ref-normal form exists and is a valid OMDoc document.

Note that it may make sense to use documents that are not ref-valid for
narrative-centered documents, such as courseware or slides for talks that only
allude to, but do not fully specify the knowledge structure of the mathematical
knowledge involved. For instance the slides discussed in Section 8.2 do not
contain the theory elements that would be needed to make the documents
ref-valid.

OMDoc references also allow to “flatten” the tree structure in a document
into a list of leaves and relation declarations (see Figure 10.4 for an example).

spec-intro.tex 8754 2010-10-13 11:36:16Z kohlhase

10.4 Structure Sharing 95

It also makes it possible to have more than one view on a document using
omgroup structures that reference a shared set of OMDoc elements. Note
that we have embedded the ref-targets of the top-level omgroup element into
an ignore comment, so that an OMDoc transformation (e.g. to text form)
does not encounter the same content twice.

10.4.2 Cascading of CSS Attributes

While the OMDoc approach to specifying document structure is a much
more flexible (database-like) approach to representing structured documents5

than the tree model, it puts a much heavier load on a system for present-
ing the text to humans. In essence the presentation system must be able to
recover the left representation from the right one in Figure 10.4. Generally,
any OMDoc element defines a fragment of the OMDoc it is contained in:
everything between the start and end tags and (recursively) those elements
that are reached from it by following the OMDoc references. In particular,
the text fragment corresponding to the element with xml:id="text" in the
right OMDoc of Figure 10.4 is just the one on the left.

In Section 10.3 we have introduced the CSS attributes style and class,
which are present on all OMDoc elements. In the case of a OMDoc refer-
ence, there is a problem, since the content of these can be incompatible. In
general, the rule for determining the style information for an element is that
we treat the replacement element as if it were a child of the reference, and
then determine the values of the CSS properties of the OMDoc reference by
inheritance.

5 The simple tree model is sufficient for simple markup of existing mathematical
texts and to replay them verbatim in a browser, but is insufficient e.g. for gen-
erating individualized presentations at multiple levels of abstractions from the
representation. The OMDoc text model — if taken to its extreme — allows to
specify the respective role and contributions of smaller text units, even down to
the sub-sentence level, and to make the structure of mathematical texts machine-
understandable. Thus, an advanced presentation engine like the ActiveMath
system [Sie+00] can — for instance — extract document fragments based on the
preferences of the respective user.

document.tex 8754 2010-10-13 11:36:16Z kohlhase

document.tex 8754 2010-10-13 11:36:16Z kohlhase

11

Document Infrastructure (Module DOC)

Mathematical knowledge is largely communicated by way of a specialized set
of documents (e.g. e-mails, letters, pre-prints, journal articles, and textbooks).
These employ special notational conventions and visual representations to
convey the mathematical knowledge reliably and efficiently.

When marking up mathematical knowledge, one always has the choice
whether to mark up the structure of the document itself, or the structure of
the mathematical knowledge that is conveyed in the document. Even though
in most documents, the document structure is designed to help convey the
structure of the knowledge, the two structures need not be the same. To frame
the discussion we will distinguish two aspects of mathematical documents. In
the knowledge-centered view we organize the mathematical knowledge by its
function, and do not care about a way to present it to human recipients. In
the narrative-centered view we are interested in the structure of the argument
that is used to convey the mathematical knowledge to a human user.

We will call a document knowledge-structured and narrative-struc-
tured, based on which of the two aspects is prevalent in the organization of
the material. Narrative-structured documents in mathematics are generally
directed at human consumption (even without being in presentation markup).
They have a general narrative structure: text interleaving with formal elements
like assertions, proofs, . . . Generally, the order of presentation plays a role in
their effectiveness as a means of communication. Typical examples of this
class are course materials or introductory textbooks. Knowledge-structured
documents are generally directed at machine consumption or for referencing.
They do not have a linear narrative spine and can be accessed randomly
and even re-ordered without information loss. Typical examples of these are
formula collections, OpenMath content dictionaries, technical specifications,
etc.

The distinction between knowledge-structured and narrative-structured
documents is reminiscent of the presentation vs. content distinction discussed
in Section 2.1, but now it is on the level of document structure. Note that
mathematical documents are often in both categories: a mathematical text-

document.tex 8754 2010-10-13 11:36:16Z kohlhase

98 11 Document Infrastructure

book can be read from front to end, but it can also be used as a reference,
accessing it by the index and the table of contents. The way humans work
with knowledge also involves a change of state. When we are taught or ex-
plore a mathematical domain, we have a linear/narrative path through the
material, from which we abstract more and more, finally settling for a seman-
tic representation that is relatively independent from the path we acquired it
by. Systems like ActiveMath (see Section ??) use the OMDoc format in
exactly that way playing on the difference between the two classes and gen-
erating narrative-structured representations from knowledge-structured ones
on the fly.

So, maybe the best way to think about this is that the question whether
a document is narrative- or knowledge-structured is not a property of the
document itself, but a property of the application processing this document.

OMDoc provides markup infrastructure for both aspects. In this chapter,
we will discuss the infrastructure for the narrative aspect — for a working
example we refer the reader to Chapter 8. We will look at markup elements
for knowledge-structured documents in Section 15.6.

Even though the infrastructure for narrative aspects of mathematical doc-
uments is somewhat presentation-oriented, we will concentrate on content-
markup for it. In particular, we will not concern ourselves with questions like
font families, sizes, alignment, or positioning of text fragments. Like in most
other XML applications, this kind of information can be specified in the CSS
style and class attributes described in Section 10.3.

11.1 The Document Root

The XML root element of the OMDoc format is the omdoc element, it con-omdoc

tains all other elements described here. We call an OMDoc element a top-
level element, if it can appear as a direct child of the omdoc element.

The omdoc element (and the omgroup element introduced below as well)
has an optional attribute xml:id that can be used to reference the whole
document. The version attribute is used to specify the version of the OMDoc
format the file conforms to. It is fixed to the string 1.3 by this specification.
This will prevent validation with a different version of the DTD or schema,
or processing with an application using a different version of the OMDoc
specification. The (optional) attribute modules allows to specify the OMDoc
modules that are used in this document. The value of this attribute is a
whitespace-separated list of module identifiers (e.g. MOBJ the left column
in Figure ??), OMDoc sub-language identifiers (see Figure 22.2), or URI
references for externally given OMDoc modules or sub-language identifiers.1

1 Allowing these external module references keeps the OMDoc format extensible.
Like in the case with namespace URIs OMDoc do not mandate that these URI
references reference an actual resource. They merely act as identifiers for the
modules.

document.tex 8754 2010-10-13 11:36:16Z kohlhase

11.2 Front/Backmatter 99

The intention is that if present, the modules specifies the list of all the modules
used in the document (fragment). If a modules attribute is present, then it is
an error, if the content of this element contains elements from a module that
is not specified; spurious module declarations in the modules attributes are
allowed.

The omdoc element acts as an implicit grouping element, just as the
omgroup element to be introduced in Section 11.5. Both have an optional
type attribute; we will discuss its values and meaning in Section 11.5.

Here and in the following we will use tables as the one in Figure 11.1 to
give an overview over the respective OMDoc elements described in a chapter
or section. The first column gives the element name, the second and third
columns specify the required and optional attributes. We will use the fourth
column labeled “DC” to indicate whether an OMDoc element can have a
metadata child, which will be described in the next section. Finally the fifth
column describes the content model — i.e. the allowable children — of the
element. For this, we will use a form of Backus Naur Form notation also used
in the DTD: #PCDATA stands for “parsed character data”, i.e. text intermixed
with legal OMDoc elements.) A synopsis of all elements is provided in Ap-
pendix B.

Element Attributes D Content

RequiredOptional C

omdoc version,
xmlns

xml:id, type, class, style,
version, modules, theory

+ 〈〈front〉〉,(〈〈top-level〉〉)*,〈〈back〉〉

〈〈back〉〉 index?,bibliography?
〈〈front〉〉 tableofcontents?
omgroup xml:id, modules, type, class,

style, theory
+ (〈〈top-level〉〉)*

metadata xml:id, class, style – 〈〈MDelt〉〉*
ref xref xml:id, type, class, style –
ignore xml:id, type, comment – ANY

index xml:id – EMPTY

bibliography files xml:id – EMPTY

where 〈〈top-level〉〉 stands for top-level OMDoc elements, and 〈〈MDelt〉〉 for those introduced
in Chapter 12

Fig. 11.1. OMDoc Elements for Specifying Document Structure.

11.2 Front/Backmatter

Documents usually have and , OMDoc is no exception. Currently, the OM-
Doc front matter only consists of the tableofcontents element. The back
matter consists of the optional elements index and bibliography.

The tableofcontents element represents the position of an table of con- tableofcontents

tents in the document. Note that since OMDoc is a source format, we do not
actually have to put the contents of the table of contents at this position, but

document.tex 8754 2010-10-13 11:36:16Z kohlhase

100 11 Document Infrastructure

only need to specify content properties of the table of contents is intended;
the actual content can be generated by the presentation process. For that the
tableofcontents element uses the optional level that can be used to specify
the depth of the table of contents.

The bibliography element is similar to index, but it specifies the positionbibliography

bibliography to be generated. The bibliography element has a single required
attribute: the files specifies the bibliography files in LaTeXML form from
which the actual references can be generated.

The index element represents the position of an index in the document.index

11.3 Metadata

The World Wide Web was originally built for human consumption, and al-
though everything on it is machine-readable, most of it is not machine-
understandable. The accepted solution is to provide metadata (data about
data) to describe the documents on the web in a machine-understandable
format that can be processed automatically. Metadata commonly specifies as-
pects of a document like title, authorship, language usage, and administrative
aspects like modification dates, distribution rights, and identifiers.

In general, metadata can either be embedded in the respective document,
or be stated in a separate one. The first facilitates maintenance and control
(metadata is always at your fingertips, and it can only be manipulated by
the document’s authors), the second one enables inference and distribution.
OMDoc allows to embed metadata into the document, from where it can
be harvested for external metadata formats, such as the XML resource de-
scription framework (RDF [LS99]). We use one of the best-known metadata
schemata for documents – the Dublin Core (cf. Sections 12.2 and 12.3). The
purpose of annotating metadata in OMDoc is to facilitate the administra-
tion of documents, e.g. digital rights management, and to generate input for
metadata-based tools, e.g. RDF-based navigation and indexing of document
collections. Unlike most other document formats OMDoc allows to add meta-
data at many levels, also making use of the metadata for document-internal
markup purposes to ensure consistency.

The metadata element contains elements for various metadata formats in-metadata

cluding bibliographic data from the Dublin Core vocabulary (as mentioned
above), licensing information from the Creative Commons Initiative (see Sec-
tion 12.4), as well as information for OpenMath content dictionary manage-
ment. Application-specific metadata elements can be specified by adding cor-
responding OMDoc modules that extend the content model of the metadata

element.
The OMDoc metadata element can be used to provide information about

the document as a whole (as the first child of the omdoc element), as well as
about specific fragments of the document, and even about the top-level mathe-
matical elements in OMDoc. This reinterpretation of bibliographic metadata

document.tex 8754 2010-10-13 11:36:16Z kohlhase

11.4 Document Comments 101

as general data about knowledge items allows us to extract document frag-
ments and re-assemble them to new aggregates without losing information
about authorship, source, etc.

11.4 Document Comments

Many content markup formats rely on commenting the source for human un-
derstanding; in fact source comments are considered a vital part of document
markup. However, as XML comments (i.e. anything between “<!--” and
“-->” in a document) need not even be read by some XML parsers, we can-
not guarantee that they will survive any XML manipulation of the OMDoc
source.

Therefore, anything that would normally go into comments should be mod-
eled with an omtext element (type comment, if it is a text-level comment; see
Section 14.3) or with the ignore element for persistent comments, i.e. com- ignore

ments that survive processing. The content of the ignore element can be any
well-formed OMDoc, it can occur as an OMDoc top-level element or inside
mathematical texts (see Chapter 14). This element should be used if the au-
thor wants to comment the OMDoc representation, but the end user should
not see their content in a final presentation of the document, so that OMDoc
text elements are not suitable, e.g. in

<ignore type=”todo” comment=”this does not make sense yet, rework”>
<assertion xml:id=”heureka”>. . .</assertion>

</ignore>

Of course, ignore elements can be nested, e.g. if we want to mark up the
comment text (a pure string as used in the example above is not enough to
express the mathematics). This might lead to markup like

<ignore type=”todo” comment=”rework”>
<ignore type=”todo−comment”>
<CMP>This does not make sense yet, in particular, the equation
<OMOBJ>. . .</OMOBJ> cannot be true, think of <OMOBJ>. . .</OMOBJ>

</CMP>
</ignore>
<assertion xml:id=”heureka”>. . .</assertion>

</ignore>

Another good use of the ignore element is to use it as an analogon to the
in-place error markup in OpenMath objects (see Subsection 13.1.2). In this
case, we use the type attribute to specify the kind of error and the content
for the faulty OMDoc fragment. Note that since the whole object must be a
valid OMDoc object (or at least licensed by a DTD or schema), the content
itself must be a well-formed OMDoc fragment. As a consequence, the ignore
element can only be used for “mathematical errors” like sibling CMP or FMP

elements that do not have the same meaning as in Listing 11.1. XML-well-
formedness and validity errors will have to be handled by the XML tools
involved.

document.tex 8754 2010-10-13 11:36:16Z kohlhase

102 11 Document Infrastructure

Listing 11.1. Marking up Mathematical Errors Using ignore

<ignore type=”CMP−lang−error”
comment=”multilingual CMPs are not translations of each other”>

<assertion xml:id=”ass1”>
<CMP>The proof is trivial</CMP>
<CMP xml:lang=”de”>Der Beweis ist extrem schwer</CMP>

</assertion>
</ignore>

For another use of the ignore element, see Figure 10.4 in Section 10.4.

11.5 Document Structure

Like other documents mathematical ones are often divided into units like
chapters, sections, and paragraphs by tags and nesting information. OMDoc
makes these document relations explicit by using the omgroup element withomgroup

an optional attribute type. It can take the values2

sequence for a succession of paragraphs. This is the default, and the normal
way narrative texts are built up from paragraphs, mathematical state-
ments, figures, etc. Thus, if no type is given the type sequence is as-
sumed.

itemize for unordered lists. The children of this type of omgroup will usually
be presented to the user as indented paragraphs preceded by a bullet
symbol. Since the choice of this symbol is purely presentational, OMDoc
use the CSS style or class attributes on the children to specify the
presentation of the bullet symbols (see Section 10.3).

enumeration for ordered lists. The children of this type of omgroup are usu-
ally presented like unordered lists, only that they are preceded by a run-
ning number of some kind (e.g. “1.”, “2.”. . . or “a)”, “b)”. . . ; again the
style or class attributes apply).

sectioning The children of this type of omgroup will be interpreted as sec-
tions. This means that the children will be usually numbered hierarchi-
cally, and their metadata will be interpreted as section heading informa-
tion. For instance the metadata/dc:title information (see Section 12.2
for details) will be used as the section title. Note that OMDoc does not
provide direct markup for particular hierarchical levels like “chapter”,
“section”, or “paragraph”, but assumes that these are determined by the
application that presents the content to the human or specified using the
CSS attributes.

2 Version 1.1 of OMDoc also allowed values dataset and labeled-dataset for
marking up tables. These values are deprecated in Version 1.2 of OMDoc, since
we provide tables in module RT; see Section 14.5 for details. Furthermore, Ver-
sion 1.1 of OMDoc allowed the value narrative, which was synonymous with
sequence.

document.tex 8754 2010-10-13 11:36:16Z kohlhase

11.5 Document Structure 103

Other values for the type attribute are also admissible, they should be URI
references to documents explaining their intension.

We consider the omdoc element as an implicit omgroup, in order to allow
plugging together the content of different OMDoc documents as omgroups
in a larger document. Therefore, all the attributes of the omdoc element also
appear on omgroup elements and behave exactly like those.

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

12

Metadata (Modules DC and CC)

Metadata is “data about data” — in the case of OMDoc data about doc-
uments, such as titles, authorship, language usage, or administrative aspects
like modification dates, distribution rights, and identifiers. To accommodate
such data, OMDoc offers the metadata element in many places. The most
commonly used metadata standard is the Dublin Core vocabulary, which is
supported in some form by most formats. OMDoc uses this vocabulary for
compatibility with other metadata applications and extends it for document
management purposes in OMDoc. Most importantly OMDoc extends the
use of metadata from documents to other (even mathematical) elements and
document fragments to ensure a fine-grained authorship and rights manage-
ment.

12.1 General Metadata

OMDoc1.3 already integrates the metadata framework for OMDoc2 based
on the recently stabilized RDFa [Adi+08] a standard for flexibly embedding
metadata into X(HT)ML documents. This design decision allows us to sepa-
rate the syntax (which is standardized in RDFa) from the semantics, which
we externalize in metadata ontologies, which can be encoded in OMDoc.

Given the need to incorporate additional metadata into OMDoc, and con-
sidering the deficiencies of the metadata support in OMDoc 1.2, we developed
a new framework. The requirements were as follows:

1. Stay backwards-compatible with OMDoc 1.2 concerning expressivity.
That is, continue supporting Dublin Core and Creative Commons, and
the custom extensions.

2. Expose the formal semantics of metadata vocabularies to OMDoc-based
applications; additionally be compatible to semantic web applications.

3. Incorporate a vocabulary for versioning – particularly aiming at technical
specifications.

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

106 12 Metadata

4. Do not hard-code a fixed set of vocabularies into the language but stay
flexible and extensible for many applications, including future and un-
known ones.

Given the fact that many existing metadata vocabularies, including Dublin
Core and Creative Commons, have an RDF semantics, and that with RDFa
a standard for flexibly embedding metadata into XML had recently stabi-
lized, we chose to incorporate RDFa into OMDoc, and to look for metadata
vocabularies with RDF-based implementations to satisfy our further require-
ments.

So far, RDFa has only been specified for the “host languages” XHTML [Adi+08].
The specification is generally biased towards XHTML but nevertheless fore-
sees a future adoption of RDFa as an annotation sublanguage by other XML
languages. The vector graphics format svg Tiny already includes RDFa in
the same way as XHTML, referring to the XHTML +RDFa specification
but making a few minor deviations from it. Other languages are starting to
adopt RDFa as well [IL10].

Full RDFa in OMDoc

After initial discussions on how much of RDFa to incorporate into OMDoc,
we decided to give authors who want to model complex annotations freedom to
use the full expressivity of RDFa, but to particularly recommend a metadata
syntax that resembles the one of OMDoc 1.2 and allows for expressing most
metadata that could also be expressed there. The other reason for fully inte-
grating RDFa is compatibility to RDFa tools. When publishing the sources
of OMDoc documents on the web, linked data crawlers like Sindice [TDO07]
may find them. While they would not be able to make any sense of OMDoc’s
own XML vocabulary (e. g. understanding that a proof element denotes an
instance of the oo:Proof class), they would at least be able to understand
the annotations made in RDFa, and thus enable users to search for, e. g.,
OMDoc resources having the dc:creator Michael Kohlhase.

A full integration of RDFa means that the following attribute have to be
added to OMDoc, with the same semantics as specified for XHTML +RDFa
(quoted from [Adi+08]; technical terms explained below):

rel a whitespace-separated list of CURIEs, used for expressing relationships
between two resources (‘predicates’ in RDF terminology);

rev a whitespace separated list of CURIEs, used for expressing reverse rela-
tionships between two resources (also ‘predicates’);

content a string, for supplying machine-readable content for a literal (a ‘plain
literal object’, in RDF terminology);

[XHTML-specific attributes omitted]
about a URI or safe CURIE, used for stating what the data is about (a

‘subject’ in RDF terminology);

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

12.1 General Metadata 107

property a whitespace separated list of CURIEs, used for expressing rela-
tionships between a subject and some literal text (also a ‘predicate’);

resource a URI or safe CURIE for expressing the partner resource of a
relationship that is not intended to be ‘clickable’ (also an ‘object’);

datatype a CURIE representing a datatype, to express the datatype of a
literal;

typeof a whitespace separated list of CURIEs that indicate the RDF type(s)
to associate with a subject.

A CURIE (Compact URI, specified as a part of RDFa, but also in a
specification of its own [BM09]) is a way of abbreviating a URI as names-
pace:localname, but in contrast to XML local names, the local name definition
of SparQL [PS08] is used, which is more liberal, e. g. permitting leading dig-
its. As in SparQL, the underscore prefix is reserved for blank nodes, such as
:bnode-id , and names in the default namespace are written with an empty

prefix, i. e. as :localname. However, the latter namespace is not intended to be
the default namespace declared in the surrounding XML, but a fixed names-
pace specified for the language. In addition to that, CURIEs also allow for
completely unprefixed names, such as localname, which can be reserved words
whose mapping to URIs is specified as a part of the language specification.
The mappings to URIs for the default namespace and for unprefixed names
have been specified for RDFa in XHTML, but as there is currently no stan-
dard way of declaring these mappings for a different host language, e. g. in its
XML schema, we do not anticipate that any RDFa-aware software would be
able to interpret such CURIEs. Therefore, we leave the specification of how
OMDoc should handle such CURIEs as future work. Some RDFa attributes
allow URIs and CURIEs, which are generally hard to distinguish.1 Therefore,
a CURIE in such an attribute has to be surrounded by square brackets. This
syntax is called “safe CURIE”.

Also note that full RDFa compatibility leads to a syntactical redundancy
in all OMDoc elements that carry metadata. In OMDoc 1.2, it was clear (by
the human-readable specification, not necessarily for machines!) that meta-
data contained in an XML element E referred to the concept denoted by
E, e. g., that the dc:title in listing ?? is the title of the proof with the URI
#fermat-proof. RDFa requires the subject of annotations to be set explicitly,
using the aboutttribute:

<proof xml:id=”fermat−proof” about=”#fermat−proof”>
<metadata>

3 ...
</metadata>

</proof>

Otherwise the parent subject would be reused, which is initially the base
URI, i. e. , unless specified otherwise, the URI of the whole document – which

1 The incoherent use of URIs vs. CURIEs in the RDFa attributes is likely to change
in future versions [Bir09].

#fermat-proof

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

108 12 Metadata

may, of course, contain many other metadata records. RDFa in XHTML is
often used for talking about different things than the elements of the XHTML
document itself, such as the book described in a paragraph of the document,
except for annotations on the top level for expressing, e. g., the document’s
author and license. In contrast, metadata in OMDoc are always intended to
be annotations for the things modeled in the document, such as theories or
statements. It is recommended for all of these things to have a URI, which is
defined by the xml:idttribute.2

It would be tempting to specify that, for elements that have metadata
and an xml:id the RDFa subject of the metadata annotations implicitly gets
set to the URI of the respective element. One could even specify that, if
an element carrying metadata does not have an xml:id a blank node will
be generated for it. However, XHTML is – and will always be – much
more widespread than OMDoc, RDFa has first been designed for anno-
tating XHTML and is still currently biased towards XHTML, and RDFa-
aware software will probably not be able to handle custom reinterpretations
of the RDFa syntax and semantics soon, at least not as long as there is
no way of specifying them in a machine-understandable way3. Now sup-
pose we had an OMDoc document at an URI U containing a proof with
RDFa metadata but without an explicit aboutttribute. Suppose the rela-
tion of the proof to the theorem it proves were, for some reason, not mod-
eled in OMDoc syntax, but in RDFa, using the OMDoc ontology, i. e.
as <link rel="oo:proves" resource="#fermats-last-theorem">, which
is perfectly legal. An RDFa crawler not knowing OMDoc would extract
the triple <U> oo:proves <#fermats-last-theorem> from that annotation.
From the domain of the oo:proves property, any RDFS reasoner would then
infer that U is an instance of oo:Proof , which is clearly not the case; actually,
this would even lead to a contradiction for an Owlreasoner, as oo:Proof is
disjoint with oo:Document , of which U actually is an instance.

Realizing that the web should not be polluted with such invalid RDF
triples4, we therefore specify that RDFa metadata in OMDoc must only be
used together with correctly placed aboutttributes. A relaxation of this policy
is subject to future additions to the RDFa specification that might allow for
defining parsing rules specific to particular host languages.

Recommended Syntax for RDFa Metadata

I will not cover full RDFa in further detail here; for an introduction,
see [AB08; HHA08]. Instead, I will continue with the recommended syntax
for using metadata: We introduce the elements meta and link as children of

2 The MMT URIs of OMDoc 1.6 will enable additional ways of giving URIs to
OMDoc concepts, but from an RDFa point of view the principle remains the
same.

3

4 See also the “Pedantic Web” initiative [HC09].

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

12.1 General Metadata 109

any metadata block.56 Their semantics is roughly inspired by the namesake
elements that can occur in the head of an XHTML document: meta is a
literal-valued metadata field, whereas link points to another resource by re-
ferring to its URI. Resources with document-local identifiers only, i. e. blank
nodes, can be created using the resource element. The elements are shown in
table 12.1; an example for using them is given in listing 12.1.

Element Attributes Children

meta property content datatype literal text or XML (optional)

link rel rev resource (resource—meta—link)*

resource about typeof (meta—link)*

Table 12.1. Elements of the recommended RDFa syntax for OMDoc metadata

Relevant Metadata Vocabularies

Due to the inherent flexibility of RDFa, any metadata vocabulary can be
used. However, we give particular recommendations for metadata in the
above-mentioned domains of special interest. Using Dublin Core and Cre-
ative Commons metadata with the new RDFa syntax for OMDoc is largely
trivial. Concerning Dublin Core, we recommend using the more modern
DCMI terms vocabulary instead of the DCMES, which is now possible by
way of a simple namespace declaration. While the MARC roles had been
used as annotations of triples with the dc:contributor property in OM-
Doc 1.2, there is a specification of how to use them in RDF, defining
them as sub-properties of dc:contributor [Joh05]. Most Creative Commons
license declarations will become much easier than in OMDoc 1.2, as we
will follow the more recently recommended practice of not always construct-
ing licenses from scratch, but directly linking resources to existing Cre-
ative Commons licenses using the xhv:license property7; for example <link

rel="xhv:license" resource="http://creativecommons.org/licenses/by/3.0/de/">.
It should also be noted that the OMDoc 1.2 syntax allowed for construct-
ing licenses that contradicted the ccREL ontology. For example, it was pos-

5 Actually, the link element has existed before, as a part of OMDoc’s rich text
(RT) module [Koh06b, section 14.6]. However, this usage does not conflict with
its usage as a metadata child.

6 Note that the metadata element does not exist for RDFa processors, as it does
not carry any RDFa attributes. It is merely a means of structuring the OMDoc
syntax.

7 This property from the XHTML vocabulary supersedes the former cc:license
property [Abe+08]. By the implementation of the ccREL ontology, this property
is also a subproperty of dc:license, which in turn is a subproperty of dc:rights.

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

110 12 Metadata

sible to say <cc:permission derivative works="prohibited">, although
cc:DerivativeWorks is not in the range of the property cc:prohibits.8

The OMDoc 1.2 Dublin Core extensions for revision logs were not imme-
diately RDF-compatible. We were able to partly replace them by the revi-
sioning vocabulary of DCMI terms. Listing 12.1 shows the proof of Fermat’s
last theorem once more, now redone using RDFa metadata, and using DCMI
terms for the revision history. Comparing this to listing ??, particularly note
the following features:

• We are able to link to resources, such as FOAFprofiles, that describe
people (creators, contributors, etc.) in further detail.

• More than one predicate can be given per subject and objects. This makes
it convenient to say that a person is both an editor and a publisher of a
document.9

• The complete revision history can be embedded into the document.
• Versions (or persons, or licenses) can also be described (as blank nodes) if

they are only known in this document, i. e. are not globally identifiable by
a URI.

• The DCMI Terms vocabulary allows for modeling the history of revi-
sions more faithfully than the Dublin Core extensions of OMDoc 1.2.
We can use more specific subproperties of dct:date, such as dct:created
or dct:issued . Date can be made really explicit to automated parsers
by declaring a datatype for them; otherwise the parser would have to
know that dct:date and its subproperties usually have an ISO 8601 date
value [BM04], or it would have to apply heuristics. Successive revisions
can be modeled as a linked list via dct:replaces, in addition to referring to
them by dct:hasVersion. We did not model Michael Kohlhase’s digi-
talization of Wiles’s proof as such a replacement, but as a resource that is
based on Wiles’s proof via the dct:requires and dct:source properties.

• The license of this document is a ready-to-use Creative Commons license
that can simply be referenced by its URI. Alternatively, we can construct
it in place.

Compared to OMDoc 1.2, one aspect cannot be expressed with DCMI
Terms: the actions that lead to new revisions. One state-of-the-art ontol-
ogy that offers the desired expressivity is the Ontology Metadata Vocab-
ulary [Har+; Pal+09] for describing ontologies. Instances of omv:Ontology

8 Given that semantic web reasoning usually assumes an open world, one cannot
easily conclude from the absence of the permission to create derivative works
that it is prohibited [Her+08]. Therefore, it is unclear whether one can effectively
prohibit derivative works using the ccREL vocabulary. This Orwellian approach
to restricting thinking about illiberal licenses by restricting language (cf. [Orw49])
may be debatable, but the ccREL ontology currently specifies it like this, so we
have to accept it for the sake of compatibility, or – eventually – model our own
licensing ontology that extends ccREL.

9 marcrel:AUT is only a subproperty of dc:contributor .

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

12.1 General Metadata 111

Listing 12.1. Proof of Fermat’s last theorem, with OMDoc’s new RDFa metadata

<proof xml:id=”fermat−proof” about=”#fermat−proof” for=”#fermats−last−theorem”
xmlns:dct=”http://purl.org/dc/terms/”
xmlns:marcrel=”http://www.loc.gov/loc.terms/relators/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”

5 xmlns:xhv=”http://www.w3.org/1999/xhtml/vocab#”
xmlns:cc=”http://creativecommons.org/ns#”>
<metadata>
<meta property=”dct:title”>Proof of Fermat’s Last Theorem</meta>
<link rel=”dct:creator” resource=”http://dbpedia.org/resource/Pierre de Fermat”/>

10 <link rel=”marcrel:AUT” resource=”http://math.princeton.edu/˜awiles/foaf.rdf#me”/>
<link rel=”marcrel:EDT dct:publisher”
resource=”http://kwarc.info/kohlhase/”/>
<link rel=”dct:hasVersion”>
<resource about=”[:initial]”>

15 <!−− Anonymous resource (bnode). We could also point to a URI by which
the previous version can actually be retrieved from a repository −−>

<link rel=”dct:creator”
resource=”http://dbpedia.org/resource/Pierre de Fermat”/>
<meta property=”dct:created” datatype=”xsd:date”>1637−06−13T00:00:00</meta>

20 </resource>
<resource about=”[:correct]”>
<link rel=”dct:replaces” resource=”[:initial]”/>
<link rel=”dct:creator”
resource=”http://math.princeton.edu/˜awiles/foaf.rdf#me”/>

25 <meta property=”dct:date” datatype=”xsd:date”>1995−05−01T00:00:00</meta>
</resource>
<resource about=”[:digitalized]”>
<link rel=”dct:requires dct:source”
resource=”[:correct]”/>

30 <link rel=”dct:creator”
resource=”http://kwarc.info/kohlhase/”/>
<meta property=”dct:issued” datatype=”xsd:date”>2006−08−28T00:00:00</meta>

</resource>
</link>

35 <link rel=”xhv:license”><!−− actually recommended: directly using
the pre−defined license http://creativecommons.org/licenses/by/3.0/de/,
which is the same as what we are constructing here −−>
<meta property=”cc:jurisdiction” content=”de”/>
<link rel=”cc:permits”>

40 <resource about=”[cc:Reproduction]”/>
<resource about=”[cc:Distribution]”/>
<resource about=”[cc:DerivativeWorks]”/>

</link>
<link rel=”cc:requires”>

45 <resource about=”[cc:Notice]”/>
<resource about=”[cc:Attribution]”/>

</link>
</link>

</metadata>
50 <!−− The actual body of the proof −−>

</proof>

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

112 12 Metadata

can be arranged into a list linked via omv:hasPriorVersion. As an overlay
list to the mere sequence of revisions, a sequence of changes can be given.
An omv:ChangeSpecification connects two ontology versions by its properties
omv:changeFromVersion and omv:changeToVersion and consists of a set of
one or more omv:Changes chained together by omv:hasPreviousChange. A
change has an author (an omv:Person), a date, and a few more properties.
OMV offers a lot of change subclasses specific to RDFS and Owlontologies;
we could easily add change types for mathematical documents, theories, or
statements, e. g. a change type for adding a type declaration to a symbol.

<!−− TODO: THIS IS OBSOLETE; I WILL REWORK IT INTO AN EXAMPLE USING OMV −−>
<link rel=”rev:created by act” href=”[:creation]”/>
<link rel=”rev:current version” href=”[:current]”/>

4 <link rel=”rev:has version”>
<resource about=”[:v1]” typeof=”rev:Revision”>
<link rel=”rev:content” href=”fermats−last−theorem?rev=1”/>
<link rel=”rev:created by act”>
<resource about=”[:creation]” typeof=”chg:Creation”>

9 <link rel=”event:agent” href=”http://dbpedia.org/page/Pierre de Fermat”/>
<dc:date>1637−06−13T00:00:00</dc:date>

</resource>
</link>

</resource>
14 </link>

<!−− revision 2 (Wiles’s proof) left out to save space −−>
<link rel=”rev:has version”>
<resource about=”[:current]” typeof=”rev:Revision”>
<link rel=”rev:content” href=”fermats−last−theorem?rev=3”/>

19 <link rel=”rev:created by act”>
<resource typeof=”chg:Import”>
<link rel=”event:agent” href=”http://kwarc.info/kohlhase/foaf.rdf#me”/>
<dc:date>2006−08−28T00:00:00</dc:date>
<link rel=”rev:prior version” href=”[:v2]”/>

24 </resource>
</link>

</resource>
</link>

Pragmatic Metadata

As the listing in Sect. ?? shows, the new RDFa-based metadata syntax is
much more verbose than the old one of OMDoc 1.2. Therefore, we suggest
two ways of facilitating the annotation: For manual authoring, one can keep
the old, “pragmatic” OMDoc 1.2 syntax and specify a transformation of
such annotations to the new, “strict” RDFa syntax – implementable, e. g., in
XSLT.

also consider STEX as an even more pragmatic metadata syntax .

Respecifying Metadata Inheritance

As I modeled our metadata ontologies in OMDoc, I am now able to extend
it by a formal specification of certain rules that had only informally been
stated in the OMDoc 1.2 specification: for example, that most DC metadata
propagate from document sections down into subsections unless subsections
specify different values, or that any dc:creator of a subsection of a document
becomes a dc:contributor to the whole document.

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

12.2 The Dublin Core Elements (Module DC) 113

12.2 The Dublin Core Elements (Module DC)

In the following we will describe the variant of Dublin Core metadata elements
used in OMDoc10. Here, the metadata element can contain any number of
instances of any Dublin Core elements described below in any order. In fact,
multiple instances of the same element type (multiple dc:creator elements
for example) can be interspersed with other elements without change of mean-
ing. OMDoc extends the Dublin Core framework with a set of roles (from
the MARC relator set [Mar]) on the authorship elements and with a rights
management system based on the Creative Commons Initiative.

Element Attributes Content

Req. Optional

dc:creator xml:id, class, style, role text

dc:contributor xml:id, class, style, role text
hline dc:title xml:lang 〈〈math vernacular〉〉
dc:subject xml:lang 〈〈math vernacular〉〉
dc:description xml:lang 〈〈math vernacular〉〉
dc:publisher xml:id, class, style ANY

dc:date action, who ISO 8601

dc:type fixed: "Dataset" or "Text"

dc:format fixed: "application/omdoc+xml"

dc:identifier scheme ANY

dc:source ANY

dc:language ISO 639

dc:relation ANY

dc:rights ANY

for 〈〈math vernacular〉〉 see Section 14.1

Fig. 12.1. Dublin Core Metadata in OMDoc

The descriptions in this section are adapted from [DUB03a], and aug-
mented for the application in OMDoc where necessary. All these elements
live in the Dublin Core namespace http://purl.org/dc/elements/1.1/, for
which we traditionally use the namespace prefix dc:.

dc:title The title of the element — note that OMDoc metadata can be
specified at multiple levels, not only at the document level, in particular,
the Dublin Core dc:title element can be given to assign a title to a dc:title

theorem, e.g. the “Substitution Value Theorem”.
The dc:title element can contain mathematical vernacular, i.e. the same
content as the CMP defined in Section 14.1. Also like the CMP element, the
dc:title element has an dc:lang attribute that specifies the language of
the content. Multiple dc:title elements inside a metadata element are
assumed to be translations of each other.

10 Note that OMDoc1.2 systematically changes the Dublin Core XML tags to
synchronize with the tag syntax recommended by the Dublin Core Initiative.
The tags were capitalized in OMDoc1.1

http://purl.org/dc/elements/1.1/

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

114 12 Metadata

dc:creator A primary creator or author of the publication. Additional con-
tributors whose contributions are secondary to those listed in dc:creatordc:creator

elements should be named in dc:contributor elements. Documents with
multiple co-authors should provide multiple dc:creator elements, each
containing one author. The order of dc:creator elements is presumed to
define the order in which the creators’ names should be presented.
As markup for names across cultures is still un-standardized, OMDoc
recommends that the content of a dc:creator element consists in a single
name (as it would be presented to the user). The dc:creator element has
an optional attribute dc:id so that it can be cross-referenced and a role

attribute to further classify the concrete contribution to the element. We
will discuss its values in Section 12.3.

dc:contributor A party whose contribution to the publication is secondary
to those named in dc:creator elements. Apart from the significance of
contribution, the semantics of the dc:contributor is identical to thatdc:contributor

of dc:creator, it has the same restriction content and carries the same
attributes plus a dc:lang attribute that specifies the target language in
case the contribution is a translation.

dc:subject This element contains an arbitrary phrase or keyword, the at-
tribute dc:lang is used for the language. Multiple instances of the
dc:subject element are supported per dc:lang for multiple keywords.dc:subject

dc:description A text describing the containing element’s content; the at-
tribute dc:lang is used for the language. As description of mathematical
objects or OMDoc fragments may contain formulae, the content of this
element is of the form “mathematical text” described in Chapter 14. The
dc:description element is only recommended for omdoc elements thatdc:description

do not have a CMP group (see Section 14.1), or if the description is sig-
nificantly shorter than the one in the CMPs (then it can be used as an
abstract).

dc:publisher The entity for making the document available in its present
form, such as a publishing house, a university department, or a corporate
entity. The dc:publisher element only applies if the metadata is a directdc:publisher

child of the root element (omdoc) of a document.
dc:date The date and time a certain action was performed on the element

that contains this. The content is in the format defined by XML Schema
data type dateTime (see [BM04] for a discussion), which is based on the
ISO 8601 norm for dates and times.
Concretely, the format is 〈〈YYYY〉〉-〈〈MM〉〉-〈〈DD〉〉T〈〈hh〉〉:〈〈mm〉〉:〈〈ss〉〉 where
〈〈YYYY〉〉 represents the year, 〈〈MM〉〉 the month, and 〈〈DD〉〉 the day, pre-
ceded by an optional leading “-” sign to indicate a negative number.
If the sign is omitted, “+” is assumed. The letter “T” is the date/time
separator and 〈〈hh〉〉, 〈〈mm〉〉, 〈〈ss〉〉 represent hour, minutes, and seconds
respectively. Additional digits can be used to increase the precision of
fractional seconds if desired, i.e the format 〈〈ss〉〉.〈〈sss. . . 〉〉 with any num-
ber of digits after the decimal point is supported. The dc:date elementdc:date

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

12.2 The Dublin Core Elements (Module DC) 115

has the attributes action and who to specify who did what: The value
of who is a reference to a dc:creator or dc:contributor element and
action is a keyword for the action undertaken. Recommended values in-
clude the short forms updated, created, imported, frozen, review-on,
normed with the obvious meanings. Other actions may be specified by
URIs pointing to documents that explain the action.

dc:type Dublin Core defines a vocabulary for the document types in [DUB03b].
The best fit values for OMDoc are
Dataset defined as “information encoded in a defined structure (for ex-

ample lists, tables, and databases), intended to be useful for direct
machine processing .”

Text defined as “a resource whose content is primarily words for reading.
For example – books, letters, dissertations, poems, newspapers, arti-
cles, archives of mailing lists. Note that facsimiles or images of texts
are still of the genre text.”

Collection defined as “an aggregation of items. The term collection
means that the resource is described as a group; its parts may be sep-
arately described and navigated”.

The more appropriate should be selected for the element that contains
the dc:type. If it consists mainly of formal mathematical formulae, then dc:type

Dataset is better, if it is mainly given as text, then Text should be used.
More specifically, in OMDoc the value Dataset signals that the order of
children in the parent of the metadata is not relevant to the meaning. This
is the case for instance in formal developments of mathematical theories,
such as the specifications in Chapter 18.

dc:format The physical or digital manifestation of the resource. Dublin Core
suggests using MIME types [FB96]. Following [MSLK01] we fix the content
of the dc:format element to be the string application/omdoc+xml as the dc:format

MIME type for OMDoc.
dc:identifier A string or number used to uniquely identify the element.

The dc:identifier element should only be used for public identifiers dc:identifier

like ISBN or ISSN numbers. The numbering scheme can be specified in
the scheme attribute.

dc:source Information regarding a prior resource from which the publication
was derived. We recommend using either a URI or a scientific reference
including identifiers like ISBN numbers for the content of the dc:source dc:source

element.
dc:relation Relation of this document to others. The content model of the

dc:relation element is not specified in the OMDoc format. dc:relation

dc:language If there is a primary language of the document or element,
this can be specified here. The content of the dc:language element must dc:language

be an ISO 639 norm two-letter language specifier, like en =̂ English,
de =̂ German, fr =̂ French, nl =̂ Dutch,

dc:rights Information about rights held in and over the document or ele-
ment content or a reference to such a statement. Typically, a dc:rights dc:rights

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

116 12 Metadata

element will contain a rights management statement, or reference a service
providing such information. dc:rights information often encompasses In-
tellectual Property rights (IPR), Copyright, and various other property
rights. If the dc:rights element is absent (and no dc:rights information
is inherited), no assumptions can be made about the status of these and
other rights with respect to the document or element.
OMDoc supplies specialized elements for the Creative Commons licenses
to support the sharing of mathematical content. We will discuss them in
Section 12.4.

Note that Dublin Core also defines a Coverage element that specifies the place
or time which the publication’s contents addresses. This does not seem appro-
priate for the mathematical content of OMDoc, which is largely independent
of time and geography.

12.3 Roles in Dublin Core Elements

Because the Dublin Core metadata fields for dc:creator and dc:contributor

do not distinguish roles of specific parties (such as author, editor, and illustra-
tor), we will follow the Open eBook specification [Gro99] and use an optional
role attribute for this purpose, which is adapted for OMDoc from the MARC
relator code list [Mar].

aut (author) Use for a person or corporate body chiefly responsible for the
intellectual content of an element. This term may also be used when more
than one person or body bears such responsibility.

ant (scientific/bibliographic antecedent) Use for the author responsible for a
work upon which the element is based.

clb (collaborator) Use for a person or corporate body that takes a limited
part in the elaboration of a work of another author or that brings com-
plements (e.g., appendices, notes) to the work of another author.

edt (editor) Use for a person who prepares a document not primarily his/her
own for publication, such as by elucidating text, adding introductory or
other critical matter, or technically directing an editorial staff.

ths (thesis advisor) Use for the person under whose supervision a degree
candidate develops and presents a thesis, memoir, or text of a dissertation.

trc (transcriber) Use for a person who prepares a handwritten or typewritten
copy from original material, including from dictated or orally recorded
material. This is also the role (on the dc:creator element) for someone
who prepares the OMDoc version of some mathematical content.

trl (translator) Use for a person who renders a text from one language into
another, or from an older form of a language into the modern form. The
target language can be specified by dc:lang.

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

12.4 Managing Rights 117

As OMDoc documents are often used to formalize existing mathematical
texts for use in mechanized reasoning and computation systems, it is some-
times subtle to specify authorship. We will discuss some typical examples to
give a guiding intuition. Listing 12.2 shows metadata for a situation where
editor R gives the sources (e.g. in LATEX) of an element written by author A
to secretary S for conversion into OMDoc format.

Listing 12.2. A Document with Editor (edt) and Transcriber (trc)

<metadata>
<dc:title>The Joy of Jordan C∗ Triples</dc:title>

3 <dc:creator role=”aut”>A</dc:creator>
<dc:contributor role=”edt”>R</dc:contributor>
<dc:contributor role=”trc”>S</dc:contributor>

</metadata>

In Listing 12.3 researcher R formalizes the theory of natural numbers
following the standard textbook B (written by author A). In this case we
recommend the first declaration for the whole document and the second one
for specific math elements, e.g. a definition inspired by or adapted from one
in book B.

Listing 12.3. A Formalization with Scientific Antecedent (ant)

<omdoc xml:id=”NNat” version=”1.3” xmlns:dc=”http://purl.org/dc/elements/1.1/”>
<metadata><dc:title>Natural Numbers</dc:title></metadata>
. . .

4 <theory xml:id=”NNat.thy”>
<metadata>
<dc:title>Natural Numbers</dc:title>
<dc:creator role=”aut”>R</dc:creator>
<dc:contributor role=”ant”>A</dc:contributor>

9 <dc:source>B</dc:source>
</metadata>
. . .

</theory>
. . .

14 </omdoc>

12.4 Managing Rights by Creative Commons Licenses
(Module CC)

The Dublin Core vocabulary provides the dc:rights element for informa-
tion about rights held in and over the document or element content, but
leaves the content model unspecified. While it is legally sufficient to describe
this information in natural language, a content markup format like OMDoc
should support a machine-understandable format. As one of the purposes of
the OMDoc format is to support the sharing and re-use of mathematical
content, OMDoc provides markup for rights management via the Creative
Commons (CC) licenses. Digital rights management (DRM) and licensing of
intellectual property has become a hotly debated topic in the last years. We
feel that the Creative Commons licenses that encourage sharing of content

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

118 12 Metadata

and enhance the (scientific) public domain while giving authors some control
over their intellectual property establish a good middle ground. Specifying
rights is important, since in the absence of an explicit or implicit (via in-
heritance) dc:rights element no assumptions can be made about the status
of the document or fragment. Therefore OMDoc adds another child to the
metadata element. This cc:license element is a symbolic representation ofcc:license

the Creative Commons legal framework, adapted to the OMDoc setting: The
Creative Commons Metadata Initiative specifies various ways of embedding
CC metadata into documents and electronic artefacts like pictures or MP3
recordings. As OMDoc is a source format, from which various presentation
formats are generated, we need a content representation of the CC metadata
from which the end-user representations for the respective formats can be
generated.

Element Attributes Content

Req. Optional

cc:license jurisdiction permissions, prohibitions, requirements

cc:permissions reproduction,
distribution,
derivative works

EMPTY

cc:prohibitions commercial use EMPTY

cc:requirements notice,
copyleft,
attribution

EMPTY

Fig. 12.2. The OMDoc Elements for Creative Commons Metadata

The Creative Commons Metadata Initiative [Cre08] divides the license
characteristics in three types: permissions, prohibitions and require-
ments, which are represented by the three elements, which can occur as
children of the cc:license element. The cc:license element has two op-
tional argument:

jurisdiction which allows to specify the country in whose jurisdiction the
license will be enforced11. It’s value is one of the top-level domain codes of
the “Internet Assigned Names Authority (IANA)” [Ian]. If this attribute
is absent, then the original US version of the license is assumed.

version which allows to specify the version of the license. If the attribute is
not present, then the newest released version is assumed (version 2.0 at
the time of writing this book)

The following three empty elements can occur as children of the cc:license
element; their attribute specify the rights bestowed on the user by the license.

11 The Creative Commons Initiative is currently in the process of adapting their
licenses to jurisdictions other than the USA, where the licenses originated.
See [Urla] for details and to check for progress.

dc.tex 8685 2010-08-23 08:55:17Z kohlhase

12.4 Managing Rights 119

All these elements have the namespace http://creativecommons.org/ns,
for which we traditionally use the namespace prefix cc:.

• cc:permissions are the rights granted by the license, to model them cc:permissions

the element has three attributes, which can have the values permitted

(the permission is granted by the license) and prohibited (the permission
isn’t):

Attribute Permission Default

reproduction the work may be reproduced permitted

distribution the work may be distributed, publicly displayed,
and publicly performed

permitted

derivative works derivative works may be created and reproduced permitted

• cc:prohibitions are the things the license prohibits. cc:prohibitions

Attribute Prohibition Default

commercial use stating that rights may be exercised for commer-
cial purposes.

permitted

• cc:requirements are restrictions imposed by the license. cc:requirements

Attribute Requirement Default

notice copyright and license notices must be kept intact required

attribution credit must be given to copyright holder and/or au-
thor

required

copyleft derivative works, if authorized, must be licensed un-
der the same terms as the work

required

This vocabulary is directly modeled after the Creative Commons Meta-
data [Urlc] which defines the meaning, and provides an RDF [LS99] based
implementation. As we have discussed in Section 11.3, OMDoc follows an
approach that specifies metadata in the document itself; thus we have pro-
vided the elements described here. In contrast to many other situations in
OMDoc, the rights model is not extensible, since only the current model is
backed by legal licenses provided by the creative commons initiative.

Listing 12.4 specifies a license grant using the Creative Commons “share-
alike” license: The copyright is retained by the author, who licenses the content
to the world, allowing others to reproduce and distribute it without restric-
tions as long as the copyright notice is kept intact. Furthermore, it allows
others to create derivative works based on the content as long as it attributes
the original work of the author and licenses the derived work under the iden-
tical license (i.e. the Creative Commons “share-alike” as well).

Listing 12.4. A Creative Commons License

1 <metadata>
<dc:rights>Copyright (c) 2004 Michael Kohlhase</dc:rights>
<license jurisdiction =”de” xmlns=”http://creativecommons.org/ns”>
<permissions reproduction=”permitted” distribution=”permitted”

derivative works=”permitted”/>
6 <prohibitions commercial use=”permitted”/>

<requirements notice=”required” copyleft=”required” attribution=”required”/>
</license>

</metadata>

http://creativecommons.org/ns

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

13

Mathematical Objects (Module MOBJ)

A distinguishing feature of mathematics is its ability to represent and ma-
nipulate ideas and objects in symbolic form as mathematical formulae. OM-
Doc uses the OpenMath and Content-MathML formats to represent math-
ematical formulae and objects. Therefore, the OpenMath standard [Bus+04]
and the MathML 2.0 recommendation (second edition) [Aus+03a] are part
of this specification. We will review OpenMath objects (top-level element
om:OMOBJ) in Section 13.1 and Content-MathML (top-level element m:math)
in Section 13.2, and specify an OMDoc element for entering mathematical
formulae (element legacy) in Section 13.5.

Element Attributes Content

Required Optional

OMOBJ id class, style See Figure 13.2
m:math id, xlink:href See Figure 13.5
legacy format xml:id, formalism #PCDATA

Fig. 13.1. Mathematical Objects in OMDoc

The recapitulation in the next two sections is not normative, please consult
Section 2.1 for a general introduction and history and the OpenMath stan-
dard and the MathML 2.0 Recommendation for details and clarifications.

13.1 OpenMath

OpenMath is a markup language for mathematical formulae that concen-
trates on the meaning of formulae building on an extremely simple kernel
(markup primitive for syntactical forms of content formulae), and adds an
extension mechanism for mathematical concepts, the content dictionaries.
These are machine-readable documents that define the meaning of mathemat-
ical concepts expressed by OpenMath symbols. The current released version

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

122 13 Mathematical Objects

of the OpenMath standard is OpenMath2, which incorporates many of the
experiences of the last years, particularly with embedding OpenMath into
the OMDoc format.

We will only review the XML encoding of OpenMath objects here, since
it is most relevant to the OMDoc format. All elements of the XML encoding
live in the namespace http://www.openmath.org/OpenMath, for which we
traditionally use the namespace prefix om:.

Element Attributes Content

Required Optional

OMOBJ id, cdbase, class, style 〈〈OMel〉〉?
OMS cd, name id, cdbase, class, style EMPTY

OMV name id, class, style EMPTY

OMA id, cdbase, class, style 〈〈OMel〉〉*
OMBIND id, cdbase, class, style 〈〈OMel〉〉,OMBVAR,〈〈OMel〉〉
OMBVAR id, class, style (OMV | OMATTR)+

OMFOREIGN id, cdbase, class, style ANY

OMATTR id, cdbase, class, style 〈〈OMel〉〉
OMATP id, cdbase, class, style (OMS, (〈〈OMel〉〉|OMFOREIGN))+
OMI id, class, style [0-9]*

OMB id, class, style #PCDATA

OMF id, class, style, dec, hex #PCDATA

OME id, class, style 〈〈OMel〉〉?
OMR href 〈〈OMel〉〉?
where 〈〈OMel〉〉 is (OMS|OMV|OMI|OMB|OMSTR|OMF|OMA|OMBIND|OME|OMATTR)

Fig. 13.2. OpenMath Objects in OMDoc

13.1.1 The Representational Core of OpenMath

The central construct of the OpenMath is that of an OpenMath object
(represented by the om:OMOBJ element in the XML encoding), which has aom:OMOBJ

tree-like representation made up of applications (om:OMA), binding structures
om:OMA

(om:OMBIND using om:OMBVAR to tag bound variables), variables (om:OMV), and
om:OMV symbols (om:OMS).

om:OMS
The om:OMA element contains representations of the function and its argu-

ment in “prefix-” or “Polish notation”, i.e. the first child is the representation
of the function and all the subsequent ones are representations of the argu-
ments in order.

Objects and concepts that carry meaning independent of the local context
(they are called symbols in OpenMath) are represented as om:OMS elements,
where the value of the name attribute gives the name of the symbol. The cd

attribute specifies the relevant content dictionary, a document that defines the
meaning of a collection of symbols including the one referenced by the om:OMS.
This document can either be an original OpenMath content dictionary or an
OMDoc document that serves as one (see Subsection 15.6.2 for a discussion).
The optional cdbase on an om:OMS element contains a URI that can be used

http://www.openmath.org/OpenMath

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

13.1 OpenMath 123

to disambiguate the content dictionary. Alternatively, the cdbase attribute
can be given on an OpenMath element that is a parent to the om:OMS in
question: The om:OMS inherits the cdbase of the nearest ancestor (inducing
the usual XML scoping rules for declarations).

The OpenMath2 standard proposes the following mechanism for deter-
mining a canonical identifying URI for the symbol declaration referenced
by an OpenMath symbol of the form <OMS cd="foo" name="bar"/> with
the cdbase-value e.g. http://www.openmath.org/cd: it is the URI reference
http://www.openmath.org/cd/foo#bar, which by convention identifies an
omcd:CDDefinition element with a child omcd:Name whose value is bar in
a content dictionary resource http://www.openmath.org/cd/foo.ocd (see
Subsection 2.1.2 for a very brief introduction to OpenMath content dictio-
naries).

Variables are represented as om:OMV element. As variables do not carry
a meaning independent of their local content, om:OMV only carries a name

attribute (see Section 13.4 for further discussion).
For instance, the formula sin(x) would be modeled as an application of

the sin function (which in turn is represented as an OpenMath symbol) to
a variable:

<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
<OMA cdbase=”http://www.openmath.org/cd”>
<OMS cd=”transc1” name=”sin”/>
<OMV name=”x”/>

</OMA>
</OMOBJ>

In our case, the function sin is represented as an om:OMS element with name
sin from the content dictionary transc1. The om:OMS inherits the cdbase-
value http://www.openmath.org/cd, which shows that it comes from the
OpenMath standard collection of content dictionaries from the om:OMA ele-
ment above. The variable x is represented in an om:OMV element with name-
value x.

For the om:OMBIND element consider the following representation of the om:OMBIND

formula ∀x.sin(x) ≤ π.

<OMOBJ cdbase=”http://www.openmath.org/cd”>
<OMBIND>
<OMS cd=”quant1” name=”forall”/>
<OMBVAR><OMV name=”x”/></OMBVAR>
<OMA>
<OMS cd=”arith1” name=”leq”/>
<OMA><OMS cd=”transc1” name=”sin”/><OMV name=”x”/></OMA>
<OMS cd=”nums1” name=”pi”/>

</OMA>
</OMBIND>

</OMOBJ>

The om:OMBIND element has exactly three children, the first one is a “binding
operator”1 — in this case the universal quantifier, the second one is a list of

1 The binding operator must be a symbol which either has the role binder assigned
by the OpenMath content dictionary (see [Bus+04] for details) or the symbol

http://www.openmath.org/cd
http://www.openmath.org/cd/foo#bar
http://www.openmath.org/cd/foo.ocd
http://www.openmath.org/cd

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

124 13 Mathematical Objects

bound variables that must be encapsulated in an om:OMBVAR element, and theom:OMBVAR

third is the body of the binding object, in which the bound variables can be
used. OpenMath uses the om:OMBIND element to unambiguously specify the
scope of bound variables in expressions: the bound variables in the om:OMBVAR
element can be used only inside the mother om:OMBIND element, moreover they
can be systematically renamed without changing the meaning of the binding
expression. As a consequence, bound variables in the scope of an om:OMBIND

are distinct as OpenMath objects from any variables outside it, even if they
share a name.

OpenMath offers an element for annotating (parts of) formulae with ex-
ternal information (e.g. MathML or LATEX presentation): the om:OMATTRom:OMATTR

element that pairs an OpenMath object with an attribute-value list. To
annotate an OpenMath object, it is embedded as the second child in an
om:OMATTR element. The attribute-value list is specified by children of the
preceding om:OMATP (Attribute value Pair) element, which has an even num-om:OMATP

ber of children: children at odd positions must be om:OMS (specifying the
attribute, they are called keys or features)2, and children at even positions
are the values of the keys specified by their immediately preceding siblings.
In the OpenMath fragment in Listing 13.1 the expression x + π is anno-
tated with an alternative representation and a color. Listing 13.4 has a more
complex one involving types.

Listing 13.1. Associating Alternate Representations with an OpenMath Object

<OMATTR>
<OMATP>
<OMS cd=”alt−rep” name=”ascii”/>
<OMSTR>(x+1)</OMSTR>
<OMS cd=”alt−rep” name=”svg”/>
<OMFOREIGN encoding=”application/svg+xml”>
<svg xmlns=’http://www.w3.org/2000/svg’>. . .</svg>

</OMFOREIGN>
<OMS cd=”pres” name=”color”/>
<OMS cd=”pres” name=”red”/>

</OMATP>
<OMA>
<OMS cd=”arith1” name=”plus”/>
<OMV name=”x”/>
<OMS cd=”nums1” name=”pi”/>

</OMA>
</OMATTR>

A special application of the om:OMATTR element is associating non-Open-
Math objects with OpenMath objects. For this, OpenMath2 allows to use

declaration in the OMDoc content dictionary must have the value binder for
the attribute role (see Subsection 15.2.1).

2 There are two kinds of keys in OpenMath distinguished according to the role

value on their symbol declaration in the contentdictionary: attribution specifies
that this attribute value pair may be ignored by an application, so it should
be used for information which does not change the meaning of the attributed
OpenMath object. The role is used for keys that modify the meaning of the
attributed OpenMath object and thus cannot be ignored by an application.

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

13.1 OpenMath 125

an om:OMFOREIGN element in the even positions of an om:OMATP. This element om:OMFOREIGN

can be used to hold arbitrary XML content (in our example above SVG:
Scalable Vector Graphics [JFF02]), its required encoding attribute specifies
the format of the content. We recommend a MIME type [FB96] (see Section ??
for an application).

13.1.2 Programming Extensions of OpenMath Objects

For representing objects in computer algebra systems OpenMath also pro-
vides other basic data types: om:OMI for integers, om:OMB for byte arrays, om:OMI

om:OMB
om:OMSTR for strings, and om:OMF for floating point numbers. These do not

om:OMSTR

om:OMF

play a large role in the context of OMDoc, so we refer the reader to the
OpenMath standard [Bus+04] for details.

The om:OME element is used for in-place error markup in OpenMath ob-

om:OME

jects, it can be used almost everywhere in OpenMath elements. It has two
children; the first one is an error operator3, i.e. an OpenMath symbol that
specifies the kind of error, and the second one is the faulty OpenMath ob-
ject fragment. Note that since the whole object must be a valid OpenMath
object, the second child must be a well-formed OpenMath object fragment.
As a consequence, the om:OME element can only be used for “semantic errors”
like non-existing content dictionaries, out-of-bounds errors, etc. XML-well-
formedness and DTD-validity errors will have to be handled by the XML
tools involved. In the following example, we have marked up two errors in a
faulty representation of sin(π). The outer error flags an arity violation (the
function sin only allows one argument), and the inner one flags the typo in
the representation of the constant π (we used the name po instead of pi).

<OME>
<OMS cd=”type−error” name=”arity−violation”/>
<OMA>
<OMS cd=”transc1” name=”sin”/>
<OME>
<OMS cd=”error” name=”unexpected symbol”/>
<OMS cd=”nums1” name=”po”/>

</OME>
<OMV name=”x”/>

</OMA>
</OME>

As we can see in this example, errors can be nested to encode multiple faults
found by an OpenMath application.

13.1.3 Structure Sharing in OpenMath

As we have seen above, OpenMath objects are essentially trees, where the
leaves are symbols or variables. In many applications mathematical objects

3 An error operator is like a binding operator in footnote 1, only the symbol has
role error.

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

126 13 Mathematical Objects

can grow to be very large, so that more space-efficient representations are
needed. Therefore, OpenMath2 supports structure sharing4 in OpenMath
objects. In Figure 13.3 we have contrasted the tree representation of the object
1+1+1+1+1+1+1+1 with the structure-shared one, which represents the
formula as a directed acyclic graph (DAG). As any DAG can be exploded into
a tree by recursively copying all sub-graphs that have more than one incoming
graph edge, DAGs can conserve space by structure sharing. In fact the tree
on the left in Figure 13.3 is exponentially larger than the corresponding DAG
on the right.

·

d

·

1 1 1 1 1 1 1 1

+ + + +

+ +

+

1

+

+

+

Tree DAG

2d − 1 nodes d nodes

Fig. 13.3. Structure Sharing by Directed Acyclic Graphs

To support DAG structures, OpenMath2 provides the (optional) at-
tribute id on all OpenMath objects and an element om:OMR5 for the purposeom:OMR

of cross-referencing. The om:OMR element is empty and has the required at-
tribute href; The OpenMath element represented by this om:OMR element
is a copy of the OpenMath element pointed to in the href attribute. Note
that the representation of the om:OMR element is structurally equal, but not
identical to the element it points to.

Using the om:OMR element, we can represent the OpenMath objects in
Figure 13.3 as the XML representations in Figure 13.4.

4 Structure sharing is a well-known technique in computer science that tries to gain
space efficiency in algorithms by re-using data structures that have already been
created by pointing to them rather than copying.

5 OpenMath1 and OMDoc1.0 did now know structure sharing, OMDoc1.1
added xref attributes to the OpenMath elements om:OMOBJ, om:OMA, om:OMBIND
and om:OMATTR instead of om:OMR elements. This usage is deprecated in OM-
Doc1.2, in favor of the om:OMR-based solution from the OpenMath2 standard.
Obviously, both representations are equivalent, and a transformation from xref-
based mechanism to the om:OMR-based one is immediate.

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

13.1 OpenMath 127

Shared Exploded

<OMOBJ>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMA id=”t1”>
<OMS cd=”nat” name=”plus”/>
<OMA id=”t11”>
<OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMI>1</OMI>

</OMA>
<OMR href=”#t11”/>

</OMA>
<OMR href=”#t1”/>

</OMA>
</OMOBJ>

<OMOBJ>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMI>1</OMI>

</OMA>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMI>1</OMI>

</OMA>
</OMA>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMI>1</OMI>

</OMA>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMI>1</OMI>

</OMA>
</OMA>

</OMA>
</OMOBJ>

Fig. 13.4. The OpenMath Objects from Figure 13.3 in XML Encoding

To ensure that the XML representations actually correspond to directed
acyclic graphs, the occurrences of the om:OMR must obey the global acyclic-
ity constraint below, where we say that an OpenMath element dominates
all its children and all elements they dominate; The om:OMR also dominates
its target6, i.e. the element that carries the id attribute pointed to by the
href attribute. For instance, in the representation in Figure 13.4 the om:OMA

element with xml:id="t1" and also the second om:OMA element dominate the
om:OMA element with xml:id="t11".

OpenMath Acyclicity Constraint:
An OpenMath element may not dominate itself.

Listing 13.2. A Simple Cycle

<OMOBJ>
<OMA id=”foo”>
<OMS cd=”nat” name=”divide”/>
<OMI>1</OMI>
<OMA><OMS cd=”nat” name=”plus”/>

6 The target of an OpenMath element with an id attribute is defined analogously

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

128 13 Mathematical Objects

<OMI>1</OMI>
<OMR href=”#foo”/>

</OMA>
</OMA>

</OMOBJ>

In Listing 13.2 the om:OMA element with xml:id="foo" dominates its third
child, which dominates the om:OMR with href="foo", which dominates its
target: the om:OMA element with xml:id="foo". So by transitivity, this ele-
ment dominates itself, and by the acyclicity constraint, it is not the XML
representation of an OpenMath object. Even though it could be given the
interpretation of the continued fraction

1

1 + 1
1+···

this would correspond to an infinite tree of applications, which is not admit-
ted by the OpenMath standard. Note that the acyclicity constraint is not
restricted to such simple cases, as the example in Listing 13.3 shows. Here,
the om:OMA with xml:id="bar" dominates its third child, the om:OMR element
with href="baz", which dominates its target om:OMA with xml:id="baz",
which in turn dominates its third child, the om:OMR with href="bar", this
finally dominates its target, the original om:OMA element with xml:id="bar".
So again, this pair of OpenMath objects violates the acyclicity constraint
and is not the XML encoding of an OpenMath object.

Listing 13.3. A Cycle of Order Two

<OMOBJ> <OMOBJ>
<OMA id=”bar”> <OMA id=”baz”>
<OMS cd=”nat” name=”plus”/> <OMS cd=”nat” name=”plus”/>
<OMI>1</OMI> <OMI>1</OMI>
<OMR href=”#baz”/> <OMR href=”#bar”/>

</OMA> </OMA>
</OMOBJ> </OMOBJ>

13.2 Content MathML

Content-MathML is a content markup format that represents the abstract
structure of formulae in trees of logical sub-expressions much like OpenMath.
However, in contrast to that, Content-MathML provides a lot of primitive to-
kens and constructor elements for the K-14 fragment of mathematics (Kinder-
garten to 14th grade (i.e. undergraduate college level)).

The current released version of the MathML recommendation is the
second edition of MathML 2.0 [Aus+03a], a maintenance release for the
MathML 2.0 recommendation [Aus+03b] that cleans up many semantic
issues in the content MathML part. We will now review those parts of
MathML 2.0 that are relevant to OMDoc; for the full story see [Aus+03a].

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

13.2 Content MathML 129

Even though OMDoc allows full Content-MathML, we will advocate
the use of the Content-MathML fragment described in this section, which is
largely isomorphic to OpenMath (see Subsection 13.2.2 for a discussion).

Element Attributes Content

Required Optional

m:math id, xlink:href 〈〈CMel〉〉+
m:apply id, xlink:href m:bvar?,〈〈CMel〉〉*
m:csymbol definitionURL id, xlink:href m:EMPTY

m:ci id, xlink:href #PCDATA

m:cn id, xlink:href ([0-9]|,|.)(*|e([0-9]|,|.)*)?

m:bvar id, xlink:href m:ci|m:semantics

m:semantics id, xlink:href,
definitionURL

〈〈CMel〉〉,(m:annotation |
m:annotation-xml)*

m:annotation definitionURL,
encoding

#PCDATA

m:annotation-xml definitionURL,
encoding

ANY

where 〈〈CMel〉〉 is m:apply|m:csymbol|m:ci|m:cn|m:semantics

Fig. 13.5. Content-MathML in OMDoc

13.2.1 The Representational Core of Content-MathML

The top-level element of MathML is the m:math7 element, see Figure 13.7 for m:math

an example. Like OpenMath, Content-MathML organizes the mathematical
objects into a functional tree. The basic objects (MathML calls them token
elements) are

identifiers (element m:ci) corresponding to variables. The content of the m:ci

m:ci element is arbitrary Presentation-MathML, used as the name of
the identifier.

numbers (element m:cn) for number expressions. The attribute type can be m:cn

used to specify the mathematical type of the number, e.g. complex, real,
or integer. The content of the m:cn element is interpreted as the value
of the number expression.

symbols (element m:csymbol) for arbitrary symbols. Their meaning is de- m:csymbol

termined by a definitionURL attribute that is a URI reference that
points to a symbol declaration in a defining document. The content of
the m:csymbol element is a Presentation-MathML representation that
used to depict the symbol.

7 For DTD validation OMDoc uses the namespace prefix “m:” for MathML el-
ements, since the OMDoc DTD needs to include the MathML DTD with an
explicit namespace prefix, as both MathML and OMDoc have a selector ele-
ment that would clash otherwise (DTDs are not namespace-aware).

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

130 13 Mathematical Objects

Apart from these generic elements, Content-MathML provides a set of about
80 empty content elements that stand for objects, functions, relations, and
constructors from various basic mathematic fields.

The m:apply element does double duty in Content-MathML: it is notm:apply

only used to mark up applications, but also represents binding structures if
it has an m:bvar child; see Figure 13.7 below for a use case in a universalm:bvar

quantifier.
The m:semantics element provides a way to annotate Content-MathMLm:semantics

elements with arbitrary information. The first child of the m:semantics ele-
ment is annotated with the information in the m:annotation-xml (for XML-m:annotation-xml

based information) and m:annotation (for other information) elements that
m:annotation

follow it. These elements carry definitionURL attributes that point to a “def-
inition” of the kind of information provided by them. The optional encoding
is a string that describes the format of the content.

13.2.2 OpenMath vs. Content MathML

OpenMath and MathML are well-integrated; there are semantics-preserving
converters between the two formats. MathML supports the m:semantics el-
ement, that can be used to annotate MathML presentations of mathematical
objects with their OpenMath encoding. Analogously, OpenMath supports
the presentation symbol in the om:OMATTR element, that can be used for an-
notating with MathML presentation. OpenMath is the designated extension
mechanism for MathML beyond K-14 mathematics: Any symbol outside can
be encoded as a m:csymbol element, whose definitionURL attribute points
to the OpenMath CD that defines the meaning of the symbol. Moreover all
of the MathML content elements have counterparts in the OpenMath core
content dictionaries [Urle]. For the purposes of OMDoc, we will consider the
various representations following four representations of a content symbol in
Figure 13.6 as equivalent. Note that the URI in the definitionURL attribute
does not point to a specific file, but rather uses its base name for the reference.
This allows a MathML (or OMDoc) application to select the format most
suitable for it.

In Figure 13.7 we have put the OpenMath and content MathML encod-
ing of the law of commutativity for the real numbers side by side to show the
similarities and differences. There is an obvious line-by-line similarity for the
tree constructors and token elements. The main difference is the treatment of
types and variables.

13.3 Representing Types in Content-MathML and
OpenMath

Types are representations of certain simple sets that are treated specially in
(human or mechanical) reasoning processes. In typed representations vari-

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

13.3 Representing Types in Content-MathML and OpenMath 131

<m:plus/>

Content-MathML token element

<m:plus definitionURL="http://www.openmath.org/cd/arith1#plus"/>

Content-MathML token element with explicit pointer

<m:csymbol definitionURL="http://www.openmath.org/cd/arith1#plus"/>

empty Content-MathML m:csymbol

<m:csymbol definitionURL="http://www.openmath.org/cd/arith1#plus">

<m:mo>+</m:mo>

</m:csymbol>

Content-MathML m:csymbol with presentation

<OMS cdbase="http://www.openmath.org/cd" cd="arith1" name="plus"/>

OpenMath symbol

Fig. 13.6. Four equivalent Representations of a Content Symbol

ables and constants are usually associated with types to support more guided
reasoning processes. Types are structurally like mathematical objects (i.e. ar-
bitrary complex trees). Since types are ubiquitous in representations of math-
ematics, we will briefly review the best practices for representing them in
OMDoc.

MathML supplies the type attribute to specify types that can be taken
from an open-ended list of type names. OpenMath uses the om:OMATTR ele-
ment to associate a type (in this case the set of real numbers as specified in
the setname1 content dictionary) with the variable, using the feature symbol
type from the sts content dictionary. This mechanism is much more heavy-
weight in our special case, but also more expressive: it allows to use arbitrary
content expressions for types, which is necessary if we were to assign e.g. the
type (R→ R)→ (R→ R) for functionals on the real numbers. In such cases,
the second edition of the MathML2 Recommendation advises a construc-
tion using the m:semantics element (see [KD03b] for details). Listings 13.4
and 13.5 show the realizations of a quantification over a variable of functional
type in both formats.

Listing 13.4. A Complex Type in OpenMath

<OMOBJ>
<OMBIND>
<OMS cd=”quant1” name=”forall”/>
<OMBVAR>

5 <OMATTR>
<OMATP>
<OMS cd=”sts” name=”type”/>
<OMA><OMS cd=”sts” name=”mapsto”/>
<OMA><OMS cd=”sts” name=”mapsto”/>

10 <OMS cd=”setname1” name=”R”/>
<OMS cd=”setname1” name=”R”/>

</OMA>
<OMA><OMS cd=”sts” name=”mapsto”/>
<OMS cd=”setname1” name=”R”/>

15 <OMS cd=”setname1” name=”R”/>

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

132 13 Mathematical Objects

OpenMath MathML

<OMOBJ>
<OMBIND>
<OMS cd=”quant1” name=”forall”/>
<OMBVAR>
<OMATTR>
<OMATP>
<OMS cd=”sts” name=”type”/>
<OMS cd=”setname1” name=”R”/>
</OMATP>
<OMV name=”a”/>

</OMATTR>
<OMATTR>
<OMATP>
<OMS cd=”sts” name=”type”/>
<OMS cd=”setname1” name=”R”/>
</OMATP>

<OMV name=”b”/>
</OMATTR>
</OMBVAR>
<OMA>
<OMS cd=”relation” name=”eq”/>
<OMA>
<OMS cd=”arith1” name=”plus”/>
<OMV name=”a”/>
<OMV name=”b”/>
</OMA>
<OMA>
<OMS cd=”arith1” name=”plus”/>
<OMV name=”b”/>
<OMV name=”a”/>
</OMA>

</OMA>
</OMBIND>
</OMOBJ>

<m:math>
<m:apply>
<m:forall/>
<m:bvar>

<m:ci type=”real”>a</m:ci>
</m:bvar>

<m:bvar>
<m:ci type=”real”>b</m:ci>

</m:bvar>
<m:apply>
<m:eq/>
<m:apply>
<m:plus/>
<m:ci type=”real”>a</m:ci>
<m:ci type=”real”>b</m:ci>
</m:apply>
<m:apply>
<m:plus/>
<m:ci type=”real”>b</m:ci>
<m:ci type=”real”>a</m:ci>
</m:apply>
</m:apply>
</m:apply>
</m:math>

Fig. 13.7. OpenMath vs. C-MathML for Commutativity

</OMA>
</OMA>

</OMATP>
<OMV name=”F”/>

20 </OMATTR>
</OMBVAR>
. . .

</OMBIND>
</OMOBJ>

Note that we have essentially used the same URI (to the sts content
dictionary) to identify the fact that the annotation to the variable is a type
(in a particular type system).

Listing 13.5. A Complex Type in Content-MathML

1 <m:math>
<m:apply>
<m:forall/>
<m:bvar>
<m:semantics>

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

13.4 Semantics of Variables 133

6 <m:ci>F</m:ci>
<m:annotation−xml definitionURL=”http://www.openmath.org/cd/sts#type”>
<m:apply>
<m:csymbol definitionURL=”http://www.openmath.org/cd/sts#mapsto”/>
<m:apply>

11 <m:csymbol definitionURL=”http://www.openmath.org/cd/sts#mapsto”/>
<m:csymbol definitionURL=”http://www.openmath.org/cd/setname1#real”/>
<m:csymbol definitionURL=”http://www.openmath.org/cd/setname1#real”/>

</m:apply>
<m:apply>

16 <m:csymbol definitionURL=”http://www.openmath.org/cd/sts#mapsto”/>
<m:csymbol definitionURL=”http://www.openmath.org/cd/setname1#real”/>
<m:csymbol definitionURL=”http://www.openmath.org/cd/setname1#real”/>

</m:apply>
</m:apply>

21 </m:annotation−xml>
</m:semantics>

</m:bvar>
. . .

</m:apply>
26 </m:math>

13.4 The Semantics of Variables in OpenMath and
Content-MathML

A more subtle, but nonetheless crucial difference between OpenMath and
MathML is the handling of variables, symbols, their names, and equal-
ity conditions. OpenMath uses the name attribute to identify a variable
or symbol, and delegates the presentation of its name to other methods
such as style sheets. As a consequence, the elements om:OMS and om:OMV

are empty, and we have to understand the value of the name attribute as
a pointer to a defining occurrence. In case of symbols, this is the sym-
bol declaration in the content dictionary identified in the cd attribute. A
symbol <OMS cd="〈〈cd1〉〉" name="〈〈name1〉〉"/> is equal to <OMS cd="〈〈cd2〉〉"
name="〈〈name2〉〉"/>, iff 〈〈cd1〉〉=〈〈cd2〉〉 and 〈〈name1〉〉=〈〈name2〉〉 as XML sim-
ple names. In case of variables this is more difficult: if the variable is bound by
an om:OMBIND element8, then we interpret all the variables <OMV name="x"/>

in the om:OMBIND element as equal and different from any variables <OMV

name="x"/> outside. In fact the OpenMath standard states that bound vari-
ables can be renamed without changing the object (α-conversion). If <OMV

name="x"/> is not bound, then the scope of the variable cannot be reliably
defined; so equality with other occurrences of the variable <OMV name="x"/>

becomes an ill-defined problem. We therefore discourage the use of unbound
variables in OMDoc; they are very simple to avoid by using symbols instead,
introducing suitable theories if necessary (see Section 15.6).

8 We say that an om:OMBIND element binds an OpenMath variable <OMV

name="x"/>, iff this om:OMBIND element is the nearest one, such that <OMV

name="x"/> occurs in (second child of the om:OMATTR element in) the om:OMBVAR

child (this is the defining occurrence of <OMV name="x"/> here).

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

134 13 Mathematical Objects

MathML goes a different route: the m:csymbol and m:ci elements have
content that is Presentation-MathML, which is used for the presentation of
the variable or symbol name.9 While this gives us a much better handle on pre-
sentation of objects with variables than OpenMath (where we are basically
forced to make due with the ASCII10 representation of the variable name), the
question of scope and equality becomes much more difficult: Are two variables
(semantically) the same, even if they have different colors, sizes, or font fam-
ilies? Again, for symbols the situation is simpler, since the definitionURL

attribute on the m:csymbol element establishes a global identity criterion
(two symbols are equal, iff they have the same definitionURL value (as URI
strings; see [BLFM98]).) The second edition of the MathML standard adopts
the same solution for bound variables: it recommends to annotate the m:bvar

elements that declare the bound variable with an id attribute and use the
definitionURL attribute on the bound occurrences of the m:ci element to
point to those. The following example is taken from [KD03a], which has more
details.

<m:lambda>
<m:bvar><m:ci xml:id=”the−boundvar”>complex presentation</m:ci></m:bvar>
<m:apply>

4 <m:plus/>
<m:ci definitionURL=”#the−boundvar”>complex presentation</m:ci>
<m:ci definitionURL=”#the−boundvar”>complex presentation</m:ci>

</m:apply>
</m:lambda>

For presentation in MathML, this gives us the best of both approaches,
the m:ci content can be used, and the pointer gives a simple semantic equiv-
alence criterion. For presenting OpenMath and Content-MathML in other
formats OMDoc makes use of the infrastructure introduced in module PRES;
see Section ?? for a discussion.

13.5 Legacy Representation for Migration

Sometimes, OMDoc is used as a migration format from legacy texts (see
Chapter 4 for an example). In such documents it can be too much effort to
convert all mathematical objects and formulae into OpenMath or Content-
MathML form. For this situation OMDoc provides the legacy element,legacy

which can contain arbitrary math markup11. The legacy element can occur

9 Note that surprisingly, the empty Content-MathML elements are treated more
in the OpenMath spirit.

10 In the current OpenMath standard, variable names are restricted to alphanu-
meric characters starting with a letter. Note that unlike with symbols, we cannot
associate presentation information with variables via style sheets, since these are
not globally unique (see Section ?? for a discussion of the OMDoc solution to
this problem).

11 If the content is an XML-based, format like Scalable Vector Graphics [JFF02],
the DTD must be augmented accordingly for validation.

mobj.tex 8685 2010-08-23 08:55:17Z kohlhase

13.5 Legacy Representation for Migration 135

wherever an om:OMOBJ or m:math can and has an optional xml:id attribute
for identification. The content is described by a pair of attributes:

• format (required) specifies the format of the content using URI reference.
OMDoc does not restrict the possible values, possible values include TeX,
pmml, html, and qmath.

• formalism is optional and describes the formalism (if applicable) the con-
tent is expressed in. Again, the value is unrestricted character data to
allow a URI reference to a definition of a formalism.

For instance in the following legacy element, the identity function is en-
coded in the untyped λ-calculus, which is characterized by a reference to the
relevant Wikipedia article.

<legacy format=”TeX” formalism=”http://en.wikipedia.org/wiki/Lambda calculus”>
2 \lambda{x}{x}

</legacy>

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

14

Mathematical Text (Modules MTXT and RT)

The everyday mathematical language used in textbooks, conversations, and
written onto blackboards all over the world consists of a rigorous, slightly
stylized version of natural language interspersed with mathematical formulae,
that is sometimes called mathematical vernacular1.

Element Attributes D Content

Required Optional C

omtext xml:id, type, for,
from, class, style,
verbalizes

+ CMP+, FMP*

CMP xml:id, xml:lang – 〈〈math vernacular〉〉
p xml:id, style, class,

index, verbalizes
+ 〈〈math vernacular〉〉

Fig. 14.1. Mathematical Text

14.1 Multilingual Mathematical Vernacular

OMDoc models mathematical vernacular as parsed text interspersed with
content-carrying elements. Most prominently, the om:OMOBJ, m:math, and
legacy elements are used for mathematical objects, see Chapter 13. Other
elements structure the text, such as the phrase and term elements intro-
duced in this chapter. In Figure 14.2 we have given an overview over the
ones described in this book. The last two modules in Figure 14.2 are op-
tional (see Section 22.3). Other (external or future) OMDoc modules can

1 The term “mathematical vernacular” was first introduced by Nicolaas Govert
de Bruijn in the 1970s (see [de 94] for a discussion). It derives from the word
“vernacular” used in the Catholic church to distinguish the language used by
laymen from the official Latin.

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

138 14 Mathematical Text

introduce further elements; natural extensions come when OMDoc is ap-
plied to areas outside mathematics, for instance computer science vernacular
needs to talk about code fragments (see Section 20.1 and [Koha]), chemistry
vernacular about chemical formulae (e.g. represented in Chemical Markup
Language [MR+07]).

14.1.1 Paragraphs

p elements can be used as children in a CMP to divide the text into paragraphs.p

Module Elements Comment see

MOBJ om:OMOBJ, m:math, legacy mathematical Objects p. 121

MTXT phrase, term phrase-level markup below

DOC ignore document structure p. 97

RT p, ol, ul, dl, table, link,
note, idx

rich text structure p. 146

EXT omlet for applets, images, . . . p. 209

Fig. 14.2. OMDoc Modules Contributing to Mathematical Vernacular

To be able to support multilingual documents, the mathematical vernac-
ular is represented as a groups of CMP2 elements which contain the vernacularCMP

and have an optional xml:lang attribute that specifies the language they
are written in. Conforming with the XML recommendation, we use the ISO
639 two-letter country codes (de =̂ German, en =̂ English, fr =̂ French,
nl =̂ Dutch, . . .). If no xml:lang is given, then en is assumed as the default
value. It is forbidden to have two or more sibling CMP with the same value
of xml:lang, moreover, CMPs that are siblings must be translations of each
other.3 We speak of a multilingual group of CMP elements if this is the case.

Listing 14.1. A Multilingual Group of CMP Elements

<CMP>
2 Let <OMOBJ id=”set”><OMV name=”V”/></OMOBJ> be a set.

A <term role=”definiendum”>unary operation</term> on
<OMOBJ><OMR href=”#set”/></OMOBJ> is a function
<OMOBJ id=”fun”><OMV name=”F”/></OMOBJ> with
<OMOBJ id=”im”>

7 <OMA>
<OMS cd=”relations1” name=”eq”/>

2 The name comes from “Commented Mathematical Property” and was originally
taken from OpenMath content dictionaries for continuity reasons. Note that
XML does note confuse the two, since they are in different namespaces.

3 The translation requirement may be alleviated in the future, when further variant
relations are encoded in CMP groups (see [KK06b] for a discussion in the context
of “communities of practice”). Then a generalized uniqueness condition must be
observed in CMP groups, so that systems can choose between the supplied variants.

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

14.2 Formal Mathematical Properties 139

<OMA><OMS cd=”fns1” name=”domain”/><OMV name=”F”/></OMA>
<OMV name=”V”/>

</OMA>
12 </OMOBJ> and

<OMOBJ id=”ran”>
<OMA>
<OMS cd=”relations1” name=”eq”/>
<OMA><OMS cd=”fns1” name=”range”/><OMV name=”F”/></OMA>

17 <OMV name=”V”/>
</OMA>

</OMOBJ>.
</CMP>
<CMP xml:lang=”de”>

22 Sei <OMOBJ><OMR href=”#set”/></OMOBJ> eine Menge.
Eine <term role=”definiendum”>unäre Operation</term>
ist eine Funktion <OMOBJ><OMR href=”#fun”/></OMOBJ>, so dass
<OMOBJ><OMR href=”#im”/></OMOBJ> und
<OMOBJ><OMR href=”#ran”/></OMOBJ>.

27 </CMP>
<CMP xml:lang=”fr”>

Soit <OMOBJ><OMR href=”#set”/></OMOBJ> un ensemble.
Une <term role=”definiendum”>opération unaire</term> sûr
<OMOBJ><OMR href=”#set”/></OMOBJ> est une fonction

32 <OMOBJ><OMR href=”#fun”/></OMOBJ> avec
<OMOBJ><OMR href=”#im”/></OMOBJ> et
<OMOBJ><OMR href=”#ran”/></OMOBJ>.

</CMP>

Listing 14.1 shows an example of such a multilingual group. Here, the
OpenMath extension by DAG representation (see Section 13.1) facilitates
multi-language support: Only the language-dependent parts of the text have
to be rewritten, the (language-independent) formulae can simply be re-used
by cross-referencing.

14.2 Formal Mathematical Properties

An FMP4 element is the general element for representing formal mathematical FMP

content in the form of OpenMath objects. FMPs always appear in groups,
which can differ in the value of their logic attribute, which specifies the
logical formalism. The value of this attribute specifies the logical system used
in formalizing the content. All members of the group have to formalize the
same mathematical object or property, i.e. they have to be translations of
each other, like siblings CMPs, we speak of a multi-logic FMP group in this
case. Furthermore, if an FMP group has CMP siblings, all must express the same
content.

In Listing 14.2 we see two FMP elements, that state the property of being
a unary operation in two logics. The first one (fol for first-order logic) uses
an equivalence to convey the restriction, the second one (hol for higher-order
logic) has λ-abstraction and can therefore define the binary predicate binop

directly.

4 The name comes from “Formal Mathematical Properties” and was originally
taken from OpenMath content dictionaries for continuity reasons.

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

140 14 Mathematical Text

Element Attributes D Content

Required Optional C

FMP xml:id, logic – (assumption*, conclusion*) |
OMOBJ |m:math |legacy

assumption xml:id, inductive,
class, style

+ (OMOBJ |m:math |legacy)

conclusion xml:id, class, style + (OMOBJ |m:math |legacy)

Fig. 14.3. Formal Mathematical Properties

Listing 14.2. A multi-logic FMP group for Listing 14.1.

<omtext xml:id=”binop−def” type=”definition”>
. . . the content of Listing 14.1 here . . .
<FMP logic=”fol”>∀V, F .binop(F, V)⇔ Im(F) = V ∧Dom(F) = V </FMP>
<FMP logic=”hol”>binop = λV, F .Im(F) = V ∧Dom(F) = V </FMP>

5 </omtext>

As mathematical statements of properties of objects often come as se-
quents, i.e. as sets of conclusions drawn from a set of assumptions, OMDoc
also allows the content of an FMP to be a (possibly empty) set of assumptionassumption

elements followed by a (possibly empty) set of conclusion elements. The in-
conclusion tended meaning is that the FMP asserts that one of the conclusions is entailed

by the assumptions together in the current context. As a consequence

<FMP><conclusion>A</conclusion></FMP>

is equivalent to <FMP>A</FMP>, whereA is an OpenMath, Content-MathML,
or legacy representation of a mathematical formula. The assumption and
conclusion elements allow to specify the content by an om:OMOBJ, m:math, or
legacy element. The assumption and conclusion elements carry an optional
xml:id attribute, which can be used for structure sharing. This is important
for specifying sequent-style proofs (see Chapter 17), where the assumptions
and conclusions of sequents are largely invariant over a proof and would have
to be copied otherwise. The assumption element carries an additional optional
attribute inductive for inductive hypotheses.

In the (somewhat contrived) example in Listing 14.3 we show a sequent for
a simple fact about set intersection. Here the knowledge in both assumptions
(together) is enough to entail one of the conclusions (the first in this case).
For details about the phrase element see Section 14.4 below.

Listing 14.3. Representing Vernacular as an FMP Sequent

<CMP>If a ∈ U and a ∈ V , then a ∈ U ∩ V or
<phrase index=”moon cheese”>the moon is made of green cheese</phrase>.

</CMP>
4 <FMP>

<assumption xml:id=”A”>a ∈ U</assumption>
<assumption xml:id=”B”>a ∈ V </assumption>
<conclusion xml:id=”C”>a ∈ U ∩ V </conclusion>
<conclusion xml:id=”moon cheese”>made of(moon, gc)</conclusion>

9 </FMP>

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

14.3 Text Fragments and their Rhetoric/Mathematical Roles 141

14.3 Text Fragments and their Rhetoric/Mathematical
Roles

As we have explicated above, all mathematical documents state properties of
mathematical objects — informally in mathematical vernacular or formally
(as logical formulae), or both. OMDoc uses the omtext element to mark omtext

up text passages that form conceptual units, e.g. paragraphs, statements, or
remarks. omtext elements have an optional xml:id attribute, so that they can
be cross-referenced, the intended purpose of the text fragment in the larger
document context can be described by the optional attribute type. This can
take e.g. the values abstract, introduction, conclusion, comment, thesis,
antithesis, elaboration, motivation, evidence, note, transition with
the obvious meanings. In the last five cases omtext also has the extra attribute
for, and in the last one, also an attribute from, since these are in reference
to other OMDoc elements.

The content of an omtext element is mathematical vernacular contained in
a multi-lingual CMP group, followed by an (optional) multi-logic FMP group that
expresses the same content. This CMP group can be preceded by a metadata

element that can be used to specify authorship, give the passage a title, etc.
(see Section 12.2).

We have used the type attribute on omtext to classify text fragments by
their rhetoric role. This is adequate for much of the generic text that makes
up the narrative and explanatory text in a mathematical textbook. But many
text fragments in mathematical documents directly state properties of math-
ematical objects (we will call them mathematical statements; see Chapter 15
for a more elaborated markup infrastructure). These are usually classified as
definitions, axioms, etc. Moreover, they are of a form that can (in princi-
ple) be formalized up to the level of logical formula; in fact, mathematical
vernacular is seen by mathematicians as a more convenient form of commu-
nication for mathematical statements that can ultimately be translated into
a foundational logical system like axiomatic set theory [Ber91]. For such text
fragments, OMDoc reserves the following values for the type attribute:

axiom (fixes or restricts the meaning of certain symbols or concepts.) An
axiom is a piece of mathematical knowledge that cannot be derived from
anything else we know.

definition (introduces new concepts or symbols.) A definition is an axiom
that introduces a new symbol or construct, without restricting the mean-
ing of others.

example (for or against a mathematical property).
proof (a proof), i.e. a rigorous — but maybe informal — argument that a

mathematical statement holds.
hypothesis (a local assumption in a proof that will be discharged later) for

text fragments that come from (parts of) proofs.
derive (a step in a proof), we will specify the exact meanings of this and the

two above in Chapter 17 and present more structured counterparts.

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

142 14 Mathematical Text

Finally, OMDoc also reserves the values assertion, theorem, proposition,
lemma, corollary, postulate, conjecture, false-conjecture, assumption,
obligation, rule and formula for statements that assert properties of math-
ematical objects (see Figure 15.5 in Subsection 15.3.1 for explanations). Note
that the differences between these values are largely pragmatic or proof-
theoretic (conjectures become theorems once there is a proof). Mathematical
omtext elements (such with one of these types) can have additional FMP ele-
ments (Formal Mathematical Property) that formally represents the meaning
of the descriptive text in the CMPs (if that is feasible).

Further types of text can be specified by providing a URI that points to
a description of the text type (much like the definitionURL attribute on the
m:csymbol elements in Content-MathML).

Of course, the type only allows a rough classification of the mathemati-
cal statements at the text level, and does not make the underlying content
structure explicit or reveals their contribution and interaction with mathemat-
ical context. For that purpose OMDoc supplies a set of specialized elements,
which we will discuss in Chapter 15. Thus omtext elements will be used to give
informal accounts of mathematical statements that are better and more fully
annotated by the infrastructure introduced in Chapter 15. However, in narra-
tive documents, we often want to be informal, while maintaining a link to the
formal element. For this purpose OMDoc provides the optional verbalizes
attribute on the omtext element. Its value is a whitespace-separated list of
URI references to formal representations (see Section 15.5 for further discus-
sion).

14.4 Phrase-Level Markup of Mathematical Vernacular

To make the sentence-internal structure of mathematical vernacular more
explicit, OMDoc provides an infrastructure to mark up natural language
phrases in sentences. Linguistically, a phrase is a group of words that func-
tions as a single unit in the syntax of a sentence. Examples include “noun
phrases, verb phrases, or prepositional phrases”. In OMDoc we adhere to
this intuition and restrict the phrase element to phrases in this sense. The
term element is naturally restricted to phrases by construction. The phrase

element is a general wrapper for sentence-level phrases that allows to mark
their specific properties.

The phrase element allows the same content as the CMP element, so that itphrase

can be transparently nested. It has the optional attribute xml:id for referenc-
ing the text fragment and the CSS attributes style and class to associate
presentation information with it (see the discussion in Sections 10.3 and ??).
The type attribute can be used to specify the (linguistic or mathematical)
type of the phrase, currently OMDoc does not make any restrictions on the
values of this attribute, for the mathematical type we recommend to use val-
ues for the type attribute specified in Section 14.3. Furthermore, the phrase

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

14.4 Phrase-Level Markup of Mathematical Vernacular 143

Element Attributes D Content

Required Optional C

phrase xml:id, class, style,
index, verbalizes,
type

– 〈〈math vernacular〉〉

term cd, name cdbase, role, xml:id,
class, style

– 〈〈math vernacular〉〉

citation href | bibref xml:id, class, style – 〈〈math vernacular〉〉
note type, xml:id,

style, class, index,
verbalizes

+ 〈〈math vernacular〉〉

Fig. 14.4. Phrase-level Markup

element allows the attribute index for parallel multilingual markup: Recall
that sibling CMP elements form multilingual groups of text fragments. We can
use the phrase element to make the correspondence relation on text fragments
more fine-grained: phrase elements in sibling CMPs that have the same index

value are considered to be equivalent. Of course, the value of an index has to
be unique in the dominating CMP element (but not beyond). Thus the index

attributes simplify manipulation of multilingual texts, see Listing 14.7 for an
example at the discourse level.

Finally, the phrase element can carry a verbalizes attribute whose value
is a whitespace-separated list of URI references that act as pointers to other
OMDoc elements. This has two applications: the first is another kind of
parallel markup where we can state that a phrase corresponds to (and thus
“verbalizes”) a part of formula in a sibling FMP element.

Listing 14.4. Parallel Markup between Formal and Informal

1 <CMP>
If <phrase verbalizes=”#isaG”>〈G, ◦〉 is a group</phrase>, then of course
<phrase verbalizes=”#isaM”>it is a monoid</phrase> by construction.

</CMP>
<FMP>

6 <OMOBJ>
<OMA><OMS cd=”logic1” name=”implies”/>
<OMA id=”isaG”><OMS cd=”algebra” name=”group”/>
<OMA id=”GG”><OMS cd=”set” name=”pair”>
<OMV name=”G”/><OMV name=”op”/>

11 </OMA>
</OMA>
<OMA xml:id=”isaM”><OMS cd=”algebra” name=”monoid”/>
<OMR href=”GG”/>

</OMA>
16 </OMA>

</OMOBJ>
</FMP>

Another important application of the verbalizes is the case of inline math-
ematical statements, which we will discuss in Section 15.5.

14.4.1 Notes

The note element is the closest approximation to a footnote or endnote, note

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

144 14 Mathematical Text

where the kind of note is determined by the type attribute. OMDoc sup-
plies footnote as a default value, but does not restrict the range of values.
Its for attribute allows it to be attached to other OMDoc elements exter-
nally where it is not allowed by the OMDoc document type. In our example,
we have attached a footnote by reference to a table row, which does not allow
note children.

14.4.2 Index Markup

The idx element is used for index markup in OMDoc. It contains an optionalidx

idt element that contains the index text, i.e. the phrase that is indexed.
idt

Element Attributes D Content

idx (xml:id|xref) – idt?, ide+

ide index, sort-by, see, seealso, links – idp*

idt style, class – 〈〈math vernacular〉〉
idp sort-by, see, seealso, links – 〈〈math vernacular〉〉

Fig. 14.5. Index Markup

The remaining content of the index element specifies what is entered into
various indexes. For every index this phrase is registered to there is one ideide

element (index entry); the respective entry is specified by name in its optional
index attribute. The ide element contains a sequence of index phrases given
in idp elements. The content of an idp element is regular mathematical text.idp

Since index entries are usually sorted, (and mathematical text is difficult to
sort), they carry an attribute sort-by whose value (a sequence of Unicode
characters) can be sorted lexically [DW05]. Moreover, each idp and ide el-
ement carries the attributes see, seealso, and links, that allow to specify
extra information on these. The values of the first ones are references to idx

elements, while the value of the links attribute is a whitespace-separated list
of (external) URI references. The formatting of the index text is governed
by the attributes style and class on the idt element. The idx element can
carry either an xml:id attribute (if this is the defining occurrence of the index
text) or an xref attribute. In the latter case, all the ide elements from the
defining idx (the one that has the xml:id attribute) are imported into the
referring idx element (the one that has the xref attribute).

14.4.3 Technical Terms

In OMDoc we can give the notion of a technical term a very precise mean-
ing: it is a phrase representing a concept for which a declaration exists in a
content dictionary (see Subsection 15.2.1). In this respect it is the natural

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

14.4 Phrase-Level Markup of Mathematical Vernacular 145

language equivalent for an OpenMath symbol or a Content-MathML to-
ken5. Let us consider an example: We can equivalently say “0 ∈ N” and “the
number zero is a natural number”. The first rendering in a formula, we would
cast as the following OpenMath object:

<OMOBJ>
<OMA><OMS cd=”set1” name=”in”/>
<OMS cd=”nat” name=”zero”/>
<OMS cd=”nat” name=”Nats”/>

</OMA>
</OMOBJ>

with the effect that the components of the formula are disambiguated by point-
ing to the respective content dictionaries. Moreover, this information can be
used by added-value services e.g. to cross-link the symbol presentations in the
formula to their definition (see Chapter ??), or to detect logical dependen-
cies. To allow this for mathematical vernacular as well, we provide the term

element: in our example we might use the following markup.

. . .<term cd=”nat” name=”zero”>the number zero</term> is an
<term cd=”nat” name=”Nats”>natural number</term>. . .

The term element has two required attributes: cd and name, and optionally term

cdbase, which together determine the meaning of the phrase just like they do
for om:OMS elements (see the discussion in Section 13.1 and Subsection 15.6.2).
The term element also allows the attribute xml:id for identification of the
phrase occurrence, the CSS attributes for styling and the optional role at-
tribute that allows to specify the role the respective phrase plays. We reserve
the value definiens for the defining occurrence of a phrase in a definition.
This will in general mark the exact point to point to when presenting other
occurrences of the same6 phrase. Other attribute values for the role are pos-
sible, OMDoc does not fix them at the current time. Consider for instance
the following text fragment from Figure 4.1 in Chapter 4.

Definition 1. Let E be a set. A mapping of E × E is called a law
of composition on E. The value f(x, y) of f for an ordered pair
(x, y) ∈ E × E is called the composition of x and y under this law.
A set with a law of composition is called a magma.

Here the first boldface term is the definiendum for a “law of composition”,
the second one for the result of applying this to two arguments. It seems
that this is not a totally different concept that is defined here, but is derived
systematically from the concept of a “law of composition” defined before.
Pending a thorough linguistic investigation we will mark up such occurrences
with definiens-applied, for instance in

5 and is subject to the same visibility and scoping conditions as those; see Sec-
tion 15.6 for details

6 We understand this to mean with the same cd and name attributes.

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

146 14 Mathematical Text

Listing 14.5. Marking up the Technical Terms

Let E be a set. A mapping of E × E is called a
<term cd=”magmas” name=”law of comp” role=”definiendum”>law of composition</term> on E.

3 The value f(x, y) of f for an ordered pair (x, y) ∈ E × E is called the
<term cd=”magmas”name=”law of comp” role=”definiendum−applied”>composition of</term>
x and y under this law.

There are probably more such systematic correlations; we leave their catego-
rization and modeling in OMDoc to the future.

14.5 Paragraph-Level Text Markup

In this section we will discuss the paragraph-level markup for mathematical
text, i.e. text structuring elements for mathematical text below the level of
mathematical statements. The elements in this module are loosely patterned
after elements from the XHTML specification [The02], and can occur as part
of mathematical vernacular. Where we do not explicitly discuss the content,
it is mathematical vernacular as well. The module RT provides five classes of
elements, which we will show in context in Listing 14.6.

Listing 14.6. An Example of Rich Text Structure

<CMP>
<p style=”color:red” xml:id=”p1”>All <idx><idt>animals are dangerous</idt>
<idp>dangerous</idp><idp seealso=”creature”>animal</idp></idx>!
(which is a highly <phrase class=”emphasis”>unfounded</phrase>

5 statement). In reality only some animals are, for instance:</p>
<ul xml:id=”l1”>
sharks (they bite) and
bees (they sting).

10 <p>If we measure danger by the number of deaths, we obtain</p>

<table>
<tr> <th>Culprits</th> <th>Deaths</th> <th>Action</th></tr>
<tr> <td>sharks</td> <td>312</td> <td>bite</td></tr>
<tr xml:id=”bn”> <td>bees</td> <td>23</td> <td>sting</td></tr>

15 <tr> <td>cars</td> <td>7500</td> <td>crash</td></tr>
</table>
<p>So, if we do the numbers <note xml:id=”n1” type=”ednote”>check the
numbers again</note> we see that animals are dangerous, but they are
less so than cars but much more photogenic as we can see

20 <link href=”http://www.yellowpress.com/killerbee.jpg”>here</link>.</p>

<note type=”footnote”>From the International Journal of Bee−keeping; numbers only
available for 2002.</note>

</CMP>

14.5.1 Lists

Ordered Lists The ol element is a constructor for ordered lists, which has liol

li
elements as children that represent the items. These contain mathematical
vernacular as content and are presented as consecutively numbered.

Unordered Lists ul is the constructor for unordered or bulleted lists, the inul

the presentation, list items are indicated by some sort of bullet.

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

14.5 Paragraph-Level Text Markup 147

Description Lists Finally, dl is a constructor for description lists, which havedl

di elements as children. The di elements contain an optional dt element di

dt
(description title) followed by a (possibly empty) list of dd elements that

dd

contain the descriptions.

Element Attributes D Content

ol xml:id, style, class, index, verbalizes + li*

ul xml:id, style, class, index, verbalizes + li*

li xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉
dl xml:id, style, class, index, verbalizes + di*

di xml:id, style, class, index, verbalizes + dt*,dd*

dt xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉
dd xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉

Fig. 14.6. Lists

14.5.2 Tables

To mark up simple tables we use the table element. Just as in XHTML, it has table

an arbitrary number of tr (table row) elements that contain td (table data)
tr

td
and th (table header) elements, which contain mathematical vernacular. Note

th

that OMDoc does not support advanced formatting attributes of XHTML,
but as tables are mathematical text in the module RT it does support nested
tables.

Element Attributes D Content

table xml:id, style, class, index, verbalizes + tr*

tr xml:id, style, class, index, verbalizes + td*

td xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉
th xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉

Fig. 14.7. Tables

14.5.3 Hyperlinks, Citations, & References

The link element is equivalent to the XHTML a element, and carries a link

required href7 attribute that points to an arbitrary resource in form of a URI
reference.

OMDoc supplies the oref element for referencing fragments of other doc- oref

7 It is anticipated that future versions of OMDoc may use simple links from
xlink [DeR+01] for such cross-referencing tasks, but at the moment we keep in
style to the rest of the specification.

mtext.tex 8755 2010-10-13 12:45:21Z kohlhase

148 14 Mathematical Text

uments8. oref is an inline element The processing of the oref is application
specific. It is recommended to generate an appropriate label and (optionally)
supply a hyper-reference.

The citation element is marks up a citation. Its bibrefs attribute ref-citation

erences entries in a LaTeXML bibtex/XML file.

Element Attributes D Content

link href xml:id, style, class, index, verbalizes – 〈〈math vernacular〉〉
citation bibrefs empty

oref tref empty

Fig. 14.8. Hyperlinkds, Citations, & References

All elements in the RT module carry an optional xml:id attribute for
identification and an index attribute for parallel multilingual markup (e.g.
Section 14.4 for an explanation and Listing 14.7 for a translation example).

Listing 14.7. Multilingual Parallel Markup

1 <omtext xml:id=”animals.overview”>
<CMP>
<p index=”intro”>Consider the following animals:</p>
<ul index=”animals”>
<li index=”first”>a tiger,

6 <li index=”second”>a dog.

</CMP>
<CMP xml:lang=”de”>
<p index=”intro”>Betrachte die folgenden Tiere:</p>

11 <ul index=”animals”>
<li index=”first”>Ein Tiger
<li index=”second”>Ein Hund

</CMP>

16 </omtext>

8 OMDoc1.2 used the ref element with type cite for this purpose.

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15

Mathematical Statements (Module ST)

In this chapter we will look at the OMDoc infrastructure to mark up the
functional structure of mathematical statements and their interaction with a
broader mathematical context.

15.1 Types of Statements in Mathematics

In the last chapter we introduced mathematical statements as special text
fragments that state properties of the mathematical objects under discussion
and categorized them as definitions, theorems, proofs,. . . . A set of statements
about a related set of objects make up the context that is needed to un-
derstand other statements. For instance, to understand a particular theorem
about finite groups, we need to understand the definition of a group, its prop-
erties, and some basic facts about finite groups first. Thus statements interact
with context in two ways: the context is built up from (clusters of) statements,
and statements only make sense with reference to a context. Of course this
dual interaction of statements with context1 applies to any text and to com-
munication in general. In mathematics, where the problem is aggravated by
the load of notation and the need for precision for the communicated concepts
and objects, contexts are often discussed under the label of mathematical
theories. We will distinguish two classes of statements with respect to their
interaction with theories: We view axioms and definitions as constitutive for a
given theory, since changing this information will yield a different theory (with
different mathematical properties, see the discussion in Section 2.2). Other
mathematical statements like theorems or the proofs that support them are
not constitutive, since they only illustrate the mathematical objects in the
theory by explicitly stating the properties that are implicitly determined by
the constitutive statements.

1 In linguistics and the philosophy of language this phenomenon is studied under
the heading of “discourse theories”, see e.g. [KR93] for a start and references.

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

150 15 Mathematical Statements

To support this notion of context OMDoc supports an infrastructure for
theories using special theory elements, which we will introduce in Section 15.6
and extend in Chapter 18. Theory-constitutive elements must be contained
as children in a theory element; we will discuss them in Section 15.2, non-
constitutive statements will be defined in Section 15.3. They are allowed to
occur outside a theory element in OMDoc documents (e.g. as top-level ele-
ments), however, if they do they must reference a theory, which we will call
their home theory in a special theory attribute. This situates them into the
context provided by this theory and gives them access to all its knowledge.
The home theory of theory-constitutive statements is given by the theory they
are contained in.

The division of statements into constitutive and non-constitutive ones and
the encapsulation of constitutive elements in theory elements add a certain
measure of safety to the knowledge management aspect of OMDoc. Since
XML elements cannot straddle document borders, all constitutive parts of a
theory must be contained in a single document; no constitutive elements can
be added later (by other authors), since this would change the meaning of the
theory on which other documents may depend on.

Before we introduce the OMDoc elements for theory-constitutive state-
ments, let us fortify our intuition by considering some mathematical exam-
ples. Axioms are assertions about (sets of) mathematical objects and concepts
that are assumed to be true. There are many forms of axiomatic restrictions
of meaning in mathematics. Maybe the best-known are the five Peano Axioms
for natural numbers.

1. 0 is a natural number.
2. The successor s(n) of a natural number n is a natural number.
3. 0 is not a successor of any natural number.
4. The successor function is one-one (i.e. injective).
5. The set N of natural numbers contains only elements that can be con-

structed by axioms 1. and 2.

Fig. 15.1. The Peano Axioms

The Peano axioms in Figure 15.1 (implicitly) introduce three symbols: the
number 0, the successor function s, and the set N of natural numbers. The five
axioms in Figure 15.1 jointly constrain their meaning such that conforming
structures exist (the natural numbers we all know and love) any two structures
that interpret 0, s, and N and satisfy these axioms must be isomorphic. This
is an ideal situation — the axioms are neither too lax (they allow too many
mathematical structures) or too strict (there are no mathematical structures)
— which is difficult to obtain. The latter condition (inconsistent theories)
is especially unsatisfactory, since any statement is a theorem in such theories.

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15.1 Types of Statements in Mathematics 151

As consistency can easily be lost by adding axioms, mathematicians try to
keep axiom systems minimal and only add axioms that are safe.

Sometimes, we can determine that an axiom does not destroy consistency
of a theory T by just looking at its form: for instance, axioms of the form s =
A, where s is a symbol that does not occur in T and A is a formula containing
only symbols from T will introduce no constraints on the meaning of T -
symbols. The axiom s = A only constrains the meaning of the new symbol
to be a unique object: the one denoted by A. We speak of a conservative
extension in this case. So, if T was a consistent theory, the extension of
T with the symbol s and the axiom s = A must be one too. Thus axioms
that result in conservative extensions can be added safely — i.e. without
endangering consistency — to theories.

Generally an axiom A that results in a conservative extension is called a
definition and any new symbol it introduces a definiendum (usually marked
e.g. in boldface font in mathematical texts), and we call definiens the mate-
rial in the definition that determines the meaning of the definiendum. We say
that a definiendum is well-defined, iff the corresponding definiens uniquely
determines it; adding such definitions to a theory always results in a conser-
vative extension.

Definiendum Definiens Type

The number 1 1: = s(0) (1 is the successor of 0) simple

The exponen-
tial function
e·

The exponential function e· is the solution to
the differential equation ∂f = f [where f(0) = 1].

implicit

The addition
function +

Addition on the natural numbers is defined by
the equations x+ 0 = x and x+ s(y) = s(x+ y).

recursive

Fig. 15.2. Some Common Definitions

Definitions can have many forms, they can be

• equations where the left hand side is the defined symbol and the right
hand side is a term that does not contain it, as in our discussion above or
the first case in Figure 15.2. We call such definitions simple.

• general statements that uniquely determine the meaning of the objects or
concepts in question, as in the second definition in Figure 15.2. We call
such definitions implicit; the Peano axioms are another example of this
category.
Note that this kind of definitions requires a proof of unique existence to
ensure well-definedness. Incidentally, if we leave out the part in square
brackets in the second definition in Figure 15.2, the differential equation
only characterizes the exponential function up to additive real constants.
In this case, the “definition” only restricts the meaning of the exponential

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

152 15 Mathematical Statements

function to a set of possible values. We call such a set of axioms a loose
definition.

• given as a set of equations, as in the third case of Figure 15.2, even though
this is strictly a special case of an implicit definition: it is a sub-case, where
well-definedness can be shown by giving an argument why the systematic
applications of these equations terminates, e.g. by exhibiting an ordering
that makes the left hand sides strictly smaller than the right-hand sides.
We call such a definition inductive.

15.2 Theory-Constitutive Statements in OMDoc

The OMDoc format provides an infrastructure for four kinds of theory-
constitutive statements: symbol declarations, type declarations, (proper) ax-
ioms, and definitions. We will take a look at all of them now.

Element Attributes D Content

Required Optional C

symbol name xml:id, role, scope, style,
class

+ type*

type xml:id, system, style,
class

– CMP*,〈〈mobj〉〉

axiom xml:id, for, type, style,
class

+ CMP*,FMP*

definition for xml:id, type, style, class,
uniqueness, existence,
consistency, exhaustivity

+ CMP*, (FMP* | requation+
| 〈〈mobj〉〉)?, measure?,
ordering?

requation xml:id, style, class – 〈〈mobj〉〉,〈〈mobj〉〉
measure xml:id, style, class – 〈〈mobj〉〉
ordering xml:id, style, class – 〈〈mobj〉〉
where 〈〈mobj〉〉 is (OMOBJ |m:math |legacy)

Fig. 15.3. Theory-Constitutive Elements in OMDoc

15.2.1 Symbol Declarations

The symbol element declares a symbol for a mathematical concept, such as 1symbol

for the natural number “one”, + for addition, = for equality, or group for the
property of being a group. Note that we not only use the symbol element for
mathematical objects that are usually written with mathematical symbols,
but also for any concept or object that has a definition or is restricted in its
meaning by axioms.

We will refer to the mathematical object declared by a symbol element as
a “symbol”, iff it is usually communicated by specialized notation in math-
ematical practice, and as a “concept” otherwise. The name “symbol” of the
symbol element in OMDoc is in accordance with usage in the philosophical
literature (see e.g. [NS81]): A symbol is a mental or physical representation

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15.2 Theory-Constitutive Statements in OMDoc 153

of a concept. In particular, a symbol may, but need not be representable
by a (set of) glyphs (symbolic notation). The definiendum objects in Fig-
ure 15.2 would be considered as “symbols” while the concept of a “group” in
mathematics would be called a “concept”.

The symbol element has a required attribute name whose value uniquely
identifies it in a theory. Since the value of this attribute will be used as an
OpenMath symbol name, it must be an XML name2 as defined in XML
1.1 [Bra+04]. The optional attribute scope takes the values global and
local, and allows a simple specification of visibility conditions: if the scope

attribute of a symbol has value local, then it is not exported outside the
theory; The scope attribute is deprecated, a formalization using the hiding

attribute on the imports element should be used instead. Finally, the optional
attribute role that can take the values3

binder The symbol may appear as a binding symbol of an binding object,
i.e. as the first child of an om:OMBIND object, or as the first child of an
m:apply element that has an m:bvar as a second child.

attribution The symbol may be used as key in an OpenMath om:OMATTR

element, i.e. as the first element of a key-value pair, or in an equivalent
context (for example to refer to the value of an attribution). This form of
attribution may be ignored by an application, so should be used for infor-
mation which does not change the meaning of the attributed OpenMath
object.

semantic-attribution This is the same as attribution except that it mod-
ifies the meaning of the attributed OpenMath object and thus cannot
be ignored by an application.

error The symbol can only appear as the first child of an OpenMath error
object.

application The symbol may appear as the first child of an application
object.

constant The symbol cannot be used to construct a compound object.
type The symbol denotes a sets that is used in a type systems to annotate

mathematical objects.
sort The symbol is used for a set that are inductively built up from construc-

tor symbols; see Chapter 16.

If the role is not present, the value object is assumed.
The children of the symbol element consist of a multi-system group of

type elements (see Subsection 15.2.3 for a discussion). For this group the

2 This limits the characters allowed in a name to a subset of the characters in
Unicode 2.0; e.g. the colon : is not allowed. Note that this is not a problem, since
the name is just used for identification, and does not necessarily specify how a
symbol is presented to the human reader. For that, OMDoc provides the notation
definition infrastructure presented in Chapter 19.

3 The first six values come from the OpenMath2 standard. They are specified in
content dictionaries; therefore OMDoc also supplies them.

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

154 15 Mathematical Statements

order does not matter. In Listing 15.1 we have a symbol declaration for the
concept of a monoid. Keywords or simple phrases that describes the symbol
in mathematical vernacular can be added in the metadata child of symbol as
dc:subject and dc:descriptions; the latter have the same content model
as the CMP elements, see the discussion in Section 14.1). If the document
containing their parent symbol element were stored in a data base system, it
could be looked up via these metadata. As a consequence the symbol name
need only be used for identification. In particular, it need not be mnemonic,
though it can be, and it need not be language-dependent, since this can be
done by suitable dc:subject elements.

Listing 15.1. An OMDoc symbol Declaration

<symbol name=”monoid”>
<metadata>
<dc:subject xml:lang=”en”>monoid</dc:subject>

4 <dc:subject xml:lang=”de”>Monoid</dc:subject>
<dc:subject xml:lang=”it”>monoide</dc:subject>

</metadata>
<type system=”simply−typed”>set[any]→ (any → any → any)→ any → bool</type>
<type system=”props”>

9 <OMOBJ><OMS cd=”arities” name=”ternary−relation”/></OMOBJ>
</type>

</symbol>

15.2.2 Axioms

The relation between the components of a monoid would typically be specified
by a set of axioms (e.g. stating that the base set is closed under the operation).
For this purpose OMDoc uses the axiom element, which allows as childrenaxiom

a multilingual group of CMPs, which express the mathematical content of the
axiom and a multi-logic FMP group that expresses this as a logical formula.
axiom elements may have a generated-from attribute, which points to an-
other OMDoc element (e.g. an adt, see Chapter 16) which subsumes it, since
it is a more succinct representation of the same mathematical content. Finally
the axiom element has an optional for attribute to specify salient semantic
objects it uses as a whitespace-separated list of URI references to symbols de-
clared in the same theory, see Listing 15.2 for an example. Finally, the axiom

element can have an type attribute, whose values we leave unspecified for the
moment.

Listing 15.2. An OMDoc axiom

<axiom xml:id=”mon.ax” for=”monoid”>
<CMP>If (M, ∗) is a semigroup with unit e, then (M, ∗, e) is a monoid.</CMP>

</axiom>

15.2.3 Type Declarations

Types (also called sorts in some contexts) are representations of certain sim-
ple sets that are treated specially in (human or mechanical) reasoning pro-

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15.2 Theory-Constitutive Statements in OMDoc 155

cesses. A type declaration e: t makes the information that a symbol or
expression e is in a set represented by a type t available to a specified math-
ematical process. For instance, we might know that 7 is a natural number,
or that expressions of the form

∑n
i=1 aix

i are polynomials, if the ai are real
numbers, and exploit this information in mathematical processes like proving,
pattern matching, or while choosing intuitive notations. If a type is declared
for an expression that is not a symbol, we will speak of a term declaration.

OMDoc uses the type element for type declarations. The optional at- type

tribute system contains a URI reference that identifies the type system which
interprets the content. There may be various sources of the set membership
information conveyed by a type declaration, to justify it this source may be
specified in the optional just-by attribute. The value of this attribute is a
URI reference that points to an assertion or axiom element that asserts
∀x1, . . . , xn.e ∈ t for a type declaration e: t with variables x1, . . . , xn. If the
just-by attribute is not present, then the type declaration is considered to
be generated by an implicit axiom, which is considered theory-constitutive4.

The type element contains one or two mathematical objects. In the first
case, it represents a type declaration for a symbol (we call this a symbol
declaration), which can be specified in the optional for attribute or by
embedding the type element into the respective symbol element. For instance
in Listing 15.1, the type declaration of monoid characterizes a monoid as a
three-place predicate (taking as arguments the base set, the operation, and a
neutral element).

A type element with two mathematical objects represents a term declara-
tion e: t, where the first object represents the expression e and the second one
the type t (see Listing 15.7 for an example). There the term x+ x is declared
to be an even number by a term declaration.

As reasoning processes vary, information pertaining to multiple type sys-
tems may be associated with a single symbol and there can be more than one
type declaration per expression and type system, this just means that the
object has more than one type in the respective type system (not all type
systems admit principal types).

15.2.4 Definitions

Definitions are a special class axioms that completely fix the meaning of sym-
bols. Therefore definition elements that represent definitions carry the re- definition

quired for attribute, which contain a whitespace-separated list of names of
symbols in the same theory. Note that this use of the for attribute is different
from the other usages, which are URI references.

We call symbols that are referenced in definitions defined and primi-
tive otherwise. definition contain a multilingual CMP group to describe the
meaning of the defined symbols.

4 It is considered good practice to make the axiom explicit in formal contexts, as
this allows an extended automation of the knowledge management process.

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

156 15 Mathematical Statements

In Figure 15.2 we have seen that there are many ways to fix the mean-
ing of a symbol, therefore OMDoc definition elements are more complex
than axioms. In particular, the definition element supports several kinds of
definition mechanisms with specialized content models specified in the type

attribute (cf. the discussion at the end of Section 15.1):

simple In this case the definition contains a mathematical object that can
be substituted for the symbol specified in the for attribute of the defini-
tion. Listing 15.3 gives an example of a simple definition of the number
one from the successor function and zero. OMDoc treats the type at-
tribute as an optional attribute. If it is not given explicitly, it defaults to
simple.

Listing 15.3. A Simple OMDoc definition.

<symbol name=”one”/>
2 <definition xml:id=”one.def” for=”one” type=”simple”>

<CMP><OMOBJ><OMS cd=”nat” name=”one”/></OMOBJ> is the successor of
<OMOBJ><OMS cd=”nat” name=”zero”/></OMOBJ>.</CMP>

<OMOBJ>
<OMA>

7 <OMS cd=”nat” name=”suc”/>
<OMS cd=”nat” name=”zero”/>

</OMA>
</OMOBJ>
</definition>

implicit This kind of definition is often (more accurately) called “definition
by description”, since the definiendum is described so accurately, that
there is exactly one object satisfying the description. The “description”
of the defined symbol is given as a multi-system FMP group whose content
uniquely determines the value of the symbols that are specified in the for

attribute of the definition. The necessary statement of unique existence
can be specified in the existence and uniqueness attribute, whose values
are URI references to to assertional statements (see Subsection 15.3.4)
that represent the respective properties. We give an example of an implicit
definition in Listing 15.4.

Listing 15.4. An Implicit Definition of the Exponential Function

<definition xml:id=”exp−def” for=”exp” type=”implicit”
uniqueness=”#exp−unique” existence=”#exp−exists”>

<FMP>exp′ = exp ∧ exp(0) = 1</FMP>
4 </definition>

<assertion xml:id=”exp−unique”>
<CMP>

There is at most one differentiable function that solves the
differential equation in definition <oref xref=”#exp−def”/>.

9 </CMP>
</assertion>
<assertion xml:id=”exp−exists”>
<CMP>

The differential equation in <oref xref=”#exp−def”/> is solvable.
14 </CMP>

</assertion>

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15.2 Theory-Constitutive Statements in OMDoc 157

inductive This is a variant of the implicit case above. It defines a recur-
sive function by a set of recursive equations (in requation elements) requation

whose left and right hand sides are specified by the two children. The first
one is called the pattern, and the second one the value. The intended
meaning of the defined symbol is, that the value (with the variables suit-
ably substituted) can be substituted for a formula that matches the pat-
tern element. In this case, the definition element can carry the optional
attributes exhaustivity and consistency, which point to assertions
stating that the cases spanned by the patterns are exhaustive (i.e. all cases
are considered), or that the values are consistent (where the cases overlap,
the values are equal).
Listing 15.5 gives an example of a a recursive definition of the addition
on the natural numbers.

Listing 15.5. A recursive definition of addition

<definition xml:id=”plus.def” for=”plus” type=”inductive”
consistency=”#s−not−0” exhaustivity=”#s−or−0”>

<metadata><dc:subject>addition</dc:subject></metadata>
<CMP>Addition is defined by recursion on the second argument.</CMP>

5 <requation>x+ 0 ; x</requation>
<requation>x+ s(y) ; s(x+ y)</requation>

</definition>

To guarantee termination of the recursive instantiation (necessary to en-
sure well-definedness), it is possible to specify a measure function and
well-founded ordering by the optional measure and ordering elements measure

ordering
which contain mathematical objects. The elements contain mathematical
objects. The content of the measure element specifies a measure function,
i.e. a function from argument tuples for the function defined in the parent
definition element to a space with an ordering relation which is specified
in the ordering element. This element also carries an optional attribute
terminating that points to an assertion element that states that this
ordering relation is a terminating partial ordering.

pattern This is a special degenerate case of the recursive definition. A func-
tion is defined by a set of requation elements, but the defined function
does not occur in the second children. This form of definition is often
used instead of simple in logical languages that do not have a function
constructor. It allows to define a function by its behavior on patterns of
arguments, for instance in

sin(z) :=
1

2i
(eiz − e−iz)

As termination is trivial in this case, no measure and ordering elements
appear in the body.

informal The definition is completely informal, it only contains a CMP ele-
ment.

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

158 15 Mathematical Statements

15.3 The Unassuming Rest

The bulk of mathematical knowledge is in form of statements that are not
theory-constitutive: statements of properties of mathematical objects that are
entailed by the theory-constitutive ones. As such, these statements are log-
ically redundant, they do not add new information about the mathematical
objects, but they do make their properties explicit. In practice, the entailment
is confirmed e.g. by exhibiting a proof of the assertion; we will introduce the
infrastructure for proofs in Chapter 17.

Element Attributes D Content

Required Optional C

assertion xml:id, type, theory,
class, style, status,
just-by

+ CMP*, FMP*

type system xml:id, for, just-by,
theory, class, style

– CMP*, 〈〈mobj〉〉,〈〈mobj〉〉

example for xml:id, type,
assertion, theory,
class, style

+ CMP* | 〈〈mobj〉〉*

alternative for, theory,
entailed-by,
entails,
entailed-by-thm,
entails-thm

xml:id, type, theory,
class, style

+ CMP*, (FMP* |
requation+ |
〈〈mobj〉〉)?, measure?,
ordering?

where 〈〈mobj〉〉 is (OMOBJ |m:math |legacy)

Fig. 15.4. Assertions, Examples, and Alternatives in OMDoc

15.3.1 Assertions

OMDoc uses the assertion element for all statements (proven or not) aboutassertion

mathematical objects (see Listing 15.6) that are not axiomatic (i.e. constitu-
tive for the meaning of the concepts or symbols involved). Traditional math-
ematical documents discern various kinds of these: theorems, lemmata, corol-
laries, conjectures, problems, etc.

These all have the same structure (formally, a closed logical formula).
Their differences are largely pragmatic (e.g. theorems are normally more im-
portant in some theory than lemmata) or proof-theoretic (conjectures become
theorems once there is a proof). Therefore, we represent them in the general
assertion element and leave the type distinction to a type attribute, which
can have the values in Figure 15.5. The assertion element also takes an op-
tional xml:id element that allows to reference it in a document, an optional
theory attribute to specify the theory that provides the context for this as-
sertion, and an optional attribute generated-from, that points to a higher
syntactic construct that generates these assertions, e.g. an abstract data type
declaration given by an adt element (see Chapter 16).

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15.3 The Unassuming Rest 159

Value Explanation

theorem, proposition an important assertion with a proof

Note that the meaning of the type (in this case the existence of a proof) is not
enforced by OMDoc applications. It can be appropriate to give an assertion the
type theorem, if the author knows of a proof (e.g. in the literature), but has not
formalized it in OMDoc yet.

lemma a less important assertion with a proof

The difference of importance specified in this type is even softer than the other
ones, since e.g. reusing a mathematical paper as a chapter in a larger monograph,
may make it necessary to downgrade a theorem (e.g. the main theorem of the
paper) and give it the status of a lemma in the overall work.

corollary a simple consequence

An assertion is sometimes marked as a corollary to some other statement, if the
proof is considered simple. This is often the case for important theorems that
are simple to get from technical lemmata.

postulate, conjecture an assertion without proof or counter-example

Conjectures are assertions, whose semantic value is not yet decided, but which
the author considers likely to be true. In particular, there is no proof or counter-
example (see Section 15.4).

false-conjecture an assertion with a counter-example

A conjecture that has proven to be false, i.e. it has a counter-example. Such
assertions are often kept for illustration and historical purposes.

obligation, assumption an assertion on which the proof of another depends

These kinds of assertions are convenient during the exploration of a mathematical
theory. They can be used and proven later (or assumed as an axiom).

formula if everything else fails

This type is the catch-all if none of the others applies.

Fig. 15.5. Types of Mathematical Assertions

Listing 15.6. An OMDoc Assertion About Semigroups

<assertion xml:id=”ida.c6s1p4.l1” type=”lemma”>
<CMP> A semigroup has at most one unit.</CMP>

3 <FMP>∀S.sgrp(S)→ ∀x, y.unit(x, S) ∧ unit(y, S)→ x = y</FMP>
</assertion>

To specify its proof-theoretic status of an assertion assertion carries the
two optional attributes status and just-by. The first contains a keyword
for the status and the second a whitespace-separated list of URI references
to OMDoc elements that justify this status of the assertion. For the speci-
fication of the status we adapt an ontology for deductive states of assertion
from [SZS04] (see Figure 15.6). Note that the states in Figure 15.6 are not
mutually exclusive, but have the inclusions depicted in Figure 15.7.

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

160 15 Mathematical Statements

status just-by points to

tautology Proof of F
All T -interpretations satisfy A and some Ci
tautologous-conclusion Proof of Fc.
All T -interpretations satisfy some Cj
equivalent Proofs of F and F−1

A and C have the same T -models (and there are some)

theorem Proof of F
All T -models of A (and there are some) satisfy some Ci
satisfiable Model of A and some Ci
Some T -models of A (and there are some) satisfy some Ci
contradictory-axioms Refutation of A
There are no T -models of A
no-consequence T -model of A and some Ci, T -model of A ∪ C.
Some T -models of A (and there are some) satisfy some Ci, some satisfy C
counter-satisfiable Model of A ∪ C
Some T -models of A (and there are some) satisfy C
counter-theorem Proof of C from A
All T -models of A (and there are some) satisfy C
counter-equivalent Proof of C from A and proof of A from C
A and C have the same T -models (and there are some)

unsatisfiable-conclusion Proof of C
All T -interpretations satisfy C
unsatisfiable Proof of ¬F
All T -interpretations satisfy A and C
Where F is an assertion whose FMP has assumption elements A1, . . . ,An

and conclusion elements C1, . . . , Cm. Furthermore, let A: = {A1, . . . ,An}
and C: = {C1, . . . , Cm}, and F−1 be the sequent that has the Ci as assump-
tions and the Ai as conclusions. Finally, let C: = {C1, . . . , Cm}, where Ci is a
negation of Ci.

Fig. 15.6. Proof Status for Assertions in a Theory T

satisfiable counter-satisfiable

theorem counter-theorem

tautologous-conclusion

equivalent

no-consequence

contradictory-axioms

counter-equivalent

unsatisfiable-conclusion

tautology unsatisfiable

Fig. 15.7. Relations of Assertion States

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15.3 The Unassuming Rest 161

15.3.2 Type Assertions

In the last section, we have discussed the type elements in symbol decla-
rations. These were axiomatic (and thus theory-constitutive) in character,
declaring a symbol to be of a certain type, which makes this information
available to type checkers that can check well-typedness (and thus plausibil-
ity) of the represented mathematical objects.

However, not all type information is axiomatic, it can also be deduced from
other sources knowledge. We use the same type element we have discussed in
Subsection 15.2.3 for such type assertions, i.e. non-constitutive statements
that inform a type-checker. In this case, the type element can occur at top
level, and even outside a theory element (in which case they have to specify
their home theory in the theory attribute).

Listing 15.7 contains a type assertion x+x: evens, which makes the infor-
mation that doubling an integer number results in an even number available
to the reasoning process.

Listing 15.7. A Term declaration in OMDoc.

1 <type xml:id=”double−even.td” system=”#POST”
theory=”adv.int” for=”plus” just−by=”#double−even”>

<m:math>
<m:apply><m:plus/>
<m:ci type=”integer”>X</m:ci>

6 <m:ci type=”integer”>X</m:ci>
</m:apply>

</m:math>
<m:math>
<m:csymbol definitionURL=”http://omdoc.org/cd/integers/evens”/>

11 </m:math>
</type>

<assertion xml:id=”double−even” type=”lemma” theory=”adv.int”>
<FMP>

16 <m:math>
<m:apply><m:forall/>
<m:bvar><m:ci xml:id=”x13” type=”integer”>X</m:ci></m:bvar>
<m:apply><m:in/>
<m:apply><m:plus/>

21 <m:ci definitionURL=”x13” type=”integer”>X</m:ci>
<m:ci definitionURL=”x13” type=”integer”>X</m:ci>

</m:apply>
<m:csymbol definitionURL=”http://omdoc.org/cd/nat/evens”/>

</m:apply>
26 </m:apply>

</m:math>
</FMP>

</assertion>

The body of a type assertion contains two mathematical objects, first the type
of the object and the second one is the object that is asserted to have this
type.

15.3.3 Alternative Definitions

In contrast to what we have said about conservative extensions at the end of
Subsection 15.2.4, mathematical documents often contain multiple definitions

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

162 15 Mathematical Statements

for a concept or mathematical object. However, if they do, they also contain a
careful analysis of equivalence among them. OMDoc allows us to model this
by providing the alternative element. Conceptually, an alternative definitionalternative

or axiom is just a group of assertions that specify the equivalence of logical
formulae. Of course, alternatives can only be added in a consistent way to a
body of mathematical knowledge, if it is guaranteed that it is equivalent to the
existing ones. The for on the alternative points to the symbol to which
the alternative definition pertains. Therefore, alternative has the attributes
entails and entailed-by, that specify assertions that state the necessary
entailments. It is an integrity condition of OMDoc that any alternative

element references at least one definition or alternative element that
entails it and one that it is entailed by (more can be given for convenience).
The entails-thm, and entailed-by-thm attributes specify the corresponding
assertions. This way we can always reconstruct equivalence of all definitions
for a given symbol. As alternative definitions are not theory-constitutive, they
can appear outside a theory element as long as they have a theory attribute.

15.3.4 Assertional Statements

There is another distinction for statements that we will need in the following.
Some kinds of mathematical statements add information about the mathe-
matical objects in question, whereas other statements do not. For instance,
a symbol declaration only declares an unambiguous name for an object. We
will call the following OMDoc elements assertional: axiom (it asserts cen-
tral properties about an object), type (it asserts type properties about an
object), definition (this asserts properties of a new object), and of course
assertion.

The following elements are considered non-assertional: symbol (only a
name is declared for an object), alternative (here the assertional content
is carried by the assertion elements referenced in the structure-carrying at-
tributes of alternative). For the elements introduced below we will discuss
whether they are assertional or not in their context. In a nutshell, only state-
ments introduced by the module ADT (see Chapter 16) will be assertional.

15.4 Mathematical Examples in OMDoc

In mathematical practice examples play a great role, e.g. in concept formation
as witnesses for definitions or as either supporting evidence, or as counter-
examples for conjectures. Therefore examples are given status as primary
objects in OMDoc. Conceptually, we model an example E as a pair (W,A),
where W = (W1, . . . ,Wn) is an n-tuple of mathematical objects and A is an
assertion. If E is an example for a mathematical concept given as an OMDoc
symbol S, then A must be of the form S(W1, . . . ,Wn).

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15.4 Mathematical Examples in OMDoc 163

If E is an example for a conjecture C, then we have to consider the situation
more carefully. We assume that C is of the form QD for some formula D,
where Q is a sequence Q1W1, . . . ,QmWm of m ≥ n = #W quantifications
of using quantifiers Qi like ∀ or ∃. Now let Q′ be a sub-sequence of m − n
quantifiers ofQ and D′ be D only that all the Wij such that theQij are absent
from Q′ have been replaced by Wj for 1 ≤ j ≤ n. If E = (W,A) supports C,
then A = Q′D′ and if E is a counter-example for C, then A = ¬Q′D′.

OMDoc specifies this intuition in an example element that contains a example

multilingual CMP group for the description and n mathematical objects (the
witnesses). It has the attributes

for specifying for which concepts or assertions it is an example. This is
a reference to a whitespace-separated list of URI references to symbol,
definition, axiom, alternative, or assertion elements.

type specifying the aspect, the value is one of for or against
assertion a reference to the assertion A mentioned above that formally

states that the witnesses really form an example for the concept of as-
sertion. In many cases even the statement of this is non-trivial and may
require a proof.

example elements are considered non-assertional in OMDoc, since the as-
sertional part is carried by the assertion element referenced in the assertion
attribute.

Note that the list of mathematical objects in an example element does
not represent multiple examples, but corresponds to the argument list of the
symbol, they exemplify. In the example below, the symbol for monoid is a
three-place relation (see the type declaration in Listing 15.1), so we have
three witnesses.

Listing 15.8. An OMDoc representation of a mathematical example

1 <symbol name=”strings−over”/>
<definition xml:id=”strings.def” for=”strings−over”>. . . A∗ . . .</definition>
<symbol name=”concat”/>
<definition xml:id=”concat.def” for=”concat”>. . . :: . . .</definition>
<symbol name=”empty−string”/>

6 <definition xml:id=”empty−string.def” for=”empty−string”>. . . ε . . .</definition>
. . .
<assertion xml:id=”string.struct.monoid” type=”lemma”>
<CMP>(A∗, ::, ε) is a monoid.</CMP>
<FMP>mon(A∗, ::, ε)</FMP>

11 </assertion>
. . .
<example xml:id=”mon.ex1” for=”monoid” type=”for”

assertion=”string.struct .monoid”>
<CMP>The set of strings with concatenation is a monoid.</CMP>

16 <OMOBJ>
<OMA id=”nat−strings”>
<OMS cd=”strings” name=”strings”/>
<OMS cd=”setname1” name=”N”/>

</OMA>
21 </OMOBJ>

<OMOBJ><OMS cd=”strings” name=”concat”/></OMOBJ>
<OMOBJ><OMS cd=”strings” name=”empty−string”/></OMOBJ>

</example>

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

164 15 Mathematical Statements

26 <assertion xml:id=”monoid.are.groups” type=”false−conjecture”>
<CMP>Monoids are groups.</CMP>
<FMP>∀S, o, e.mon(S, o, e)→ ∃i.group(S, o, e, i)</FMP>
</assertion>

31 <example xml:id=”mon.ex2” for=”#monoids.are.groups” type=”against”
assertion=”strings. isnt .group”>

<CMP>The set of strings with concatenation is not a group.</CMP>
<OMOBJ><OMR href=”#nat−strings”/></OMOBJ>
<OMOBJ><OMS cd=”strings” name=”strings”/></OMOBJ>

36 <OMOBJ><OMS cd=”strings” name=”concat”/></OMOBJ>
<OMOBJ><OMS cd=”strings” name=”empty−string”/></OMOBJ>

</example>

<assertion xml:id=”strings.isnt .group” type=”theorem”>
41 <CMP>(A∗, ::, ε) is a monoid, but there is no inverse function for it.</CMP>

</assertion>

In Listing 15.8 we show an example of the usage of an example element
in OMDoc: We declare constructor symbols strings-over, that takes an
alphabet A as an argument and returns the set A∗ of stringss over A, concat
for strings concatenation (which we will denote by ::), and empty-string

for the empty string ε. Then we state that W = (A∗, ::, ε) is a monoid in
an assertion with xml:id="string.struct.monoid". The example element
with xml:id="mon.ex1" in Listing 15.8 is an example for the concept of a
monoid, since it encodes the pair (W,A) where A is given by reference to
the assertion string.struct.monoid in the assertion attribute. Example
mon.ex2 uses the pair (W,A′) as a counter-example to the false conjecture
monoids.are.groups using the assertion strings.isnt.group for A′.

15.5 Inline Statements

Note that the infrastructure for statements introduced so far does its best
to mark up the interplay of formal and informal elements in mathematical
documents, and make explicit the influence of the context and their contri-
bution to it. However, not all statements in mathematical documents can be
adequately captured directly. Consider for instance the following situation,
which we might find in a typical mathematical textbook.

Theorem 3.12: In a monoid M the left unit and the right unit coin-
cide, we call it the unit of M .

The overt role of this text fragment is that of a mathematical theorem — as
indicated by the cue word “Theorem”, therefore we would be tempted rep-
resent it as an omtext element with the value theorem for the type attribute.
But the relative clause is clearly a definition (the definiens is even marked in
boldface). What we have here is an aggregated verbalization of two mathe-
matical statements. In a simple case like this one, we could represent this as
follows:

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15.6 Theories as Structured Contexts 165

Listing 15.9. A Simple-Minded Representation of Theorem 3.12

<assertion type=”theorem” style=”display=flow”>
<CMP>In a monoid M , the left unit and the right unit coincide,</CMP>

3 </assertion>
<definition for=”unit” style=”display:flow”>

<CMP>we call it the <term role=”definiendum” name=”unit”>unit</term> of M</CMP>
</definition>

But this representation remains unsatisfactory: the definition is not part
of the theorem, which would really make a difference if the theorem contin-
ued after the inline definition. The real problem is that the inline definition is
linguistically a phrase-level construct, while the omtext element is a discourse-
level construct. However, as a phrase-level construct, the inline definition can-
not really be taken as stand-alone, but only makes sense in the context it is
presented in (which is the beauty of it; the re-use of context). With the phrase
element and its verbalizes, we can do the following:

Listing 15.10. An Inline Definition

<assertion xml:id=’unit−unique’ type=”theorem” >
<CMP>In a monoid M, the left unit and the right unit coincide,
<phrase verbalizes=”#unit−def”>we call it the unit of M</phrase>.</CMP>

4 </assertion>
<symbol name=”unit”/>
<definition xml:id=”unit−def” for=”unit” just−by=’#unit−unique’>
<CMP>We call the (unique) element of a monoid M that acts as a left

and right unit the <term role=”definiendum” name=”unit”>unit</term> of M.</CMP>
9 </definition>

thus we would have the phrase-level markup in the proper place, and we
would have an explicit version of the definition which is standalone5, and we
would have the explicit relation that states that the inline definition is an
“abbreviation” of the standalone definition.

15.6 Theories as Structured Contexts

OMDoc provides an infrastructure for mathematical theories as first-class ob-
jects that can be used to structure larger bodies of mathematics by functional
aspects, to serve as a framework for semantically referencing mathematical
objects, and to make parts of mathematical developments reusable in multi-
ple contexts. The module ST presented in this chapter introduces a part of
this infrastructure, which can already address the first two concerns. For the
latter, we need the machinery for complex theories introduced in Chapter 18.

Theories are specified by the theory element in OMDoc, which has an theory

optional xml:id attribute for referencing the theory. Furthermore, the theory
element can have the cdbase attribute that allows to specify the cdbase

5 Purists could use the CSS attribute style on the definition element with value
display:none to hides it from the document; it might also be placed into another
document altogether

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

166 15 Mathematical Statements

this theory uses for disambiguation on om:OMS elements (see Section 13.1
for a discussion). Additional information about the theory like a title or a
short description can be given in the metadata element. After this, any top-
level OMDoc element can occur, including the theory-constitutive elements
introduced in Sections 15.1 and 15.2, even theory elements themselves. Note
that theory-constitutive elements may only occur in theory elements.

Note that theories can be structured like documents e.g. into sections and
the like (see Section 11.5 for a discussion) via the omgroup element.omgroup

Element Attributes D Content

Req. Optional C

theory xml:id, class, style, cdbase, cdversion,
cdrevision, cdstatus, cdurl, cdreviewdate

+ (〈〈top+thc〉〉 |
imports)*

imports from id, type, class, style +
where 〈〈top+thc〉〉 stands for top-level and theory-constitutive elements

Fig. 15.8. Theories in OMDoc

15.6.1 Simple Inheritance

theory elements can contain imports elements (mixed in with the top-level
ones) to specify inheritance: The main idea behind structured theories and
specification is that not all theory-constitutive elements need to be explicitly
stated in a theory; they can be inherited from other theories. Formally, the
set of theory-constitutive elements in a theory is the union of those that are
explicitly specified and those that are imported from other theories. This has
consequences later on, for instance, these are available for use in proofs. See
Section 17.2 for details on availability of assertional statements in proofs and
justifications.

The meaning of the imports element is determined by two attributes:imports

from The value of this attribute is a URI reference that specifies the source
theory, i.e. the theory we import from. The current theory (the one
specified in the parent of the imports element, we will call it the target
theory) inherits the constitutive elements from the source theory.

type This optional attribute can have the values global and local (the
former is assumed, if the attribute is absent): We call constitutive ele-
ments local to the current theory, if they are explicitly defined as chil-
dren, and else inherited. A local import (an imports element with
type="local") only imports the local elements of the source theory, a
global import also the inherited ones.

The meaning of nested theory elements is given in terms of an implicit imports
relation: The inner theory imports from the outer one. Thus

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15.6 Theories as Structured Contexts 167

1 <theory xml:id=”a.thy”>
<symbol name=”aa”/>
<theory xml:id=”b.thy”>
<symbol name=”cc”/>
<definition xml:id=”cc.def” for=”cc” type=”simple”>

6 <OMOBJ><OMS cd=”a.thy” name=”aa”/></OMOBJ>
</definition>

</theory>
</theory>

is equivalent to

1 <theory xml:id=”a.thy”><symbol name=”aa”/></theory>
<theory xml:id=”b.thy”>
<imports from=”#a.thy” type=”global”/>
<symbol name=”cc”/>
<definition xml:id=”cc.def” for=”cc” type=”simple”>

6 <OMOBJ><OMS cd=”a.thy” name=”aa”/></OMOBJ>
</definition>

</theory>

In particular, the symbol cc is visible only in theory b.thy, not in the rest
of theory a.thy in the first representation. Note that the inherited elements
of the current theory can themselves be inherited in the source theory. For
instance, in the Listing 15.12 the left-inv is the only local axiom of the
theory group, which has the inherited axioms closed, assoc, left-unit.

In order for this import mechanism to work properly, the inheritance re-
lation, i.e. the relation on theories induced by the imports elements, must be
acyclic. There is another, more subtle constraint on the inheritance relation
concerning multiple inheritance. Consider the situation in Listing 15.11: here
theories A and B import theories with xml:id="mythy", but from different
URIs. Thus we have no guarantee that the theories are identical, and seman-
tic integrity of the theory C is at risk. Note that this situation might in fact be
totally unproblematic, e.g. if both URIs point to the same document, or if the
referenced documents are identical or equivalent. But we cannot guarantee
this by content markup alone, we have to forbid it to be safe.

Listing 15.11. Problematic Multiple Inheritance

<theory xml:id=”A”>
2 <imports from=”http://red.com/theories.omdoc#mythy”/>

</theory>
<theory xml:id=”B”>
<imports from=”http://blue.org/cd/all.omdoc#mythy”/>

</theory>
7 <theory xml:id=”C”><imports from=”#A”/><imports from=”#B”/></theory>

Let us now formulate the constraint carefully, the base URI of an XML
document is the URI that has been used to retrieve it. We adapt this to
OMDoc theory elements: the base URI of an imported theory is the URI
declared in the cdbase attribute of the theory element (if present) or the
base URI of the document which contains it6. For theories that are imported

6 Note that the base URI of the document is sufficient, since a valid OMDoc
document cannot contain more than one theory element for a given xml:id

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

168 15 Mathematical Statements

along a chain of global imports, which include relative URIs, we need to
employ URI normalization to compute the effective URI. Now the constraint
is that any two imported theories that have the same value of the xml:id

attribute must have the same base URI. Note that this does not imply a global
unicity constraint for xml:id values of theory elements, it only means that
the mapping of theory identifiers to URIs is unambiguous in the dependency
cone of a theory.

In Listing 15.12 we have specified three algebraic theories that gradually
build up a theory of groups importing theory-constitutive statements (sym-
bols, axioms, and definitions) from earlier theories and adding their own con-
tent. The theory semigroup provides symbols for an operation op on a base
set set and has the axioms for closure and associativity of op. The theory
of monoids imports these without modification and uses them to state the
left-unit axiom. The theory monoid then proceeds to add a symbol neut
and an axiom that states that it acts as a left unit with respect to set and
op. The theory group continues this process by adding a symbol inv for the
function that gives inverses and an axiom that states its meaning.

Listing 15.12. A Structured Development of Algebraic Theories in OMDoc

<theory xml:id=”semigroup”>
<symbol name=”set”/><symbol name=”op”/>

3 <axiom xml:id=”closed”> . . . </axiom><axiom xml:id=”assoc”> . . . </axiom>
</theory>

<theory xml:id=”monoid”>
<imports from=”#semigroup”/>

8 <symbol name=”neut”/><symbol name=”setstar”/>
<axiom xml:id=”left−unit”>
<CMP>neut is a left unit for op.</CMP><FMP>∀x ∈ set.op(x, neut) = x</FMP>

</axiom>
<definition xml:id=”setstar.def” for=”setstar” type=”implicit”>

13 <CMP>·∗ subtracts the unit from a set </CMP><FMP>∀S.S∗ = S\{unit}</FMP>
</definition>

</theory>

<theory xml:id=”group”>
18 <imports from=”#monoid”/>

<symbol name=”inv”/>
<axiom xml:id=”left−inv”>
<CMP>For every X ∈ set there is an inverse inv(X) wrt. op.</CMP>

</axiom>
23 </theory>

The example in Listing 15.12 shows that with the notion of theory inher-
itance it is possible to re-use parts of theories and add structure to specifi-
cations. For instance it would be very simple to define a theory of Abelian
semigroups by adding a commutativity axiom.

The set of symbols, axioms, and definitions available for use in proofs in the
importing theory consists of the ones directly specified as symbol, axiom, and
definition elements in the target theory itself (we speak of local axioms and
definitions in this case) and the ones that are inherited from the source theories
via imports elements. Note that these symbols, axioms, and definitions (we

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

15.6 Theories as Structured Contexts 169

call them inherited) can consist of the local ones in the source theories and
the ones that are inherited there.

The local and inherited symbols, definitions, and axioms are the only ones
available to mathematical statements and proofs. If a symbol is not available
in the home theory (the one given by the dominating theory element or the
one specified in the theory attribute of the statement), then it cannot be used
since its semantics is not defined.

15.6.2 OMDoc Theories as Content Dictionaries

In Chapter 13, we have introduced the OpenMath and Content-MathML
representations for mathematical objects and formulae. One of the central
concepts there was the notion that the representation of a symbol includes a
pointer to a document that defines its meaning. In the original OpenMath
standard, these documents are identified as OpenMath content dictionar-
ies, the MathML recommendation is not specific. In the examples above, we
have seen that OMDoc documents can contain definitions of mathematical
concepts and symbols, thus they are also candidates for “defining documents”
for symbols. By the OpenMath2 standard [Bus+04] suitable classes of OM-
Doc documents can act as OpenMath content dictionaries (we call them
OMDoc content dictionaries; see Subsection 22.3.2). The main distin-
guishing feature of OMDoc content dictionaries is that they include theory

elements with symbol declarations (see Section 15.2) that act as the targets
for the pointers in the symbol representations in OpenMath and Content-
MathML. The theory name specified in the xml:id attribute of the theory

element takes the place of the CDname defined in the OpenMath content
dictionary.

Furthermore, the URI specified in the cdbase attribute is the one used for
disambiguation on om:OMS elements (see Section 13.1 for a discussion).

For instance the symbol declaration in Listing 15.1 can be referenced as

<OMS cd=”elAlg” name=”monoid” cdbase=”http://omdoc.org/algebra.omdoc”/>

if it occurs in a theory for elementary algebra whose xml:id attribute has
the value elAlg and which occurs in a resource with the URI http://omdoc.
org/algebra.omdoc or if the cdbase attribute of the theory element has the
value http://omdoc.org/algebra.omdoc.

To be able to act as an OpenMath2 content dictionary format, OMDoc
must be able to express content dictionary metadata (see Listing 5.1 for an
example). For this, the theory element carries some optional attributes that
allow to specify the administrative metadata of OpenMath content dictio-
naries.

The cdstatus attribute specifies the content dictionary status, which
can take one of the following values: official (i.e. approved by the Open-
Math Society), experimental (i.e. under development and thus liable to
change), private (i.e. used by a private group of OpenMath users) or

http://omdoc.org/algebra.omdoc
http://omdoc.org/algebra.omdoc
http://omdoc.org/algebra.omdoc

statements.tex 8754 2010-10-13 11:36:16Z kohlhase

170 15 Mathematical Statements

obsolete (i.e. only for archival purposes). The attributes cdversion and
cdrevision jointly specify the content dictionary version number, which
consists of two parts, a major version and a revision, both of which are non-
negative integers. For details between the relation between content dictionary
status and versions consult the OpenMath standard [Bus+04].

Furthermore, the theory element can have the following attributes:

cdbase for the content dictionary base which, when combined with the con-
tent dictionary name, forms a unique identifier for the content dictionary.
It may or may not refer to an actual location from which it can be re-
trieved.

cdurl for a valid URL where the source file for the content dictionary encod-
ing can be found.

cdreviewdate for the review date of the content dictionary, i.e. the date
until which the content dictionary is guaranteed to remain unchanged.

adt.tex 8685 2010-08-23 08:55:17Z kohlhase

16

Abstract Data Types (Module ADT)

Most specification languages for mathematical theories support definition
mechanisms for sets that are inductively generated by a set of constructors
and recursive functions on these under the heading of abstract data types.
Prominent examples of abstract data types are natural numbers, lists, trees,
etc. The module ADT presented in this chapter extends OMDoc by a con-
cise syntax for abstract data types that follows the model used in the Casl
(Common Abstract Specification Language [Mos04]) standard.

Conceptually, an abstract data type declares a collection of symbols and
axioms that can be used to construct certain mathematical objects and to
group them into sets. For instance, the Peano axioms (see Figure 15.1) intro-
duce the symbols 0 (the number zero), s (the successor function), and N (the
set of natural numbers) and fix their meaning by five axioms. These state that
the set N contains exactly those objects that can be constructed from 0 and
s alone (these symbols are called constructor symbols and the representa-
tions constructor terms). Optionally, an abstract data type can also declare
selector symbols, for (partial) inverses of the constructors. In the case of
natural numbers the predecessor function is a selector for s: it “selects” the
argument n, from which a (non-zero) number s(n) has been constructed.

Following Casl we will call sets of objects that can be represented as con-
structor terms sorts. A sort is called free, iff there are no identities between
constructor terms, i.e. two objects represented by different constructor terms
can never be equal. The sort N of natural numbers is a free sort. An example
of a sort that is not free is the theory of finite sets given by the construc-
tors ∅ and the set insertion function ι , since the set {a} can be obtained
by inserting a into the empty set an arbitrary (positive) number of times; so
e.g. ι(a, ∅) = ι(a, ι(a, ∅)). This kind of sort is called generated, since it only
contains elements that are expressible in the constructors. An abstract data
type is called loose, if it contains elements besides the ones generated by the
constructors. We consider free sorts more strict than generated ones, which
in turn are more strict than loose ones.
In OMDoc, we use the adt element to specify abstract data types possibly adt

adt.tex 8685 2010-08-23 08:55:17Z kohlhase

172 16 Abstract Data Types

Element Attributes D Content

Req. Optional C

adt xml:id, class, style,
parameters

+ sortdef+

sortdef name type, role, scope, class,
style

+ (constructor |
insort)*, recognizer?

constructor name type, scope, class, style + argument*

argument + type, selector?

insort for –
selector name type, scope, role, total,

class, style
+ EMPTY

recognizer name type, scope, role, class,
style

+

Fig. 16.1. Abstract data types in OMDoc

consisting of multiple sorts. It is a theory-constitutive statement and can only
occur as a child of a theory element (see Section 15.1 for a discussion). An
adt element contains one or more sortdef elements that define the sorts and
specify their members and it can carry a parameters attribute that contains
a whitespace-separated list of parameter variable names. If these are present,
they declare type variables that can be used in the specification of the new
sort and constructor symbols see Section ?? for an example.

We will use an augmented representation of the abstract data type of nat-
ural numbers as a running example for introduction of the functionality added
by the ADT module; Listing 16.1 contains the listing of the OMDoc encoding.
In this example, we introduce a second sort P for positive natural numbers to
make it more interesting and to pin down the type of the predecessor function.

A sortdef element is a highly condensed piece of syntax that declares asortdef

sort symbol together with the constructor symbols and their selector sym-
bols of the corresponding sort. It has a required name attribute that specifies
the symbol name, an optional type attribute that can have the values free,
generated, and loose with the meaning discussed above. A sortdef element
contains a set of constructor and insort elements. The latter are emptyconstructor

insort
elements which refer to a sort declared elsewhere in a sortdef with their for
attribute: An insort element with for="〈〈URI〉〉#〈〈name〉〉" specifies that all
the constructors of the sort 〈〈name〉〉 are also constructors for the one defined
in the parent sortdef. Furthermore, the type of a sort given by a sortdef

element can only be as strict as the types of any sorts included by its insort
children.

Listing 16.1 introduces the sort symbols pos-nats (positive natural num-
bers) and nats (natural numbers) , the symbol names are given by the re-
quired name attribute. Since a constructor is in general an n-ary function, a
constructor element contains n argument children that specify the argumentargument

sorts of this function along with possible selector functions. The argument sort
is given as the first child of the argument element: a type element as described
in Subsection 15.2.3. Note that n may be 0 and thus the constructor element
may not have argument children (see for instance the constructor for zero

adt.tex 8685 2010-08-23 08:55:17Z kohlhase

16 Abstract Data Types 173

in Listing 16.1). The first sortdef element there introduces the constructor
symbol succ@Nat for the successor function. This function has one argument,
which is a natural number (i.e. a member of the sort nats).

Sometimes it is convenient to specify the inverses of a constructors that are
functions. For this OMDoc offers the possibility to add an empty selector selector

element as the second child of an argument child of a constructor. The
required attribute name specifies the symbol name, the optional total at-
tribute of the selector element specifies whether the function represented
by this symbol is total (value yes) or partial (value no). In Listing 16.1 the
selector element in the first sortdef introduces a selector symbol for the
successor function succ. As succ is a function from nats to pos-nats, pred
is a total function from pos-nats to nats.

Finally, a sortdef element can contain a recognizer child that specifies recognizer

a symbol for a predicate that is true, iff its argument is of the respective sort.
The name of the predicate symbol is specified in the required name attribute.
Listing 16.1 introduces such a recognizer predicate as the last child of the
sortdef element for the sort pos-nats.

Note that the sortdef, constructor, selector, and recognizer ele-
ments define symbols of the name specified by their name element in the
theory that contains the adt element. To govern the visibility, they carry the
attribute scope (with values global and local) and the attribute role (with
values type, sort, object).

Listing 16.1. The natural numbers using adt in OMDoc

<theory xml:id=”Nat”>
<adt xml:id=”nat−adt”>
<metadata>

4 <dc:title>Natural Numbers as an Abstract Data Type.</dc:title>
<dc:description>The Peano axiomatization of natural numbers.</dc:description>

</metadata>

<sortdef name=”pos−nats” type=”free”>
9 <metadata>

<dc:description>The set of positive natural numbers.</dc:description>
</metadata>
<constructor name=”succ”>
<metadata><dc:description>The successor function.</dc:description></metadata>

14 <argument>
<type><OMOBJ><OMS cd=’Nat’ name=”nats”/></OMOBJ></type>
<selector name=”pred” total=”yes”>
<metadata><dc:description>The predecessor function.</dc:description></metadata>

</selector>
19 </argument>

</constructor>
<recognizer name=”positive”>
<metadata>
<dc:description>

24 The recognizer predicate for positive natural numbers.
</dc:description>

</metadata>
</recognizer>

</sortdef>
29

<sortdef name=”nats” type=”free”>
<metadata><dc:description>The set of natural numbers</dc:description></metadata>

adt.tex 8685 2010-08-23 08:55:17Z kohlhase

174 16 Abstract Data Types

<constructor name=”zero”>
<metadata><dc:description>The number zero.</dc:description></metadata>

34 </constructor>
<insort for=”#pos−nats”/>

</sortdef>
</adt>

</theory>

To summarize Listing 16.1: The abstract data type nat-adt is free and de-
fines two sorts pos-nats and nats for the (positive) natural numbers. The
positive numbers (pos-nats) are generated by the successor function (which
is a constructor) on the natural numbers (all positive natural numbers are
successors). On pos-nats, the inverse pred of succ is total. The set nats of
all natural numbers is defined to be the union of pos-nats and the construc-
tor zero. Note that this definition implies the five well-known Peano Axioms:
the first two specify the constructors, the third and fourth exclude identities
between constructor terms, while the induction axiom states that nats is gen-
erated by zero and succ. The document that contains the nat-adt could also
contain the symbols and axioms defined implicitly in the adt element explic-
itly as symbol and axiom elements for reference. These would then carry the
generated-from attribute with value nat-adt.

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

17

Representing Proofs (Module PF)

Proofs form an essential part of mathematics and modern sciences. Concep-
tually, a proof is a representation of uncontroversial evidence for the truth of
an assertion.

The question of what exactly constitutes a proof has been controversially
discussed (see e.g. [BC01]). The clearest (and most radical) definition is given
by theoretical logic, where a proof is a sequence, or tree, or directed acyclic
graph (DAG) of applications of inference rules from a formally defined logical
calculus, that meets a certain set of well-formedness conditions. There is a
whole zoo of logical calculi that are optimized for various applications. They
have in common that they are extremely explicit and verbose, and that the
proofs even for simple theorems can become very large. The advantage of
having formal and fully explicit proofs is that they can be very easily verified,
even by simple computer programs. We will come back to this notion of proof
in Section 17.4.

In mathematical practice the notion of a proof is more flexible, and more
geared for consumption by humans: any line of argumentation is considered
a proof, if it convinces its readers that it could in principle be expanded to a
formal proof in the sense given above. As the expansion process is extremely
tedious, this option is very seldom carried out explicitly. Moreover, as proofs
are geared towards communication among humans, they are given at vastly
differing levels of abstraction. From a very informal proof idea for the ini-
tiated specialist of the field, who can fill in the details herself, down to a
very detailed account for skeptics or novices which will normally be still well
above the formal level. Furthermore, proofs will usually be tailored to the
specific characteristics of the audience, who may be specialists in one part
of a proof while unfamiliar to the material in others. Typically such proofs
have a sequence/tree/DAG-like structure, where the leaves are natural lan-
guage sentences interspersed with mathematical formulae (or mathematical
vernacular).

Let us consider a proof and its context (Figure 17.1) as it could be found
in a typical elementary math. textbook, only that we have numbered the

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

176 17 Representing Proofs

proof steps for referencing convenience. Figure 17.1 will be used as a running
example throughout this chapter.

Theorem: There are infinitely many prime numbers.
Proof: We need to prove that the set P of all prime numbers is not
finite.

1. We proceed by assuming that P is finite and reaching a
contradiction.

2. Let P be finite.
3. Then P = {p1, . . . , pn} for some pi.

4. Let q
def
= p1 · · · pn + 1.

5. Since for each pi ∈ P we have q > pi, we conclude q /∈ P .
6. We prove the absurdity by showing that q is prime:
7. For each pi ∈ P we have q = pik + 1 for some natural

number k, so pi can not divide q;
8. q must be prime as P is the set of all prime numbers.
9. Thus we have contradicted our assumption (2)

10. and proven the assertion.

Fig. 17.1. A Theorem with a Proof.

Since proofs can be marked up on several levels, we will introduce the
OMDoc markup for proofs in stages: We will first concentrate on proofs as
structured texts, marking up the discourse structure in example Figure 17.1.
Then we will concentrate on the justifications of proof steps, and finally we
will discuss the scoping and hierarchical structure of proofs.

The development of the representational infrastructure in OMDoc has a
long history: From the beginning the format strived to allow structural se-
mantic markup for textbook proofs as well as accommodate a wide range
of formal proof systems without over-committing to a particular system.
However, the proof representation infrastructure from Version 1.1 of OM-
Doc turned out not to be expressive enough to represent the proofs in the
Helm library [Asp+01]. As a consequence, the PF module has been re-
designed [AKSC03] as part of the MoWGLI project [AK02]. The current
version of the PF module is an adaptation of this proposal to be as compat-
ible as possible with earlier versions of OMDoc. It has been validated by
interpreting it as an implementation of the λµµ̃ calculus [SC06] proof repre-
sentation calculus.

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

17.1 Proof Structure 177

17.1 Proof Structure

In this section, we will concentrate on the structure of proofs apparent in
the proof text and introduce the OMDoc infrastructure needed for marking
up this aspect. Even if the proof in Figure 17.1 is very short and simple, we
can observe several characteristics of a typical mathematical proof. The proof
starts with the thesis that is followed by nine main “steps” (numbered from
1 to 10). A very direct representation of the content of Figure 17.1 is given in
Listing 17.1.

Listing 17.1. An OMDoc Representation of Figure 17.1.

<assertion xml:id=”a1”>
2 <CMP>There are infinitely many prime numbers.</CMP>

</assertion>
<proof xml:id=”p” for=”#a1”>
<omtext xml:id=”intro”>
<CMP>We need to prove that the set P of all prime numbers is not finite.</CMP>

7 </omtext>
<derive xml:id=”d1”>
<CMP>We proceed by assuming that P is finite and reaching a contradiction.</CMP>
<method>
<proof xml:id=”p1”>

12 <hypothesis xml:id=”h2”><CMP>Let P be finite.</CMP></hypothesis>
<derive xml:id=”d3”>
<CMP>Then P = {p1, . . . , pn} for some pi.</CMP>
<method><premise xref=”#h2”/></method>

</derive>
17 <symbol name=”q”/>

<definition xml:id=”d4” for=”q” type=”informal”>

<CMP>Let q
def
= p1 · · · pn + 1</CMP>

</definition>
<derive xml:id=”d5”>

22 <CMP> Since for each pi ∈ P we have q > pi, we conclude q /∈ P .</CMP>
</derive>
<omtext xml:id=”c6”>
<CMP>We prove the absurdity by showing that q is prime:</CMP>

</omtext>
27 <derive xml:id=”d7”>

<CMP>For each pi ∈ P we have q = pik + 1 for some
natural number k, so pi can not divide q;</CMP>

<method><premise xref=”#d4”/></method>
</derive>

32 <derive xml:id=”d8”>
<CMP>q must be prime as P is the set of all prime numbers.</CMP>
<method><premise xref=”#d7”/></method>

</derive>
<derive xml:id=”d9”>

37 <CMP>Thus we have contradicted our assumption</CMP>
<method><premise xref=”#d5”/><premise xref=”#d8”/></method>

</derive>
</proof>

</method>
42 </derive>

<derive xml:id=”d10” type=”conclusion”>
<CMP>This proves the assertion.</CMP>

</derive>
</proof>

Proofs are specified by proof elements in OMDoc that have the optional proof

attributes xml:id and theory and the required attribute for. The for at-

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

178 17 Representing Proofs

tribute points to the assertion that is justified by this proof (this can be an
assertion element or a derive proof step (see below), thereby making it
possible to specify expansions of justifications and thus hierarchical proofs).
Note that there can be more than one proof for a given assertion.

Element Attributes D Content

Req. Optional C

proof for theory, xml:id,
class, style

+ (omtext | derive | hypothesis |
symbol | definition)*

proofobject for xml:id, class,
style, theory

+ CMP*, (OMOBJ |m:math |legacy)

hypothesis xml:id, class,
style, inductive

– CMP*, FMP*

derive xml:id, class,
style, type

– CMP*, FMP*, method?

method xref – (OMOBJ |m:math |legacy | premise
| proof | proofobject)*

premise xref rank – EMPTY

Fig. 17.2. The OMDoc Proof Elements

The content of a proof consists of a sequence of proof steps, whose DAG
structure is given by cross-referencing. These proof steps are specified in four
kinds of OMDoc elements:

omtext OMDoc allows this element to allow for intermediate text in proofs
that does not have to have a logical correspondence to a proof step, but
e.g. guides the reader through the proof. Examples for this are remarks by
the proof author, e.g. an explanation why some other proof method will
not work. We can see another example in Listing 17.1 in lines 5-7, where
the comment gives a preview over the course of the proof.

derive elements specify normal proof steps that derive a new claim from al-
ready known ones, from assertions or axioms in the current theory, or from
the assumptions of the assertion that is under consideration in the proof.
See for example lines 12ff in Listing 17.1 for examples of derive proof
steps that only state the local assertion. We will consider the specification
of justifications in detail in Section 17.2 below. The derive element car-derive

ries an optional xml:id attribute for identification and an optional type
to single out special cases of proofs steps.
The value conclusion is reserved for the concluding step of a proof1, i.e.
the one that derives the assertion made in the corresponding theorem.
The value gap is used for proof steps that are not justified (yet): we call
them gap steps. Note that the presence of gap steps allows OMDoc to
specify incomplete proofs as proofs with gap steps.

1 As the argumentative structure of the proof is encoded in the justification struc-
ture to be detailed in Section 17.2, the concluding step of a proof need not be the
last child of a proof element.

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

17.2 Proof Step Justifications 179

hypothesis elements allow to specify local assumptions that allow the hypo-
thetical reasoning discipline needed for instance to specify proof by contra-
diction, by case analysis, or simply to show that A implies B, by assuming
A and then deriving B from this local hypothesis. The scope of an hypoth-
esis extends to the end of the proof element containing it. In Listing 17.1
the classification of step 2 from Figure 17.1 as the hypothesis element hypothesis

h2 forces us to embed it into a derive element with a proof grandchild,
making a structure apparent that was hidden in the original.
An important special case of hypothesis is the case of “inductive hypoth-
esis”, this can be flagged by setting the value of the attribute inductive

to yes; the default value is no.
symbol/definition These elements allow to introduce new local symbols

that are local to the containing proof element. Their meaning is just
as described in Section 15.2, only that the role of the axiom element
described there is taken by the hypothesis element. In Listing 17.1 step
4 in the proof is represented by a symbol/definition pair. Like in the
hypothesis case, the scope of this symbol extends to the end of the proof
element containing it.

These elements contain an informal (natural language) representation of
the proof step in a multilingual CMP group and possibly an FMP element that
gives a formal representation of the claim made by this proof step. A derive

element can furthermore contain a method element that specifies how the as-
sertion is derived from already-known facts (see the next section for details).
All of the proof step elements have an optional xml:id attribute for identifi-
cation and the CSS attributes.

As we have seen above, the content of any proof step is essentially a
Gentzen-style sequent; see Listing 17.3 for an example. This mixed representa-
tion enhances multi-modal proof presentation [Fie97], and the accumulation of
proof information in one structure. Informal proofs can be formalized [Bau99];
formal proofs can be transformed to natural language [HF96]. The first is im-
portant, since it will be initially infeasible to totally formalize all mathematical
proofs needed for the correctness management of the knowledge base.

17.2 Proof Step Justifications

So far we have only concerned ourselves with the linear structure of the proof,
we have identified the proof steps and classified them by their function in
the proof. A central property of the derive elements is that their content
(the local claim) follows from statements that we consider true. These can
be earlier steps in the proof or general knowledge. To convince the reader of
a proof, the steps are often accompanied with a justification. This can be
given either by a logical inference rule or higher-level evidence for the truth
of the claim. The evidence can consist in a proof method that can be used

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

180 17 Representing Proofs

to prove the assertion, or in a separate subproof, that could be presented if
the consumer was unconvinced. Conceptually, both possibilities are equivalent,
since the method can be used to compute the subproof (called its expansion).
Justifications are represented in OMDoc by the method children of derive

elements2 (see Listing 17.2 for an example):
The method element contains a structural specification of the justificationmethod

of the claim made in the FMP of a derive element. So the FMP together with
the method element jointly form the counterpart to the natural language con-
tent of the CMP group, they are sibling to: The FMP formalizes the local claim,
and the method stands for the justification. In Listing 17.2 the formula in the
CMP element corresponds to the claim, whereas the part “By . . . , we have” is
the justification. In other words, a method element specifies a proof method or
inference rule with its arguments that justifies the assertion made in the FMP

elements. It has an optional xref attribute whose target is an OMDoc defi-
nition of an inference rule or proof method.3 A method may have om:OMOBJ,
m:math, legacy, premise, proof, and proofobject4 children. These act as
parameters to the method, e.g. for the repeated universal instantiation method
in Listing 17.2 the parameters are the terms to instantiate the bound variables.

The premise elements are used to refer to already established assertions:premise

other proof steps or statements (given as assertion, definition, or axiom

elements) the method was applied to to obtain the local claim of the proof
step. The premise elements are empty and carry the required attribute xref,
which contains the URI of the assertion. Thus the premise elements specify
the DAG structure of the proof. Note that even if we do not mark up the
method in a justification (e.g. if it is unknown or obvious) it can still make
sense to structure the argument in premise elements. We have done so in
Listing 17.1 to make the dependencies of the argumentation explicit.

If a derive step is a logically (or even mathematically) complex step, an
expansion into sub-steps can be specified in a proof or proofobject element
embedded into the justifying method element. An embedded proof allows us
to specify generic markup for the hierarchic structure of proofs. Expansions

2 The structural and formal justification elements discussed in this section are de-
rived from hierarchical data structures developed for semi-automated theorem
proving (satisfying the logical side). They allow natural language representations
at every level (allowing for natural representation of mathematical vernacular
at multiple levels of abstraction). This proof representation (see [Ben+97] for a
discussion and pointers) is a DAG of nodes which represent the proof steps.

3 At the moment OMDoc does not provide markup for such objects, so that they
should best be represented by symbols with definition where the inference rule
is explained in the CMP (see the lower part of Listing 17.2), and the FMP holds a
content representation for the inference rule, e.g. using the content dictionary [Ko-
hen]. A good enhancement is to encapsulate system-specific encodings of the in-
ference rules in private or code elements and have the xref attribute point to
these.

4 This object is an alternative representation of certain proofs, see Section 17.4.

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

17.2 Proof Step Justifications 181

of nodes justified by method applications are computed, but the information
about the method itself is not discarded in the process as in tactical theorem
provers like Isabelle [Pau94] or NuPrL [Con+86]. Thus, proof nodes may
have justifications at multiple levels of abstraction in an hierarchical proof
data structure. Thus the method elements allow to augment the linear struc-
ture of the proof by a tree/DAG-like secondary structure given by the premise
links. Due to the complex hierarchical structure of proofs, we cannot directly
utilize the tree-like structure provided by XML, but use cross-referencing. The
derive step in Listing 17.2 represents an inner node of the proof tree/DAG
with three children (the elements with identifiers A2, A4, and A5).

Listing 17.2. A derive Proof Step

<proof xml:id=”proof.2.1.2.proof.D2.1” for=”#assertion.2.1.2”>
. . .
<derive xml:id=”D2.1”>

4 <CMP>By <oref xref=”#A2”/>, <ref type=”cite” xref=”#A4”/>, and
<oref xref=”#A5”/> we have z + (a+ (−a)) = (z + a) + (−a).</CMP>

<FMP>z + (a+ (−a)) = (z + a) + (−a)</FMP>
<method xref=”nk−sorts.omdoc#NK−Sorts.forallistar”>
<OMOBJ><OMV name=”z”/></OMOBJ>

9 <OMOBJ><OMV name=”a”/></OMOBJ>
<OMOBJ>−a</OMOBJ>
<premise xref=”#A2”/><premise xref=”#A4”/><premise xref=”#A5”/>

</method>
</derive>

14 . . .
</proof>
. . .
<theory xml:id=”NK−Sorts”>
<metadata>

19 <dc:title>Natural Deduction for Sorted Logic</dc:title>
</metadata>

<symbol name=”forallistar”>
<metadata>

24 <dc:description>Repeated Universal Instantiation></dc:description>
</metadata>

</symbol>
<definition xml:id=” forallistar .def” for=” forallistar ” type=”informal”>
<CMP>Given n parameters, the inference rule ∀I∗ instantiates

29 the first n universal quantifications in the antecedent with them.</CMP>
</definition>
. . .

</theory>

In OMDoc the premise elements must reference proof steps in the current
proof or statements (assertion or axiom elements) in the scope of the current
theory: A statement is in scope of the current theory, if its home theory is
the current theory or imported (directly or indirectly) by the current theory.

Furthermore note that a proof containing a premise element is not self-
contained evidence for the validity of the assertion it proves. Of course it
is only evidence for the validity at all (we call such a proof grounded), if all
the statements that are targets of premise references have grounded proofs

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

182 17 Representing Proofs

themselves5 and the reference relation does not contain cycles. A grounded
proof can be made self-contained by inserting the target statements as derive
elements before the referencing premise and embedding at least one proof

into the derive as a justification.
Let us now consider another proof example (Listing 17.3) to fortify our

intuition.

Listing 17.3. An OMDoc Representation of a Proof by Cases

<assertion xml:id=”t1” theory=”sets”>
<CMP>If a ∈ U or a ∈ V , then a ∈ U ∪ V .</CMP>

3 <FMP>
<assumption xml:id=”t1 a”>a ∈ U ∨ a ∈ V </assumption>
<conclusion xml:id=”t1 c”>a ∈ U ∪ V </conclusion>

</FMP>
</assertion>

8 <proof xml:id=”t1 p1” for=”#t1” theory=”sets”>
<omtext xml:id=”t1 p1 m1”>
<CMP> We prove the assertion by a case analysis.</CMP>

</omtext>
<derive xml:id=”t1 p1 l1”>

13 <CMP>If a ∈ U , then a ∈ U ∪ V .</CMP>
<FMP>
<assumption xml:id=”t1 p1 l1 a”>a ∈ U</assumption>
<conclusion xml:id=”t1 p1 l1 c”>a ∈ U ∪ V </conclusion>

</FMP>
18 <method xref=”sk.omdoc#SK.by definition”>∪</method>

</derive>
<derive xml:id=”t1 p1 l2”>
<CMP>If a ∈ V , then a ∈ U ∪ V .</CMP>
<FMP>

23 <assumption xml:id=”t1 p1 l2 a”>a ∈ V </assumption>
<conclusion xml:id=”t1 p1 l2 c”>a ∈ U ∪ V </conclusion>

</FMP>
<method xref=”sk.omdoc#SK.by definition”>∪</method>

</derive>
28 <derive xml:id=”t1 p1 c”>

<CMP> We have considered both cases, so we have a ∈ U ∪ V .</CMP>
</derive>

</proof>

This proof is in sequent style: The statement of all local claims is in self-
contained FMPs that mark up the statement in assumption/conclusion form,
which makes the logical dependencies explicit. In this example we use inference
rules from the calculus “SK”,Gentzen’s sequent calculus for classical first-order
logic [Gen35], which we assume to be formalized in a theory SK. Note that
local assumptions from the FMP should not be referenced outside the derive

step they were made in. In effect, the derive element serves as a grouping
device for local assumptions.

Note that the same effect as embedding a proof element into a derive step
can be obtained by specifying the proof at top-level and using the optional
for attribute to refer to the identity of the enclosing proof step (given by its

5 For assertion targets this requirement is obvious. Obviously, axioms do not
need proofs, but certain forms of definitions need well-definedness proofs (see
Subsection 15.2.4). These are included in the definition of a grounded proof.

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

17.3 Scoping and Context in a Proof 183

optional xml:id attribute), we have done this in the proof in Listing 17.4,
which expands the derive step with identifier t1 p1 l1 in Listing 17.3.

Listing 17.4. An External Expansion of Step t 1 p1 l1 in Listing 17.3

<definition xml:id=”union.def” for=”union”>
<OMOBJ>∀P,Q, x.x ∈ P ∪Q⇔ x ∈ P ∨ x ∈ Q</OMOBJ>

</definition>
4

<proof xml:id=”t1 p1 l1.exp” for=”#t1 p1 l1”>
<derive xml:id=”t1 p1 l1.d1”>
<FMP>
<assumption xml:id=”t1 p1 l1.d1.a”>a ∈ U</assumption>

9 <conclusion xml:id=”t1 p1 l1.d1.c”>a ∈ U</conclusion>
</FMP>
<method xref=”sk.omdoc#SK.axiom”/>

</derive>
<derive xml:id=”t1 p1 l1.l1.d2”>

14 <FMP>
<assumption xml:id=”t1 p1 l1.d2.a”>a ∈ U</assumption>
<conclusion xml:id=”t1 p1 l1.d2.c”>a ∈ U ∨ a ∈ V </conclusion>

</FMP>
<method xref=”sk.omdoc#SK.orR”><premise xref=”#t1 p1 l1.d1”/></method>

19 </derive>
<derive xml:id=”t1 p1 l1.d3”>
<FMP>
<assumption xml:id=”t1 p1 l1.d3.a”>a ∈ U ∨ a ∈ V </assumption>
<conclusion xml:id=”t1 p1 l1.d3.c”>a ∈ U ∪ V </conclusion>

24 </FMP>
<method xref=”sk.omdoc#SK.definition−rl”>U , V , a
<premise xref=”#unif.def”/>

</method>
</derive>

29 <derive xml:id=”t1 p1 l1.d4”>
<FMP>
<assumption xml:id=”t1 p1 l1.d3.a”>a ∈ U</assumption>
<conclusion xml:id=”t1 p1 l1.d3.c”>a ∈ U ∪ V </conclusion>

</FMP>
34 <method xref=”sk.omdoc#SK.cut”>

<premise xref=”#t1 p1 l1.d2”/>
<premise xref=”#t1 p1 l1.d3”/>

</method>
</derive>

39 </proof>

17.3 Scoping and Context in a Proof

Unlike the sequent style proofs we discussed in the last section, many infor-
mal proofs use the natural deduction style [Gen35], which allows to reason
from local assumptions. We have already seen such hypotheses as hypothesis
elements in Listing 17.1. The main new feature is that hypotheses can be
introduced at some point in the proof, and are discharged later. As a conse-
quence, they can only be used in certain parts of the proof. The hypothesis
is inaccessible for inference outside the nearest ancestor proof element of the
hypothesis.

Let us now reconsider the proof in Figure 17.1. Some of the steps (2, 3,
4, 5, 7) leave the thesis unmodified; these are called forward reasoning or

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

184 17 Representing Proofs

bottom-up proof steps, since they are used to derive new knowledge from
the available one with the aim of reaching the conclusion. Some other steps (1,
6) are used to conclude the (current) thesis by opening new subproofs, each
one characterized with a new local thesis. These steps are called backward
reasoning or top-down proof steps steps, since they are used to reduce a
complex problem (proving the thesis) to several simpler problems (the sub-
proofs). In our example, both backward reasoning steps open just one new
subproof: Step 1 reduces the goal to proving that the finiteness of P implies
a contradiction; step 5 reduces the goal to proving that q is prime.

Step 2 is used to introduce a new hypothesis, whose scope extends from
the point where it is introduced to the end of the current subproof, covering
also all the steps inbetween and in particular all subproofs that are introduced
in these. In our example the scope of the hypothesis that P is finite (step 2 in
Figure 17.1) are steps 3 – 8. In an inductive proof, for instance, the scope of
the inductive hypothesis covers only the proof of the inductive step and not
the proof of the base case (independently from the order adopted to present
them to the user).

Step 4 is similar, it introduces a new symbol q, which is a local declaration
that has scope over lines 4 – 9. The difference between a hypothesis and a
local declaration is that the latter is used to introduce a variable as a new
element in a given set or type, whereas the former, is used to locally state some
property of the variables in scope. For example, “let n be a natural number”
is a declaration, while “suppose n to be a multiple of 2” is a hypothesis.
The introduction of a new hypothesis or local declaration should always be
justified by a proof step that discharges it. In our example the declaration
P is discharged in step 10. Note that in contrast to the representation in
Listing 17.1 we have chosen to view step 6 in Figure 17.1 as a top-down proof
step rather than a proof comment.

To sum up, every proof step is characterized by a current thesis and a
context, which is the set of all the local declarations, hypotheses, and local
definitions in scope. Furthermore, a step can either introduce a new hypothe-
sis, definition, or declaration or can just be a forward or backward reasoning
step. It is a forward reasoning derive step if it leaves the current thesis as it
is. It is a backward reasoning derive step if it opens new subproofs, each one
characterized by a new thesis and possibly a new context.

Listing 17.5. A top-down Representation of the Proof in Figure 17.1.

1 <assertion xml:id=”a1”>
<CMP>There are infinitely many prime numbers.</CMP>

</assertion>
<proof for=”#a1”>
<omtext xml:id=”c0”>

6 <CMP>We need to prove that the set P of all prime numbers is not finite.</CMP>
</omtext>
<derive xml:id=”d1”>
<CMP> We proceed by assuming that P is finite and reaching a contradiction.</CMP>
<method xref=”nk.omdoc#NK.by−contradiction”>

11 <proof>
<hypothesis xml:id=”h2”><CMP>Let P be finite.</CMP></hypothesis>

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

17.4 Formal Proofs as Mathematical Objects 185

<derive xml:id=”d3”><CMP>Then P = {p1, . . . , pn} for some n</CMP></derive>
<symbol name=”q”/>
<definition xml:id=”d4” for=”q” type=”informal”>

16 <CMP>Let q
def
= p1 · · · pn + 1</CMP>

</definition>
<derive xml:id=”d5a”>
<CMP>For each pi ∈ P we have q > pi</CMP>
<method xref=”#Trivial”><premise xref=”#d4”/></method>

21 </derive>
<derive xml:id=”d5b”>
<CMP>q /∈ P</CMP>
<method xref=”#Trivial”><premise xref=”#d5”/></method>

</derive>
26 <derive xml:id=”d6”>

<CMP>We show absurdity by showing that q is prime</CMP>
<FMP>⊥</FMP>
<method xref=”#Contradiction”>
<premise xref=”#d5b”/>

31 <proof>
<derive xml:id=”d7a”>
<CMP>

For each pi ∈ P we have q = pik + 1 for a given natural number k.
</CMP>

36 <method xref=”#By Definition”><premise xref=”#d1”/></method>
</derive>
<derive xml:id=”d7b”>
<CMP>Each pi ∈ P does not divide q</CMP>

</derive>
41 <derive xml:id=”d8”>

<CMP>q is prime</CMP>
<method xref=”#Trivial”>
<premise xref=”#h2”/>
<premise xref=”#p4”/>

46 </method>
</derive>

</proof>
</method>

</derive>
51 </proof>

</method>
</derive>

</proof>

proof elements are considered to be non-assertional in OMDoc, since
they do not make assertions about mathematical objects themselves, but only
justify such assertions. The assertional elements inside the proofs are governed
by the scoping mechanisms discussed there, so that using them in a context
where assertional elements are needed, can be forbidden.

17.4 Formal Proofs as Mathematical Objects

In OMDoc, the notion of fully formal proofs is accommodated by the
proofobject element. In logic, the term proof object is used for term rep- proofobject

resentations for formal proofs via the Curry/Howard/DeBruijn Isomorphism
(see e.g. [Tho91] for an introduction and Figure 17.3 for an example). λ-terms
are among the most succinct representations of calculus-level proofs as they
only document the inference rules. Since they are fully formal, they are very
difficult to read and need specialized proof presentation systems for human

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

186 17 Representing Proofs

consumption. In proof objects inference rules are represented as mathematical
symbols, in our example in Figure 17.3 we have assumed a theory PL0ND for
the calculus of natural deduction in propositional logic which provides the
necessary symbols (see Listing 17.6).

The proofobject element contains an optional multilingual group of CMP
elements which describes the formal proof as well as a proof object which can
be an om:OMOBJ, m:math, or legacy element.

[A ∧B]
∧Er

B

[A ∧B]
∧El

A
∧I

B ∧A
⇒I

A ∧B ⇒ B ∧A

<proofobject xml:id=”ac.p” for=”#and−comm”>
<metadata>
<dc:description>
Assuming A ∧ B we have B and A
from which we can derive B ∧ A.
</dc:description>
</metadata>
<OMOBJ>
<OMBIND id=”andcom.pf”>
<OMS cd=”PL0ND” name=”impliesI”/>
<OMBVAR>
<OMATTR>
<OMATP>
<OMS cd=”PL0ND” name=”type”/>
A ∧ B
</OMATP>
<OMV name=”X”/>
</OMATTR>
</OMBVAR>
<OMA>
<OMS cd=”PL0ND” name=”andI”/>
<OMA>
<OMA>
<OMS cd=”PL0ND” name=”andEr”/>
<OMV name=”X”/>
</OMA>
<OMA>
<OMS cd=”PL0ND” name=”andEl”/>
<OMV name=”X”/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
</proofobject>

The schema on the left shows the proof as a natural deduction proof tree,
the OMDoc representation gives the proof object as a λ term. This term
would be written as the following term in traditional (mathematical) notation:
⇒I(λX : A ∧B. ∧I(∧Er(X),∧El(X)))

Fig. 17.3. A Proof Object for the Commutativity of Conjunction

Note that using OMDoc symbols for inference rules and mathematical
objects for proofs reifies them to the object level and allows us to treat them
at par with any other mathematical objects. We might have the following
theory for natural deduction in propositional logic as a reference target for
the second inference rule in Figure 17.3.

proofs.tex 8754 2010-10-13 11:36:16Z kohlhase

17.4 Formal Proofs as Mathematical Objects 187

Listing 17.6. A Theory for Propositional Natural Deduction

<theory xml:id=”PL0ND”>
<metadata>
<dc:description>The Natural Deduction Calculus for Propositional Logic</dc:description>

</metadata>
5 . . .

<symbol name=”andI”>
<metadata><dc:subject>Conjunction Introduction</dc:subject></metadata>
<type system=”prop−as−types”>A→ B → (A ∧ B)</type>

</symbol>
10

<definition xml:id=”andI.def” for=”andi”>
<CMP>Conjunction introduction, if we can derive A and B,

then we can conclude A ∧ B.</CMP>
</definition>

15 . . .
</theory>

In particular, it is possible to use a definition element to define a derived
inference rule by simply specifying the proof term as a definiens:

<symbol name=”andcom”>
<metadata><dc:description>Commutativity for ∧</dc:description></metadata>
<type system=”prop−as−types”>(A ∧ B)→ (B ∧ A)</type>

4 </symbol>
<definition xml:id=”andcom.def” for=”#andcom” type=”simple”>
<OMOBJ><OMR href=”#andcom.pf”/></OMOBJ>

</definition>

Like proofs, proofobjects elements are considered to be non-assertional in
OMDoc, since they do not make assertions about mathematical objects them-
selves, but only justify such assertions.

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

18

Complex Theories (Modules CTH and DG)

In Section 15.6 we have presented a notion of theory and inheritance that
is sufficient for simple applications like content dictionaries that informally
(though presumably rigorously) define the static meaning of symbols. Expe-
rience in e.g. program verification has shown that this infrastructure is insuf-
ficient for large-scale developments of formal specifications, where reusability
of formal components is the key to managing complexity. For instance, for a
theory of rings we cannot simply inherit the same theory of monoids as both
the additive and multiplicative structure.

In this chapter, we will generalize the inheritance relation from Section 15.6
to that of “theory inclusions”, also called “theory morphisms” or “theory
interpretations” elsewhere [Far93]. This infrastructure allows to structure a
collection of theories into a complex theory graph that particularly supports
modularization and reuse of parts of specifications and theories. This gives
rise to the name “complex theories” of the OMDoc module.

Element Attributes D Content

Required Optional C

theory xml:id, class, style + (〈〈top-level〉〉 | imports
| inclusion)*

imports from xml:id, type, class,
style, conservativity,
conservativity-just

+ morphism?

morphism xml:id, base, class,
style, hiding, type,
consistency, exhaustivity

– requation+, measure?,
ordering?

inclusion via xml:id – EMPTY

theory-inclusion from, to xml:id, class, style + morphism?, obligation*

axiom-inclusion from, to xml:id, class, style + morphism?, obligation*

obligation induced-by,
assertion

xml:id – EMPTY

Fig. 18.1. Complex Theories in OMDoc

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

190 18 Complex Theories

18.1 Inheritance via Translations

Literal inheritance of symbols is often insufficient to re-use mathematical
structures and theories efficiently. Consider for instance the situation in the
elementary algebraic hierarchy: for a theory of rings, we should be able to
inherit the additive group structure from the theory group of groups and the
structure of a multiplicative monoid from the theory monoid: A ring is a set
R together with two operations + and ∗, such that (R,+) is a group with
unit 0 and inverse operation − and (R∗, ∗) is a monoid with unit 1 and base
set R∗: = {r ∈ R

∣∣r 6= 0}. Using the literal inheritance regime introduced so
far, would lead us into a duplication of efforts as we have to define theories
for semigroups and monoids for the operations + and ∗ (see Figure 18.2).

semigroup+

(R,+)

monoid+

(R,+, 0)

group+

(R,+, 0,−)

ring+,∗

(R,R∗,+, 0,−, ∗, 1)

semigroup∗

(R∗, ∗)

monoid∗

(R∗, ∗, 1)

Fig. 18.2. A Theory of Rings via Simple Inheritance

This problem1 can be alleviated by allowing theory inheritance via trans-
lations. Instead of literally inheriting the symbols and axioms from the source
theory, we involve a symbol mapping function (we call this a morphism)
in the process. This function maps source formulae (i.e. built up exclusively
from symbols visible in the source theory) into formulae in the target theory
by translating the source symbols.

Figure 18.3 shows a theory graph that defines a theory of rings by im-
porting the monoid axioms via the morphism σ. With this translation, we do
not have to duplicate the monoid and semigroup theories and can even move
the definition of ·∗ operator into the theory of monoids, where it intuitively
belongs2.

1 which seems negligible in this simple example, but in real life, each instance of
multiple inheritance leads to a multiplication of all dependent theories, which
becomes an exponentially redundant management nightmare.

2 On any monoid M = (S, ◦, e), we have the ·∗ operator, which converts a set

S ⊆M in to S∗: = {r ∈ S
∣∣∣r 6= e}

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

18.1 Inheritance via Translations 191

semigroup

(R,+)

monoid

(R,+, 0)

group

(R,+, 0,−)

ring

(R,+, 0,−, ∗, 1)

σ: =


R 7→ R∗

+ 7→ ∗
0 7→ 1



σ

Fig. 18.3. A Theory of Rings via Morphisms

Formally, we extend the notion of inheritance given in Section 15.6 by
allowing a target theory to import another a source theory via a morphism:
Let S be a theory with theory-constitutive elements3 t1, . . . , tn and σ:S → T
a morphism, if we declare that T imports S via σ, then T inherits the theory-
constitutive statements σ(ti) from S. For instance, the theory of rings inherits
the axiom ∀x.x+ 0 = x from the theory of monoids as σ(∀x.x+ 0 = x) =
∀x.x ∗ 1 = x.

To specify the formula mapping function, module CTH extends the
imports element by allowing it to have a child element morphism, which spec- morphism

ifies a formula mapping by a set of recursive equations using the requation el-
ement described in Section 15.2. The optional attribute type allows to specify
whether the function is really recursive (value recursive) or pattern-defined
(value pattern). As in the case of the definition element, termination of the
defined function can be specified using the optional child elements measure

and ordering, or the optional attributes uniqueness and existence, which
point to uniqueness and existence assertions. Consistency and exhaustivity of
the recursive equations are specified by the optional attributes consistency

and exhaustivity.
Listing 18.1 gives the OMDoc representation of the theory graph in Fig-

ure 18.3, assuming the theories in Listing 15.12.

Listing 18.1. A Theory of Rings by Inheritance Via Renaming

<theory xml:id=”ring”>
<symbol name=”times”/><symbol name=”one”/>

3 <imports xml:id=”add.import” from=”#group” type=”global”/>
<imports xml:id=”mult.import” from=”#monoid” type=”global”>
<morphism>
<requation>
<OMOBJ><OMS cd=”monoid” name=”set”/></OMOBJ>

8 <OMOBJ>
<OMA><OMS cd=”monoid” name=”setstar”/>
<OMS cd=”semigroup” name=”set”/>

</OMA>

3 which may in turn be inherited from other theories

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

192 18 Complex Theories

</OMOBJ>
13 </requation>

<requation>
<OMOBJ><OMS cd=”monoid” name=”op”/></OMOBJ>
<OMOBJ><OMS cd=”ring” name=”times”/></OMOBJ>

</requation>
18 <requation>

<OMOBJ><OMS cd=”monoid” name=”neut”/></OMOBJ>
<OMOBJ><OMS cd=”ring” name=”one”/></OMOBJ>

</requation>
</morphism>

23 </imports>
<axiom xml:id=”ring.distribution”>
<CMP><OMOBJ><OMS cd=”semigroup” name=”op”/></OMOBJ> distributes over
<OMOBJ><OMS cd=”ring” name=”times”/></OMOBJ>

</CMP>
28 </axiom>

</theory>

To conserve space and avoid redundancy, OMDoc morphisms need only
specify the values of symbols that are translated; all other symbols are in-
herited literally. Thus the set of symbols inherited by an imports element
consists of the symbols of the source theory that are not in the domain of the
morphism. In our example, the symbols R, +, 0, −, ∗, 1 are visible in the
theory of rings (and any other symbols the theory of semigroups may have
inherited). Note that we do not have a name clash from multiple inheritance.

Finally, it is possible to hide symbols from the source theory by specifying
them in the hiding attribute. The intended meaning is that the underlying
signature mapping is defined (total) on all symbols in the source theory ex-
cept on the hidden ones. This allows to define symbols that are local to a
given theory, which helps achieve data protection. Unfortunately, there is no
simple interpretation of hiding in the general case in terms of formula trans-
lations, see [Mos04; MAH06] for details. The definition of hiding used there
is more general. The variant used here arises as the special case where the
hiding morphism, which goes against the import direction, is an inclusion;
then the symbols that are not in the image are the hidden ones. If we restrict
ourselves to hiding defined symbols, then the situation becomes simpler to
understand: A morphism that hides a (defined) symbol s will translate the
theory-constitutive elements of the source theory by expanding definitions.
Thus s will not be present in the target theory, but all the contributions of
the theory-constitutive elements of the source theory will have been inherited.
Say, we want to define the concept of a sorting function, i.e. a function that
— given a list L as input — returns a returns a permutation L′ of L that
is ordered. In the situation depicted in Figure 18.4, we would the concept of
an ordering function (a function that returns a permutation of the input list
that is ordered) with the help of predicates perm and ordered. Since these
are only of interest in the context of the definition of the latter, they would
typically be hidden in order to refrain from polluting the name space.

As morphisms often contain common prefixes, the morphism element has
an optional base attribute, which points to a chain of morphisms, whose
composition is taken to be the base of this morphism. The intended meaning

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

18.2 Postulated Theory Inclusions 193

is that the new morphism coincides as a function with the base morphism,
wherever the specified pattern do not match, otherwise their corresponding
values take precedence over those in the base morphism. Concretely, the base

contains a whitespace-separated list of URI references to theory-inclusion,
axiom-inclusion, and imports elements. Note that the order of the refer-
ences matters: they are ordered in order of the path in the local chain, i.e if
we have base="#〈〈ref1〉〉...#〈〈refn〉〉" there must be theory inclusions σi with
xml:id="〈〈refi〉〉", such that the target theory of σi−1 is the source theory of
σi, and such that the source theory of σ1 and the target theory of σn are the
same as those of the current theory inclusion.

Finally, the CTH module adds two the optional attributes conservativity
and conservativity-just to the imports element for stating and justifying
conservativity (see the discussion below).

18.2 Postulated Theory Inclusions

We have seen that inheritance via morphisms provides a powerful mechanism
for structuring and re-using theories and contexts. It turns out that the distin-
guishing feature of theory morphisms is that all theory-constitutive elements
of the source theory are valid in the target theory (possibly after translation).
This can be generalized to obtain even more structuring relations and thus
possibilities for reuse among theories. Before we go into the OMDoc infras-
tructure, we will briefly introduce the mathematical model (see e.g. [Hut00]
for details).

A theory inclusion from a source theory S to a target theory T
is a mapping σ from S objects4 to those of T , such that for every theory-
constitutive statement S of S, σ(S) is provable in T (we say that σ(S) is a
T -theorem).

In OMDoc, we weaken this logical property to a structural one: We say
that a theory-constitutive statement S in theory S is structurally included
in theory T via σ, if there is an assertional statement T in T , such that the
content of T is σ(S). Note that strictly speaking, σ is only defined on formulae,
so that if a statement S is only given by a CMP, σ(S) is not defined. In such
cases, we assume σ(S) to contain a CMP element containing suitably translated
mathematical vernacular. In this view, a structural theory inclusion from
S to T is a morphism σ:S → T , such that every theory-constitutive element
is structurally included in T .

Note that an imports element in a theory T with source theory S as
discussed in Section 18.1 induces a theory inclusion from S into T 5 (the

4 Mathematical objects that can be represented using the only symbols of the source
theory S.

5 Note that in contrast to the inheritance relation induced by the imports elements
the relation induced by general theory inclusions may be cyclic. A cycle just means
that the theories participating in it are semantically equivalent.

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

194 18 Complex Theories

theory-constitutive statements of S are accessible in T after translation and
are therefore structurally included trivially). We call this kind of theory in-
clusion definitional, since it is a theory inclusion by virtue of the definition
of the target theory. For all other theory inclusions (we call them postulated
theory inclusions), we have to establish the theory inclusion property by
proving the translations of the theory-constitutive statements of the source
theory (we call these translated formulae proof obligation).

The benefit of a theory inclusion is that all theorems, proofs, and proof
methods of the source theory can be used (after translation) in the target
theory (see Section 18.4). Obviously, the transfer approach only depends on
the theorem inclusion property, and we can extend its utility by augmenting
the theory graph by more theory morphisms than just the definitional ones
(see [FGT93] for a description of the Imps theorem proving system that makes
heavy use of this idea). We use the infrastructure presented in this chapter to
structure a collection of theories as a graph — the theory graph — where
the nodes are theories and the links are theory inclusions (definitional and
postulated ones).

We call a theory inclusion σ:S → T conservative, iff A is already a
S-theorem for all T -theorems of the from σ(A). If the morphism σ is the
identity, then this means the local axioms in T only affect the local symbols
of T , and do not the part inherited from S. In particular, conservative ex-
tensions of consistent theories cannot be inconsistent. For instance, if all the
local theory-constitutive elements in T are symbol declarations with defini-
tions, then conservativity is guaranteed by the special form of the definitions.
We can specify conservativity of a theory inclusion via the conservativity

attribute. The values conservative and definitional are used for the two
cases discussed above. There is a third value: monomorphism, which we will
not explain here, but refer the reader to [MAH06].

OMDoc implements the concept of postulated theory inclusions in the
top-level theory-inclusion element. It has the required attributes from andtheory-inclusion

to, which point to the source- and target theories and contains a morphism

child element as described above to define the translation function. A subse-
quent (possibly empty) set of obligation elements can be used to mark up
proof obligations for the theory-constitutive elements of the source theory.

An obligation is an empty element whose assertion attribute pointsobligation

to an assertion element that states that the theory-constitutive statement
specified by the induced-by (translated by the morphism in the parent
theory-inclusion) is provable in the target theory. Note that a theory-inclusion
element must contain obligation elements for all theory-constitutive ele-
ments (inherited or local) of the source theory to be correct.

Listing 18.2 shows a theory inclusion from the theory group defined in
Listing 15.12 to itself. The morphism just maps each element of the base set
to its inverse. A good application for this kind of theory morphism is to import
claims for symmetric (e.g. with respect to the function inv, which serves as an

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

18.3 Local/Required Theory Inclusions 195

involution in group) cases via this theory morphism to avoid explicitly having
to prove them (see Section 18.4).

Listing 18.2. A Theory Inclusion for Groups

1 <assertion xml:id=”conv.assoc”>∀x, y, z ∈M.z ◦ (y ◦ x) = (z ◦ y) ◦ x</assertion>
<assertion xml:id=”conv.closed” theory=”semigroup”>∀x, y ∈M.y ◦ x ∈M</assertion>
<assertion xml:id=”left.unit” theory=”monoid”>∀x ∈M.e ◦ x = x</assertion>

<assertion xml:id=”conv.inv” theory=”group”>∀x, y ∈M.x ◦ x−1 = e</assertion>
<theory−inclusion xml:id=”grp−conv−grp” from=”#group” to=”#group”>

6 <morphism><requation>X ◦ Y ; Y ◦X</requation></morphism>
<obligation assertion=”#conv.closed” induced−by=”#closed.ax”/>
<obligation assertion=”#conv.assoc” induced−by=”#assoc.ax”/>
<obligation assertion=”#left.unit” induced−by=”#unit.ax”/>
<obligation assertion=”#conv.inv” induced−by=”#inv.ax”/>

11 </theory−inclusion>

18.3 Local- and Required Theory Inclusions

In some situations, we need to pose well-definedness conditions on theories,
e.g. that a specification of a program follows a certain security model, or that a
parameter theory used for actualization satisfies the assumptions made in the
formal parameter theory; (see Chapter 6 for a discussion). If these conditions
are not met, the theory intuitively does not make sense. So rather than simply
stating (or importing) these assumptions as theory-constitutive statements —
which would make the theory inconsistent, when they are not met — they
can be stated as well-definedness conditions. Usually, these conditions can be
posited as theory inclusions, so checking these conditions is a purely structural
matter, and comes into the realm of OMDoc’s structural methods.

OMDoc provides the empty inclusion element for this purpose. It can inclusion

occur anywhere as a child of a theory element and its via attribute points
to a theory inclusion, which is required to hold in order for the parent theory
to be well-defined.

If we consider for instance the situation in Figure 18.46. There we have a
theory OrdList of lists that is generic in the elements (which is assumed to be
a totally ordered set, since we want to talk about ordered lists). We want to to
instantiate OrdList by applying it to the theory NatOrd of natural numbers
and obtain a theory NatOrdList of lists of natural numbers by importing the
theory OrdList in NatOrdList. This only makes sense, if NatOrd is a totally
ordered set, so we add an inclusion element in the statement of theory
NatOrdList that points to a theory inclusion of TOSet into OrdNat, which
forces us to verify the axioms of TOSet in OrdNat.

Furthermore note, that the inclusion of OrdList into NatOrdList should
not include the TOSet axioms on orderings, since this would defeat the
purpose of making them a precondition to well-definedness of the theory
NatOrdList. Therefore OMDoc follows the “development graph model” put

6 This example is covered in detail in Chapter 6.

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

196 18 Complex Theories

NatOrdList

cons, nil,
0, s,N, <

NatOrd

0, s,N, <
TOSet

Elem,<

OrdList

cons, nil,
Elem,<

imports imports

theory-inclusion

Actualization

imports

induces

theory inclusion

axiom inclusion

imports

local imports

Fig. 18.4. A Structured Specification of Lists (of Natural Numbers)

forward in [Hut00] and generalizes the notion of theory inclusions even fur-
ther: A formula mapping between theories S and T is called a local theory
inclusion or axiom inclusion, if the theory inclusion property holds for the
local theory-constitutive statements of the source theory. To distinguish this
from the notion of a proper theory inclusion — where the theory inclusion
property holds for all theory constitutive statements of S (even the inherited
ones) — we call the latter one global. Of course all global theory inclusions
are also local ones, so that the new notion is a true generalization. Note that
the structural inclusions of an axiom inclusion are not enough to justify trans-
lated source theorems in the target theory.

To allow for a local variant of inheritance, the CTH module adds an at-
tribute type to the imports element. This can take the values global (the
default) and local. In the latter case, only the theory-constitutive statements
that are local to the source theory are imported.

Furthermore, the CTH module introduces the axiom-inclusion elementaxiom-inclusion

for local theory inclusions. This has the same attributes as theory-inclusion:
from to specify source theory, to for the target theory. It also allows obligation
elements as children.

18.4 Induced Assertions and Expositions

The main motivation of theory inclusions is to be able to transport mathe-
matical statements from the source theory to the target theory. In OMDoc,
this operation can be made explicit by the attributes generated-from and
generated-via that the module CTH adds to all mathematical statements.
On a statement T, the second attribute points to a theory inclusion σ whose
target is (imported into the) current theory, the first attribute points to a
statement S in that theory which is of the same type (i.e. has the same OM-
Doc element name) as T. The content of T must be (equivalent to) the
content of S translated by the morphism of σ.

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

18.4 Induced Assertions 197

In the context of the theory inclusion in Listing 18.2, we might have the
following situation:

Listing 18.3. Translating a Statement via a Theory Inclusion

<assertion xml:id=”foo” type=”theorem”>. . .</assertion>
<proof xml:id=”foo.pf” for=”#foo”>. . .</proof>
<assertion xml:id=”target” induced−by=”#foo” induced−via=”#grp−conv−grp”>

4 . . .
</assertion>

Here, the second assertion is induced by the first one via the theory inclusion in
Listing 18.2, the statement of the theorem is about the inverses. In particular,
the proof of the second theorem comes for free, since it can also be induced
from the proof of the first one.

In particular we see that in OMDoc documents, not all statements are
automatically generated by translation e.g. the proof of the second assertion
is not explicitly stated. Mathematical knowledge management systems like
knowledge bases might choose to do so, but at the document level we do
not mandate this, as it would lead to an explosion of the document sizes.
Of course we could cache the transformed proof giving it the same “cache
attribute state”.

Note that not only statements like assertions and proofs can be translated
via theory inclusions, but also whole documents: Say that we have course
materials for elementary algebra introducing monoids and groups via left units
and left inverses, but want to use examples and exercises from a book that
introduces them using right units and right inverses. Assuming that both
are formalized in OMDoc, we can just establish a theory morphism much
like the one in Listing 18.2. Then we can automatically translate the exercises
and examples via this theory inclusion to our own setting by just applying the
morphism to all formulae in the text7 and obtain exercises and examples that
mesh well with our introduction. Of course there is also a theory inclusion in
the other direction, which is an inverse, so our colleague can reuse our course
materials in his right-leaning setting.

Another example is the presence of different normalization factors in
physics or branch cuts in elementary complex functions. In both cases there
is a plethora of definitions, which all describe essentially the same objects
(see e.g. [Bra+02] for an overview over the branch cut situation). Reading
materials that are based on the “wrong” definition is a nuisance at best, and
can lead to serious errors. Being able to adapt documents by translating them
from the author theory to the user theory by a previously established theory
morphism can alleviate both.

7 There may be problems, if mathematical statements are verbalized; this can cur-
rently not be translated directly, since it would involve language processing tools
much beyond the content processing tools described in this book. For the moment,
we assume that the materials are written in a controlled subset of mathematical
vernacular that avoids these problems.

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

198 18 Complex Theories

Mathematics and science are full of such situations, where objects can be
viewed from different angles or in different representations. Moreover, no single
representation is “better” than the other, since different views reveal or high-
light different aspects of the object (see [KK06a] for a systematic account).
Theory inclusions seem uniquely suited to formalize the structure of different
views in mathematics and their interplay, and the structural markup for theo-
ries in OMDoc seems an ideal platform for offering added-value services that
feed on these structures without committing to a particular formalization or
foundation of mathematics.

18.5 Development Graphs (Module DG)

The OMDoc module DG for development graphs complements module
CTH with high-level justifications for the theory inclusions. Concretely, the
module provides an infrastructure for dealing efficiently with the proof obli-
gations induced by theory inclusions and forms the basis for a management
of theory change. We anticipate that the elements introduced in this chapter
will largely be hidden from the casual user of mathematical software systems,
but will form the basis for high-level document- and mathematical knowledge
management services.

18.5.1 Introduction

As we have seen in the example in Listing 18.2, the burden of specifying an
obligation element for each theory-constitutive element of the source theory
can make the establishment of a theory inclusion quite cumbersome — theories
high up in inheritance hierarchies can have a lot (often hundreds) of inherited,
theory-constitutive statements. Even more problematically, such obligations
are a source of redundancy and non-local dependencies, since many of the
theory-constitutive elements are actually inherited from other theories.

Consider for instance the situation in Figure 18.5, where we are interested
in the top theory inclusion Γ . On the basis of theories T1 and T2, theory C1 is
built up via theories A1 and B1. Similarly, theory C2 is built up via A2 and B2

(in the latter, we have a non-trivial non-trivial morphism σ). Let us assume
for the sake of this argument that for Xi ∈ {A,B, C} theories X1 and X2 are
so similar that axiom inclusions (they are indicated by thin dashed arrows in
Figure 18.5 and have the formula-mappings α, β, and γ) are easy to prove8.

To justify Γ , we must prove that the Γ -translations of all the theory-
constitutive statements of C1 are provable in C2. So let statement B be theory-
constitutive for C1, say that it is local in B1, then we already know that β(B) is

8 A common source of situations like this is where the X2 are variants of the X1

theories. Here we might be interested whether C2 still proves the same theories
(and often also in the converse theory inclusion Γ−1 that would prove that the
variants are equivalent).

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

18.5 Development Graphs 199

T1 T2

A1

B1

C1

A2

B2

C2

σ
α

β

γ

Γ

theory inclusion

axiom inclusion

inheritance

Fig. 18.5. A Development Graph with Theory Inclusions

provable in B2 since β is an axiom inclusion. Moreover, we know that σ(β(B))
is provable in C2, since σ is a (definitional, global) theory inclusion. So, if we
have Γ = σ ◦ β, then we are done for B and in fact for all local statements
of B1, since the argument is independent of B. Thus, we have established
the existence of an axiom inclusion from B1 to C2 simply by finding suitable
inclusions and checking translation compatibility.

We will call a situation, where a theory T can be reached by an axiom
inclusion with a subsequent chain of theory inclusions a local chain (with

morphism τ : = σn ◦ · · · ◦ σ1 ◦ σ), if S σ−→ T1 is an axiom inclusion or (local

theory import) and Ti
σi−→ Ti+1 are theory inclusions (or local theory import).

S T1 T2 · · · Tn Tσ σ1 σ2 σn−1 σn

τ = σn ◦ · · · ◦ σ1 ◦ σ

Note that by an argument like the one for B above, a local chain justifies
an axiom inclusion from S into T : all the τ -translations of the local theory-
constitutive statements in S are provable in T .

In our example in Figure 18.5 — given the obvious compatibility assump-
tions on the morphisms which we have not marked in the figure, — we can
justify four new axiom inclusions from the theories T1, T2, A1, and B1 into C2
by the following local chains9.

T1 A2 C2

T2 B2 C2
σ

A1 A2 C2

B1 B2 C2
α

β σ

Thus, for each theory X that C1 inherits from, there is an axiom inclusion
into C2. So for any theory-constitutive statement in C1 (it must be local in
one of the X) we know that it is provable in C2; in other words Γ is a theory

9 Note for the leftmost two chains use the fact that theory inclusions (in our case
definitional ones) are also axiom inclusions by definition.

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

200 18 Complex Theories

inclusion if it is compatible with the morphisms of these axiom inclusions. We
have depicted the situation in Figure 18.6.

T1 T2

A1

B1

C1

A2

B2

C2

σ
α

β

γ

Γ

theory inclusion

axiom inclusion

inheritance

Fig. 18.6. A Decomposition for the theory inclusion Γ

We call a situation where we have a formula mapping S σ−→ T , and an
axiom inclusion X σX−→ T for every theory X that S inherits from a decompo-
sition for σ, if the σX and σ are compatible. As we have seen in the example
above, a decomposition for σ can be used to justify that σ a theory inclusion:
all theory-constitutive elements in S are local in itself or one of the theories X
it inherits from. So if we have axiom inclusions from all of these to T , then all
obligations induced by them are justified and σ is indeed a theory inclusion.

18.5.2 An OMDoc Infrastructure for Development Graphs
(Module DG)

The DG module provides the decomposition element to model justificationdecomposition

by decomposition situations. This empty element can occur at top-level or
inside a theory-inclusion element.

The decomposition element can occur as a child to a theory-inclusion

element and carries the required attribute links that contains a whitespace-
separated list of URI references to the axiom- and theory-inclusion ele-
ments that make up the decomposition situation justifying the parent theory-inclusion
element. Note that the order of references in links is irrelevant. If the
decomposition appears on top-level, then the optional for attribute must
be used to point to the theory-inclusion it justifies. In this situation the
decomposition element behaves towards a theory-inclusion much like a
proof for an assertion.

Furthermore module DG provides path-just elements as children to the
axiom-inclusion elements to justify that this relation holds, much like a
proof element provides a justification for an assertion element for some
property of mathematical objects.

A path-just element justifies an axiom-inclusion by reference to otherpath-just

axiom- or theory-inclusions. Local chains are encoded in the empty path-just

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

18.5 Development Graphs 201

Element Attributes D Content

Required Optional C

decomposition links for – EMPTY

path-just local,
globals

for – EMPTY

theory-inclusion from, to xml:id,
class, style

+ morphism?, (decomposition* |
obligation*)

axiom-inclusion from, to xml:id,
class, style

+ morphism?, (path-just* |
obligation*)

Fig. 18.7. Development Graphs in OMDoc

element via the required attributes local (for the first axiom-inclusion) and
the attribute globals attribute, which contains a whitespace-separated list of
URI references to theory-inclusions. Note that the order of the references
in the globals matters: they are ordered in order of the path in the local
chain, i.e if we have globals="... #ref1 #ref2 ..." there must be theory
inclusions σi with xml:id="refi", such that the target theory of σ1 is the
source theory of σ2.

Like the decomposition element, path-just can appear at top-level, if
it specifies the axiom-inclusion it justifies in the (otherwise optional) for

attribute.
Let us now fortify our intuition by casting the situation in Listings 18.4

to 18.5.2 in OMDoc syntax. Another — more mathematical — example is
carried out in detail in Chapter 7.

Listing 18.4. The OMDoc representation of the theories in Figure 18.5.

<theory xml:id=”t1”>. . .</theory> <theory xml:id=”t2”>. . .</theory>

<theory xml:id=”a1”> <theory xml:id=”b1”>
<imports xml:id=”ima1” from=”#t1”/> <imports xml:id=”imb1” from=”#t2”/>

5 <axiom xml:id=”axa11”>. . .</axiom> <axiom xml:id=”axb11”>. . .</axiom>
<axiom xml:id=”axa12”>. . .</axiom> </theory>

</theory>

<theory xml:id=”a2”> <theory xml:id=”b2”>
10 <imports xml:id=”im1a2” from=”#t1”/> <imports xml:id=”imb2” from=”#t2”/>

<imports xml:id=”im2a2” from=”#t2”/>
<axiom xml:id=”axa21”>. . .</axiom> <axiom xml:id=”axb21”>. . .</axiom>

</theory> </theory>

15 <theory xml:id=”c1”> <theory xml:id=”c2”>
<imports xml:id=”im1c1” from=”#a1”/> <imports xml:id=”im1c2” from=”#a2”/>
<imports xml:id=”im2c1” from=”#b1”/> <imports xml:id=”im2c2” from=”#b2”/>
<axiom xml:id=”axc11”>. . .</axiom> <axiom xml:id=”axc21”>. . .</axiom>

</theory> </theory>

Here we set up the theory structure with the theory inclusions given by the
imports elements (without morphism to simplify the presentation). Note that
these have xml:id attributes, since we need them to construct axiom- and
theory inclusions later. We have also added axioms to induce proof obligations
in the axiom inclusions:

complex-theories.tex 8685 2010-08-23 08:55:17Z kohlhase

202 18 Complex Theories

Listing 18.5. The OMDoc Representation of the Inclusions in Figure 18.5.

1 <axiom−inclusion xml:id=”aia” from=”#a1” to=”#a2”>
<obligation induced−by=”#axa11” assertion=”#th−axa11”/>
<obligation induced−by=”#axa12” assertion=”#th−axa12”/>

</axiom−inclusion>

6 <axiom−inclusion xml:id=”bib” from=”#b1” to=”#b2”>
<obligation induced−by=”#axb11” assertion=”#th−axb1”/>

</axiom−inclusion>

<axiom−inclusion xml:id=”cic” from=”#c1” to=”#c2”>
11 <obligation induced−by=”#axc11” assertion=”#th−axc1”/>

</axiom−inclusion>

We leave out the actual assertions that justify the obligations to conserve
space. From the axiom inclusions, we can now build four more via path justi-
fications:

Listing 18.6. The Induced Axiom Inclusions in Figure 18.5.

<axiom−inclusion xml:id=”t1ic” from=”#t1” to=”#c2”>
<path−just local=”#im1a2” globals=”#im1c2”/>

3 </axiom−inclusion>

<axiom−inclusion xml:id=”t2ic” from=”#t2” to=”#c2”>
<path−just local=”#imb2” globals=”#im2c2”/>
</axiom−inclusion>

8

<axiom−inclusion xml:id=”aic” from=”#a1” to=”#c2”>
<path−just local=”#aia” globals=”#im1c2”/>
</axiom−inclusion>

13 <axiom−inclusion xml:id=”bic” from=”#b1” to=”#c2”>
<path−just local=”#bib” globals=”#im2c2”/>
</axiom−inclusion>

Note that we could also have justified the axiom inclusion t2ic with two
local paths: via the theory A2 and via B2 (assuming the translations work
out). These alternative justifications make the development graph more robust
against change; if one fails, the axiom inclusion still remains justified. Finally,
we can assemble all of this information into a decomposition that justifies the
theory inclusion Γ :

<theory−inclusion xml:id=”tcic” from=”#c1” to=”#c2”>
<decomposition links=”#t1ic #t2ic #aic #bic #cic”/>

</theory−inclusion>

pres.tex 8685 2010-08-23 08:55:17Z kohlhase

19

Notation and Presentation (Module PRES)

The main difference of OMDoc1.3 is that it uses the notation system devel-
oped in [Mül10; KMR08]. This system is already supported by the JOMDoc
system [Jom].

ext.tex 8685 2010-08-23 08:55:17Z kohlhase

ext.tex 8685 2010-08-23 08:55:17Z kohlhase

20

Auxiliary Elements (Module EXT)

Up to now, we have been mainly concerned with providing elements for mark-
ing up the inherent structure of mathematical knowledge in mathematical
statements and theories. Now, we interface OMDoc documents with the In-
ternet in general and mathematical software systems in particular. We can
thereby generate presentations from OMDoc documents where formulae,
statements or even theories that are active components that can directly be
manipulated by the user or mathematical software systems. We call these
documents active documents. For this we have to solve two problems: an
abstract interface for calls to external (web) services1 and a way of storing
application-specific data in OMDoc documents (e.g. as arguments to the
system calls).

The module EXT provides a basic infrastructure for these tasks in OM-
Doc. The main purpose of this module is to serve as an initial point of entry.
We envision that over time, more sophisticated replacements will be developed
driven by applications.

Element Attributes D Content

Req. Optional C

private xml:id, for, theory, requires,
type, reformulates, class, style

+ CMP*, data+

code xml:id, for, theory, requires,
type, class, style

+ CMP*, input?, output?,
effect?, data+

input xml:id, style, class + CMP*, FMP*

output xml:id, style, class + CMP*, FMP*

effect xml:id, style, class + CMP*, FMP*

data format, href, size, original, pto,
pto-version

– <![CDATA[...]]>

Fig. 20.1. The OMDoc Auxiliary Elements for Non-XML Data

1 Compare Chapter 9 in the OMDoc Primer.

ext.tex 8685 2010-08-23 08:55:17Z kohlhase

206 20 Auxiliary Elements

20.1 Non-XML Data and Program Code in OMDoc

The representational infrastructure for mathematical knowledge provided by
OMDoc is sufficient as an output- and library format for mathematical soft-
ware systems like computer algebra systems, theorem provers, or theory de-
velopment systems. In particular, having a standardized output- and library
format like OMDoc will enhance system interoperability, and allows to build
and deploy general storage and library management systems (see Section ??
for an OMDoc example). In fact this was one of the original motivations for
developing the format.

However, most mathematical software systems need to store and communi-
cate system-specific data that cannot be standardized in a general knowledge-
representation format like OMDoc. Examples of this are pieces of program
code, like tactics or proof search heuristics of tactical theorem provers or
linguistic data of proof presentation systems. Only if these data can be inte-
grated into OMDoc, it will become a full storage and communication format
for mathematical software systems. One characteristic of such system-specific
data is that it is often not in XML syntax, or its format is not fixed enough
to warrant for a general XML encoding.

For this kind of data, OMDoc provides the private and code elements.private

code
As the name suggests, the latter is intended for program code2 and the former
for system-specific data that is not program code.

The attributes of these elements are almost identical and contain metadata
information identifying system requirements and relations to other OMDoc
elements. We will first describe the shared attributes and then describe the
elements themselves.

xml:id for identification.
theory specifies the mathematical theory (see Section 15.6) that the data is

associated with.
for allows to attach data to some other OMDoc element. Attaching private

elements to OMDoc elements is the main mechanism for system-specific
extension of OMDoc.

requires specifies other data this element depends upon as a whitespace-
separated list of URI references. This allows to factor private data into
smaller parts, allowing more flexible data storage and retrieval which is
useful for program code or private data that relies on program code. Such
data can be broken up into procedures and the call-hierarchy can be en-
coded in requires attributes. With this information, a storage application
based on OMDoc can always communicate a minimal complete code set
to the requesting application.

2 There is a more elaborate proposal for treating program code in the OMDoc
arena at [Koha], which may be integrated into OMDoc as a separate module in
the future, for the moment we stick to the basic approach.

ext.tex 8685 2010-08-23 08:55:17Z kohlhase

20.1 Non-XML Data and Program Code in OMDoc 207

reformulates (private only) specifies a set of OMDoc elements whose
knowledge content is reformulated by the private element as a whitespace-
separated list of URI references. For instance, the knowledge in the as-
sertion in Listing 20.1 can be used as an algebraic simplification rule in
the Analytica theorem prover [Cla+03] based on the Mathematica
computer algebra system.

The private and code elements contain an optional metadata element
and a set of data elements that contain or reference the actual data.

Listing 20.1. Reformulating Mathematical Knowledge

<assertion xml:id=”ALGX0”>
2 <CMP>If a, b, c, d are numbers, then we have a+ b(c+ d) = a+ bc+ bd.</CMP>

</assertion>
<private xml:id=”alg−expr−1” pto=”Analytica” reformulates=”ALGX0”>
<data format=”mathematica−5.0”>
<![CDATA[SIMPLIFYRULES[a + b ∗(c + d) :> a + b∗c + b∗d /; NumberQ[b]]]]>

7 </data>
</private>

The data element contains the data in a CDATA section. Its pto attribute data

contains a whitespace-separated list of URI references which specifies the set
of systems to which the data are related. The intention of this field is that
the data is visible to all systems, but should only manipulated by a system
that is mentioned here. The pto-version attribute contains a whitespace-
separated list of version number strings; this only makes sense, if the value of
the corresponding pto is a singleton. Specifying this may be necessary, if the
data or even their format change with versions.

If the content of the data element is too large to store directly in the
OMDoc or changes often, then the data element can be augmented by a
link, specified by a URI reference in the href attribute. If the data element is
non-empty and there is a href3, then the optional attribute original spec-
ifies whether the data content (value local) or the external resource (value
external) is the original. The optional size attribute can be used to specify
the content size (if known) or the resource identified in the href attribute.
The data element has the (optional) attribute format to specify the format
the data are in, e.g. image/jpeg or image/gif for image data, text/plain
for text data, binary for system-specific binary data, etc. It is good practice
to use the MIME types [FB96] for this purpose whenever applicable. Note
that in a private or code element, the data elements must differ in their
format attribute. Their order carries no meaning.

In Listing 20.2 we use a private element to specify data for an image4

in various formats, which is useful in a content markup format like OMDoc
as the transformation process can then choose the most suitable one for the
target.

3 e.g. if the data content serves as a cache for the data at the URI, or the data

content fixes a snapshot of the resource at the URI
4 actually Figure 4.1 from Chapter 4

ext.tex 8685 2010-08-23 08:55:17Z kohlhase

208 20 Auxiliary Elements

Listing 20.2. A private Element for an Image

<private xml:id=”legacy”>
2 <metadata>

<dc:title>A fragment of Bourbaki’s Algebra</dc:title>
<dc:creator role=”trl”>Michael Kohlhase</dc:creator>
<dc:date action=”created”>2002−01−03T0703</dc:date>
<dc:description>A fragment of Bourbaki’s Algebra</dc:description>

7 <dc:source>Nicolas Bourbaki, Algebra, Springer Verlag 1974</dc:source>
<dc:type>Text</dc:type>

</metadata>
<data format=”application/x−latex” href=”legacy.tex”/>
<data format=”image/jpg” href=”legacy.jpeg”/>

12 <data format=”application/postscript” href=”legacy.ps”/>
<data format=”application/pdf” href=”legacy.pdf”/>

</private>

The code element is used for embedding pieces of program code into an
OMDoc document. It contains the documentation elements input, output,input

output
and effect that specify the behavior of the procedure defined by the code

effect

fragment. The input element describes the structure and scope of the input
arguments, output the outputs produced by calling this code on these ele-
ments, and effect any side effects the procedure may have. They contain a
multilingual group of CMP elements with an optional FMP group for a formal
description. The latter may be used for program verification purposes. If any
of these elements are missing it means that we may not make any assumptions
about them, not that there are no inputs, outputs or effects. For instance, to
specify that a procedure has no side-effects we need to specify something like

1 <effect><CMP>None.</CMP></effect>

These documentation elements are followed by a set of data elements that
contain or reference the program code itself. Listing 20.5 shows an example
of a code element used to store Java code for an applet.

Listing 20.3. The Program Code for a Java Applet

<code xml:id=”callMint” requires=”org.riaca.cas”>
<metadata>
<dc:description>

4 The multiple integrator applet. It puts up a user interface , queries the user for a
function, which it then integrates by calling one of several computer algebra systems.

</dc:description>
</metadata>
<data format=”application/x−java−applet”>

9 <![CDATA[. . . 〈〈the callMint code goes here〉〉 . . .]]>
</data>
<input><CMP>None: the applet handles input itself.</CMP></input>
<output><CMP>The result of the integration.</CMP></output>
<effect><CMP>None.</CMP></effect>

14 </code>

20.2 Applets and External Objects in OMDoc

Web-based text markup formats like HTML have the concept of an exter-
nal object or “applet”, i.e. a program that can in some way be executed

ext.tex 8685 2010-08-23 08:55:17Z kohlhase

20.2 Applets and External Objects in OMDoc 209

in the browser or web client during document manipulation. This is one of
the primary format-independent ways used to enliven parts of the document.
Other ways are to change the document object model via an embedded pro-
gramming language (e.g. JavaScript). As this method (dynamic HTML) is
format-dependent5, it seems difficult to support in a content markup format
like OMDoc.

The challenge here is to come up with a format-independent representation
of the applet functionality, so that the OMDoc representation can be trans-
formed into the specific form needed by the respective presentation format.
Most user agents for these presentation formats have built-in mechanisms for
processing common data types such as text and various image types. In some
instances the user agent may pass the processing to an external application
(“plug-ins”). These need information about the location of the object data,
the MIME type associated with the object data, and additional values re-
quired for the appropriate processing of the object data by the object handler
at run-time.

Element Attributes D Content

Req. Optional C

omlet data, xml:id, action, show, actuate,
class, style

+ (〈〈CMP content〉〉 | param)*,private*,code*

param name value, valuetype - EMPTY

Fig. 20.2. The OMDoc Elements for External Objects

In OMDoc, we use the omlet element for applets. It generalizes the omlet

HTML applet concept in two ways: The computational engine is not re-
stricted to plug-ins of the browser (we do not know what the result format
and presentation engine will be) and the program code can be included in the
OMDoc document, making document-centered computation easier to man-
age.

Like the xhtml:object tag, the omlet element can be used to wrap any
text. In the OMDoc context, this means that the children of the omlet ele-
ment can be any elements or text that can occur in the CMP element together
with param elements to specify the arguments. The main presentation intu-
ition is that the applet reserves a rectangular space of a given pre-defined size
(specified in the CSS markup in the style attribute; see Listing 20.5) in the
result document presentation, and hands off the presentation and interaction
with the document in this space to the applet process. The data for the exter-
nal object is referenced in two possible ways. Either via the data attribute,
which contains a URI reference that points to an OMDoc code or private

element that is accessible (e.g. in the same OMDoc) or by embedding the

5 In particular, the JavaScript references the HTML DOM, which in our model is
created by a presentation engine on the fly.

ext.tex 8685 2010-08-23 08:55:17Z kohlhase

210 20 Auxiliary Elements

respective code or private elements as children at the end of the omlet el-
ement. This indirection allows us to reuse the machinery for storing code in
OMDocs. For a simple example see Listing 20.5.

The behavior of the external object is specified in the attributes action,
show and actuate attributes6.

The action specified the intended action to be performed with the data.
For most objects, this is clear from the MIME type. Images are to be displayed,
audio formats will be played, and application-specific formats are passed on
to the appropriate plug-in. However, for the latter (and in particular for pro-
gram code), we might actually be interested to display the data in its raw (or
suitably presented) form. The action addresses this need, it has the possi-
ble values execute (pass the data to the appropriate plug-in or execute the
program code), display (display it to the user in audio- or visual form), and
other (the action is left unspecified).

The show attribute is used to communicate the desired presentation of
the ending resource on traversal from the starting resource. It has one of
the values new (display the object in a new document), replace (replace the
current document with the presentation of the external object), embed (replace
the omlet element with the presentation of the external object in the current
document), and other (the presentation is left unspecified).

The actuate attribute is used to communicate the desired timing of the
action specified in the action attribute. Recall that OMDoc documents as
content representations are not intended for direct viewing by the user, but
appropriate presentation formats are derived from it by a “presentation pro-
cess” (which may or may not be incorporated into the user agent). Therefore
the actuate attribute can take the values onPresent (when the presenta-
tion document is generated), onLoad (when the user loads the presentation
document), onRequest (when the user requests it, e.g. by clicking in the pre-
sentation document), and other (the timing is left unspecified).

The simplest form of an omlet is just the embedding of an external ob-
ject like an image as in Listing 20.4, where the data attribute points to
the private element in Listing 20.2. For presentation, e.g. as XHTML in
a modern browser, this would be transformed into an xhtml:object ele-
ment [The02], whose specific attributes are determined by the information
in the omlet element here and those data children of the private element
specified in the data attribute of the omlet that are chosen for presentation
in XHTML. If the action specified in the action attribute is impossible (e.g.
if the contents of the data target cannot be presented), then the content of
the omlet element is processed as a fallback.

Listing 20.4. An omlet for an Image

1 <omlet data=”#legacy” show=”embed”>A Fragment of Bourbaki’s Algebra</omlet>

6 These latter two attributes are modeled after the XLink [DeR+01] attributes
show and actuate.

ext.tex 8685 2010-08-23 08:55:17Z kohlhase

20.2 Applets and External Objects in OMDoc 211

In Listing 20.5 we present an example of a conventional Java applet in a
mathematical text: the data attribute points to a code element, which will be
executed (if the value of the action attribute were display, the code would
be displayed).

Listing 20.5. An omlet that Calls the Java Applet from Listing 20.3.

<omtext xml:id=”monp 1”>
<CMP>
<p>Let practice integration!</p>

4 <p><omlet data=”#callMint” action=”execute” style=”width:320;height:200”>
No plug−in found for callMint!

</omlet></p>
</CMP>

</omtext>

In this example, the Java applet did not need any parameters (compare
the documentation in the input element in Listing 20.3).

In the applet in Listing 20.6 we assume a code fragment or plug-in (in a
code element whose xml:id attribute has the value sendtoTP, which we have
not shown) that processes a set of named arguments (parameter passing with
keywords) and calls the theorem prover, e.g. via a web-service as described in
Chapter 9.

Listing 20.6. An omlet for Connecting to a Theorem Prover

<CMP> Let us prove it interactively:
2 <omlet data=”#sendtoTP” action=”display”>

<param name=”timeout” value=”30” valuetype=”data”/>
<param name=”performative” value=”prove”/>
<param name=”problem” value=”#ALGX0” valuetype=”object”/>
<param name=”description” value=”http://example.org/prob17.html” valuetype=”ref”/>

7 <param name=”instance”>
<OMOBJ>
<OMA><OMS name=”root” cd=”arith1”/>
<OMI>3</OMI><OMI>3</OMI>

</OMA>
12 </OMOBJ>

</param>
Sorry, no theorem prover available!

</omlet>
</CMP>

For parameter passing, we use the param elements which specify a set of param

values that may be required to process the object data by a plug-in at run-
time. Any number of param elements may appear in the content of an omlet

element. Their order does not carry any meaning. The param element carries
the attributes

name This required attribute defines the name of a run-time parameter, as-
sumed to be known by the plug-in. Any two param children of an omlet

element must have different name values.
value This attribute specifies the value of a run-time parameter passed to the

plug-in for the key name. Property values have no meaning to OMDoc;
their meaning is determined by the plug-in in question.

ext.tex 8685 2010-08-23 08:55:17Z kohlhase

212 20 Auxiliary Elements

valuetype This attribute specifies the type of the value attribute. The value
data (the default) means that the value of the value will be passed to
the plug-in as a string. The value ref specifies that the value of the value
attribute is to be interpreted as a URI reference that designates a resource
where run-time values are stored. Finally, the value object specifies that
the value value points to a private or code element that contains a
multi-format collection of data elements that carry the data.

If the param element does not have a value attribute, then it may contain
a list of mathematical objects encoded as om:OMOBJ, m:mathml, or legacy

elements.

quiz.tex 8685 2010-08-23 08:55:17Z kohlhase

21

Exercises (Module QUIZ)

Exercises and study problems are vital parts of mathematical documents like
textbooks or exams, in particular, mathematical exercises contain mathemat-
ical vernacular and pose the same requirements on context like mathematical
statements. Therefore markup for exercises has to be tightly integrated into
the document format, so OMDoc provides a module for them.

Note that the functionality provided in this module is very limited, and
largely serves as a place-holder for more pedagogically informed developments
in the future (see Section ?? and [Gog+03] for an example in the OMDoc
framework).

Element Attributes D Content

Req. Optional C

exercise xml:id, class, style + CMP*,FMP*,hint?,(solution*|mc*)

hint xml:id, class, style + CMP*, FMP*

solution xml:id, for, class, style + 〈〈top-level element〉〉
mc xml:id, for, class, style – choice, hint?, answer

choice xml:id, class, style + CMP*, FMP*

answer verdict xml:id, class, style + CMP*, FMP*

Fig. 21.1. The OMDoc Auxiliary Elements for Exercises

The QUIZ module provides the top-level elements exercise, hint, and exercise

solution. The first one is used for exercises and assessments. The question
statement is represented in the multilingual CMP group followed by a multi-
logic FMP group. This information can be augmented by hints (using the hint

element) and a solution/assessment block (using the solution and mc ele-
ments).

The hint and solution elements can occur as children of exercise; or
outside, referencing it in their optional for attribute. This allows a flexible
positioning of the hints and solutions, e.g. in separate documents that can be
distributed separately from the exercise elements. The hint element con- hint

tains a CMP/FMP group for the hint text. The solution element can contain
solution

quiz.tex 8685 2010-08-23 08:55:17Z kohlhase

214 21 Exercises

any number of OMDoc top-level elements to explain and justify the solution.
This is the case, where the question contains an assertion whose proof is not
displayed and left to the reader. Here, the solution contains a proof.

Listing 21.1. An Exercise from the TEXBook

<exercise xml:id=”TeXBook−18−22”>
<CMP>
<p>Sometimes the condition that defines a set is given as a fairly long

4 English description ; for example consider ‘{p|p and p+2 are prime}’. An
hbox would do the job:</p>

<p style=”display:block;font−family:fixed”>
$\{\,p\mid\hbox{$p$ and $p+2$ are prime}\,\}$

9 </p>

<p>but a long formula like this is troublesome in a paragraph, since an hbox cannot
be broken between lines, and since the glue inside the
<phrase style=”font−family:fixed”>\hbox</phrase> does not vary with the inter−word

14 glue in the line that contains it . Explain how the given formula could be
typeset with line breaks.</p>

</CMP> <hint>
<CMP>Go back and forth between math mode and horizontal mode.</CMP>

</hint>
19 <solution>

<CMP>
<phrase style=”font−family:fixed”>
$\{\,p\mid p$˜and $p+2$ are prime$\,\}$
</phrase>,

24 assuming that <phrase style=”font−family:fixed”>\mathsurround</phrase> is
zero. The more difficult alternative ’<phrase style=”font−family:fixed”>
$\{\,p\mid p\\ {\rm and}\ p+2\rm\ are\ prime\,\}$</phrase>’
is not a solution , because line breaks do not occur at
<phrase style=”font−family:fixed”>\ </phrase> (or at glue of any

29 kin) within math formulas. Of course it may be best to display a formula like
this , instead of breaking it between lines.

</CMP>
</solution>

</exercise>

Multiple-choice exercises (see Listing 21.2) are represented by a group of
mc elements inside an exercise element. An mc element represents a singlemc

choice in a multiple choice element. It contains the elements below (in this
order).

choice for the description of the choice (the text the user gets to see and
is asked to make a decision on). The choice element carries the xml:id,choice

style, and class attributes and contains a CMP/FMP group for the text.
hint (optional) for a hint to the user, see above for a description.
answer for the feedback to the user. This can be the correct answer, or some

other feedback (e.g. another hint, without revealing the correct answer).
The verdict attribute specifies the truth of the answer, it can have the
values true or false. This element is required, inside a mc, since the
verdict is needed. It can be empty if no feedback is available. Further-
more, the answer element carries the xml:id, style, and class attributesanswer

and contains a CMP/FMP group for the text.

quiz.tex 8685 2010-08-23 08:55:17Z kohlhase

21 Exercises 215

Listing 21.2. A Multiple-Choice Exercise in OMDoc

<exercise for=”#ida.c6s1p4.l1” xml:id=”ida.c6s1p4.mc1”>
2 <CMP>

What is the unit element of the semi−group Q with operation a ∗ b = 3ab?
</CMP>
<mc>
<choice><FMP><OMOBJ><OMI>1</OMI></OMOBJ></FMP></choice>

7 <answer verdict=”false”><CMP>No, 1 ∗ 1 = 3 and not 1</CMP></answer>
</mc>
<mc>
<choice><CMP>1/3</CMP></choice>
<answer verdict=”true”></answer>

12 </mc>
<mc>
<choice><CMP>It has no unit.</CMP></choice>
<answer verdict=”false”><CMP>No, try another answer</CMP></answer>

</mc>
17 </exercise>

document-model.tex 8754 2010-10-13 11:36:16Z kohlhase

document-model.tex 8754 2010-10-13 11:36:16Z kohlhase

22

Document Models for OMDoc

In almost all XML applications, there is a tension between the document view
and the object view of data; after all, XML is a document-oriented interop-
erability framework for exchanging data objects. The question, which view is
the correct one for XML in general is hotly debated among XML theorists.
In OMDoc, actually both views make sense in various ways. Mathematical
documents are the objects we try to formalize, they contain knowledge about
mathematical objects that are encoded as formulae, and we arrive at content
markup for mathematical documents by treating knowledge fragments (state-
ments and theories) as objects in their own right that can be inspected and
reasoned about.

In Chapters 13 to 21, we have defined what OMDoc documents look like
and motivated this by the mathematical objects they encode. But we have
not really defined the properties of these documents as objects themselves
(we will speak of the OMDoc document object model (OMDOM)). To
get a feeling for the issues involved, let us take stock of what we mean by the
object view of data. In mathematics, when we define a class of mathematical
objects (e.g. vector spaces), we have to say which objects belong to this class,
and when they are to be considered equal (e.g. vector spaces are equal, iff
they are isomorphic). When defining the intended behavior of operations, we
need to care only about objects of this class, and we can only make use of
properties that are invariant under object equality. In particular, we cannot
use properties of a particular realization of a vector space that are not pre-
served under isomorphism. For document models, we do the same, only that
the objects are documents.

22.1 XML Document Models

XML supports the task of defining a particular class of documents (e.g. the
class of OMDoc documents) with formal grammars such as the document
type definition (DTD) or an XML schema, that can be used for mechanical

document-model.tex 8754 2010-10-13 11:36:16Z kohlhase

218 22 Document Models for OMDoc

document validation. Surprisingly, XML leaves the task of specifying doc-
ument equality to be clarified in the (informal) specifications, such as this
OMDoc specification. As a consequence, current practice for XML applica-
tions is quite varied. For instance, the OpenMath standard (see [Bus+04]
and Section 13.1) gives a mathematical object model for OpenMath objects
that is specified independently of the XML encoding. Other XML applica-
tions like e.g. presentation MathML [Aus+03a] or XHTML [The02] specify
models in form of the intended screen presentation, while still others like the
XSLT [Cla99b] give the operational semantics.

For a formal definition let K be a set of documents. We take a docu-
ment model to be a partial equivalence relation1 X on documents, such
that {d|dXd} = K. In particular, a relation X is an equivalence relation on
K. For a given document model X , let us say that two documents d and d′

are X -equal, iff dXd′. We call a property p X -invariant, iff for all dXd′, p
holds on d whenever p holds on d′.

A possible source of confusion is that documents can admit more than
one document model (see [KK06a] for an exploration of possible document
models for mathematics). Concretely, OMDoc documents admit the OMDoc
document model that we will specify in section Section 22.2 and also the
following four XML document models that can be restricted to OMDoc
documents (as a relation).2

The binary document model interprets files as sequences of bytes. Two doc-
uments are equal, iff they are equal as byte sequence. This is the most
concrete and fine-grained (and thus weakest) document model imaginable.

The lexical document model interprets binary files as sequences of Unicode
characters [Inc03] using an encoding table. Two files may be considered
equal by this document model even though they differ as binary files, if
they have different encodings that map the byte sequences to the same
sequence of Unicode characters.

The XML syntax document model interprets Unicode Files as sequences
consisting of an XML declaration, a DOCTYPE declaration, tags, entity
references, character references, CDATA sections, PCDATA comments,
and processing instructions. At this level, for instance, whitespace char-
acters between XML tags are irrelevant, and XML documents may be
considered the same, if they are different as Unicode sequences.

The XML structure document model interprets documents as XML trees of
elements, attributes, text nodes, processing instructions, and sometimes
comments. In this document model the order of attribute declarations in

1 A partial equivalence relation is a symmetric transitive relation. We will use [d]X
for the equivalence class of d, i.e. [d]X : = {e|dX e}

2 Here we follow Eliotte Rusty Harold’s classification of layers of XML processing
in [Har03], where he distinguishes the binary, lexical, sequence, structure, and
semantic layer, the latter being the document model of the XML application

document-model.tex 8754 2010-10-13 11:36:16Z kohlhase

22.2 The OMDoc Document Model 219

XML elements is immaterial, double and single quotes can be used inter-
changeably for strings, and XML comments (<!--. . . -->) are ignored.

Each of these document models, is suitable for different applications, for in-
stance the lexical document model is the appropriate one for Unicode-aware
editors that interpret the encoding string in the XML declaration and present
the appropriate glyphs to the user, while the binary document model would be
appropriate for a simple ASCII editor. Since the last three document models
are refinements of the XML document model, we will recap this in the next
section and define the OMDoc document model in Section 22.2.

To get a feeling for the issues involved, let us compare the OMDoc ele-
ments in Listings 22.1 to 22.3 below. For instance, the serialization in List-
ing 22.2 is XML-equal to the one in Listing 22.1, but not to the one in
Listing 22.3.

Listing 22.1. An OMDoc Definition

<definition xml:id=”comm−def” for=”comm”>
<CMP xml:lang=”en”>

3 An operation <OMOBJ id=”op”><OMV name=”op”/></OMOBJ>
is called commutative, iff
<OMOBJ id=”comm1”>
<OMA><OMS cd=”relation1” name=”eq”/>
<OMA><OMV name=”op”/><OMV name=”X”/><OMV name=”Y”/></OMA>

8 <OMA><OMV name=”op”/><OMV name=”Y”/><OMV name=”X”/></OMA>
</OMA>

</OMOBJ> for all <OMOBJ id=”x”><OMV name=”X”/></OMOBJ>
and <OMOBJ id=”y”><OMV name=”Y”/></OMOBJ>.

</CMP>
13 <CMP xml:lang=”de”>

Eine Operation <OMOBJ><OMR href=”#op”/></OMOBJ> heißt kommutativ, falls
<OMOBJ><OMR href=”#comm1”/></OMOBJ> für alle
<OMOBJ><OMR href=”#x”/></OMOBJ> und
<OMOBJ><OMR href=”#y”/></OMOBJ>.

18 </CMP>
</definition>

Listing 22.2. An XML-equal serialization for Listing 22.1

1 <definition for=”comm” xml:id=”comm−def” >
. . .
<CMP xml:lang=’de’> <!−− Note the unabbreviated empty element −−>
Eine Operation <OMOBJ><OMR href=”#op”/></OMOBJ> heißt
kommutativ, falls <OMOBJ><OMR href=’comm1’/></OMOBJ> für alle

6 <OMOBJ><OMR href=”#x”/></OMOBJ> und
<OMOBJ><OMR href=’y’/></OMOBJ>.
</CMP>

</definition>

22.2 The OMDoc Document Model

The OMDoc document model extends the XML structure document model
in various ways. We will specify the equality relation in the table below, and
discuss a few general issues here.

document-model.tex 8754 2010-10-13 11:36:16Z kohlhase

220 22 Document Models for OMDoc

The OMDoc document model is guided by the notion of content markup
for mathematical documents. Thus, two document fragments will only be con-
sidered equal, if they have the same abstract structure. For instance, the order
of CMP children of an omtext element is irrelevant, since they form a multilin-
gual group which form the base for multilingual text assembly. Other facets of
the OMDoc document model are motivated by presentation-independence,
for instance the distribution of whitespace is irrelevant even in text nodes,
to allow formatting and reflow in the source code, which is not considered to
change the information content of a text.

Listing 22.3. An OMDoc-Equal Representation for Listings 22.1 and 22.2

1 <definition xml:id=”comm−def” for=”comm”>
<CMP xml:lang=”de”>Eine Operation <OMOBJ><OMR href=”#op”/></OMOBJ>

heißt kommutativ, falls
<OMOBJ id=”comm1”>
<OMA><OMS cd=”relation1” name=”eq”/>

6 <OMA><OMV name=”op”/><OMV name=”X”/><OMV name=”Y”/></OMA>
<OMA><OMV name=”op”/><OMV name=”Y”/><OMV name=”X”/></OMA>

</OMA>
</OMOBJ> für alle <OMOBJ><OMR href=”#x”/></OMOBJ> und
<OMOBJ><OMR href=”#y”/></OMOBJ>.

11 </CMP>
<CMP xml:lang=”en”>

An operation <OMOBJ id=”op”><OMV name=”op”/></OMOBJ>
is called commutative, iff <OMOBJ><OMR href=”#comm1”/></OMOBJ>
for all <OMOBJ id=”x”><OMV name=”X”/></OMOBJ> and

16 <OMOBJ id=”y”><OMV name=”Y”/></OMOBJ>.
</CMP>

</definition>

Compared to other document models, this is a rather weak (but general)
notion of equality. Note in particular, that the OMDoc document model does
not use mathematical equality here, which would make the formula X + Y =
Y +X (the om:OMOBJ with xml:id="comm1" in Listing 22.3 instantiated with
addition for op) mathematically equal to the trivial condition X+Y = X+Y ,
obtained by exchanging the right hand side Y +X of the equality by X + Y ,
which is mathematically equal (but not OMDoc-equal).

Let us now specify (part of) the equality relation by the rules in the table
in Figure 22.1. We have discussed a machine-readable form of these equality
constraints in the XML schema for OMDoc in [KA03].

The last rule in Figure 22.1 is probably the most interesting, as we have
seen in Chapter 11, OMDoc documents have both formal and informal as-
pects, they can contain narrative as well as narrative-structured information.
The latter kind of document contains a formalization of a mathematical the-
ory, as a reference for automated theorem proving systems. There, logical
dependencies play a much greater role than the order of serialization in math-
ematical objects. We call such documents content OMDoc and specify the
value Dataset in the dc:type element of the OMDoc metadata for such doc-
uments. On the other extreme we have human-oriented presentations of math-
ematical knowledge, e.g. for educational purposes, where didactic considera-
tions determine the order of presentation. We call such documents narrative-

document-model.tex 8754 2010-10-13 11:36:16Z kohlhase

22.3 OMDoc Sub-Languages 221

Rule comment elements

1 unordered The order of children of this element is ir-
relevant (as far as permitted by the con-
tent model). For instance only the order of
obligation elements in the axiom-inclusion
element is arbitrary, since the others must
precede them in the content model.

adt axiom-inclusion
metadata symbol code
private presentation
omstyle

2 multi-
group

The order between siblings elements does not
matter, as long as the values of the key at-
tributes differ.

CMP FMP requation
dc:description sortdef
data dc:title solution

3 DAG en-
coding

Directed acyclic graphs built up using om:OMR
elements are equal, iff their tree expansions
are equal.

om:OMR OMDoc reference

4 Dataset If the content of the dc:type element is
Dataset, then the order of the siblings of the
parent metadata element is irrelevant.

dc:type

Fig. 22.1. The OMDoc Document Model

structured and specify this by the value Text (also see the discussion in
Section 12.2)

22.3 OMDoc Sub-Languages

In the last chapters we have described the OMDoc modules. Together, they
make up the OMDoc document format, a very rich format for marking up
the content of a wide variety of mathematical documents. (see Part II for
some worked examples). Of course not all documents need the full breadth of
OMDoc functionality, and on the other hand, not all OMDoc applications
(see Part ?? for examples) support the whole language.

One of the advantages of a modular language design is that it becomes
easy to address this situation by specifying sub-languages that only include
part of the functionality. We will discuss plausible OMDoc sub-languages
and their applications that can be obtained by dropping optional modules
from OMDoc. Figure 22.2 visualizes the sub-languages we will present in
this chapter. The full language OMDoc is at the top, at the bottom is a
minimal sub-language OMDoc Basic, which only contains the required mod-
ules (mathematical documents without them do not really make sense). The
arrows signify language inclusion and are marked with the modules acquired
in the extension.

The sub-language identifiers can be used as values of the modules attribute
on the omgroup and omdoc elements. Used there, they abbreviate the list of
modules these sub-languages contain.

22.3.1 Basic OMDoc

Basic OMDoc is sufficient for very simple mathematical documents that do
not introduce new symbols or concepts, or for early (and non-specific) stages

document-model.tex 8754 2010-10-13 11:36:16Z kohlhase

222 22 Document Models for OMDoc

Basic (MOBJ, DOC, DC, MTXT, RT)

Content Dictionaries

MathWeb

Education

Specification

OMDoc

PRES, ST

EXT

QUIZ

CTH, DG, PF, ADT

CTH, DG, PF, ADT

EXT, QUIZ

Fig. 22.2. OMDoc Sub-Languages and Modules

in the migration process from legacy representations of mathematical mate-
rial (see Section 4.2). This OMDoc sub-language consists of five modules:
we need module MOBJ for mathematical objects and formulae, which are
present in almost all mathematical documents. Module DOC provides the
document infrastructure, and in particular, the root element omdoc. We need
DC for titles, descriptions, and administrative metadata, and module MTXT
so we can state properties about the mathematical objects in omtext ele-
ment. Finally, module RT allows to structured text below the omtext level.
This module is not strictly needed for basic OMDoc, but we have included
it for convenience.

22.3.2 OMDoc Content Dictionaries

Content Dictionaries are used to define the meaning of symbols in the Open-
Math standard [Bus+04], they are the mathematical documents referred to
in the cd attribute of the om:OMS element. To express content dictionaries in
OMDoc, we need to add the module ST to Basic OMDoc. It provides the
possibility to specify the meaning of basic mathematical objects (symbols) by
axioms and definitions together with the infrastructure for inheritance, and
grouping, and allows to reference the symbols defined via their home theory
(see the discussion in Section 15.6).

With this extension alone, OMDoc content dictionaries add support for
multilingual text, simple inheritance for theories, and document structure to
the functionality of OpenMath content dictionaries. Furthermore, OMDoc
content dictionaries allow the conceptual separation of mathematical proper-
ties into constitutive ones and logically redundant ones. The latter of these

document-model.tex 8754 2010-10-13 11:36:16Z kohlhase

22.3 OMDoc Sub-Languages 223

are not strictly essential for content dictionaries, but enhance maintainabil-
ity and readability, they are included in OpenMath content dictionaries for
documentation and explanation.

The sub-language for OMDoc content dictionaries also allows the spec-
ification of notations for the introduced symbols (by module PRES). So the
resulting documents can be used for referencing (as in OpenMath) and as a
resource for deriving presentation information for the symbols defined here.
To get a feeling for this sub-language, see the example in the OMDoc vari-
ant of the OpenMath content dictionary arith1 in Chapter 5, which shows
that the OpenMath content dictionary format is (isomorphic to) a subset
of the OMDoc format. In fact, the OpenMath2 standard only presents the
content dictionary format used here as one of many encodings and specifies
abstract conditions on content dictionaries that the OMDoc encoding below
also meets. Thus OMDoc is a valid content dictionary encoding.

22.3.3 Specification OMDoc

OMDoc content dictionaries are still a relatively lightweight format for the
specification of meaning of mathematical symbols and objects. Large scale for-
mal specification efforts, e.g. for program verification need more structure to
be practical. Specification languages like Casl (Common Algebraic Specifica-
tion Language [Mos04]) offer the necessary infrastructure, but have a syntax
that is not integrated with web standards.

The Specification OMDoc sub-language adds the modules ADT and CTH
to the language of OMDoc content dictionaries. The resulting language is
equivalent to the Casl standard, see [Aut+00; Hut00; MAH06] for the nec-
essary theory.

The structured definition schemata from module ADT allow to specify
abstract data types, sets of objects that are inductively defined from con-
structor symbols. The development graph structure built on the theory mor-
phisms from module CTH allow to make inclusion assertions about theories
that structure fragments of mathematical developments and support a man-
agement of change.

22.3.4 MathWeb OMDoc

OMDoc can be used as a content-oriented basis for web publishing of mathe-
matics. Documents for the web often contain images, applets, code fragments,
and other data, together with mathematical statements and theories.

The OMDoc sub-language MathWeb OMDoc extends the language for
OMDoc content dictionaries by the module EXT, which adds infrastructure
for images, applets, code fragments, and other data.

document-model.tex 8754 2010-10-13 11:36:16Z kohlhase

224 22 Document Models for OMDoc

22.3.5 Educational OMDoc

OMDoc is currently used as a content-oriented basis for various systems for
mathematics education (see e.g. Chapter 8 for an example and discussion).
The OMDoc sub-language Educational OMDoc extends MathWeb OMDoc
by the module QUIZ, which adds infrastructure for exercises and assessments.

22.3.6 Reusing OMDoc modules in other formats

Another application of the modular language design is to share modules with
other XML applications. For instance, formats like DocBook [WM99] or
XHTML [The02] could be extended with the OMDoc statement level. In-
cluding modules MOBJ, DC, and (parts of) MTXT, but not RT and DOC
would result in content formats that mix the document-level structure of these
formats. Another example is the combination of XML-RPC envelopes and
OMDoc documents used for interoperability in Chapter 9.

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Part IV

Appendix

In this appendix, we document the changes of the OMDoc format over the
versions, provide quick reference tables, and discuss the validation helps

changes.tex 8685 2010-08-23 08:55:17Z kohlhase

changes.tex 8685 2010-08-23 08:55:17Z kohlhase

A

Changes to the specification

After about 18 Months of development, Version 1.0 of the OMDoc format
was released on November 1st 2000 to give users a stable interface to base their
documents and systems on. It was adopted by various projects in automated
deduction, algebraic specification, and computer-supported education. The
experience from these projects uncovered a multitude of small deficiencies and
extension possibilities of the format, that have been subsequently discussed
in the OMDoc community.

OMDoc1.1 was released on December 29th 2001 as an attempt to roll
the uncontroversial and non-disruptive part of the extensions and corrections
into a consistent language format. The changes to version 1.0 were largely
conservative, adding optional attributes or child elements. Nevertheless, some
non-conservative changes were introduced, but only to less used parts of the
format or in order to remedy design flaws and inconsistencies of version 1.0.

OMDoc1.3 is the mature version in the OMDoc1 series of specifications.
It contains almost no large-scale changes to the document format, except that
Content-MathML is now allowed as a representation for mathematical ob-
jects. But many of the representational features have been fine-tuned and
brought up to date with the maturing XML technology (e.g. ID attributes
now follow the XML ID specification [MVW05], and the Dublin Core ele-
ments follow the official syntax [DUB03a]). The main development is that the
OMDoc specification, the DTD, and schema are split into a system of interde-
pendent modules that support independent development of certain language
aspects and simpler specification and deployment of sub-languages. Version
1.3 of OMDoc freezes the development so that version 2 can be started off
on the modules.

In the following, we will keep a log on the changes that have occurred in the
released versions of the OMDoc format. We will briefly tabulate the changes
by element name. For the state of an element we will use the shorthands
“dep” for deprecated (i.e. the element is no longer in use in the new OMDoc
version), “cha” for changed, if the element is re-structured (i.e. some additions
and losses), “new” if did not exist in the old OMDoc version, “lib”, if it

changes1.2.tex 8685 2010-08-23 08:55:17Z kohlhase

228 A Changes to the specification

was liberalized (e.g. an attribute was made optional) and finally “aug” for
augmented, i.e. if it has obtained additional children or attributes in the new
OMDoc version.

All changes will be relative to the previous version, starting out with OM-
Doc 1.0.

A.1 Changes from 1.2 to 1.3

The main change from OMDoc1.2 to OMDoc1.3 is the use of the new
notation framework described in Chapter 19. It completely replaces the pre-
sentation archicture of OMDoc1.2.

The other large change is to use the new namespace http://omdoc.org/ns
that will also be used in OMDoc1.2

element state comments cf.

dd cha description items now allow block content
as in XHTML

Section 14.5

bibliography new generates the references Section 11.2

citation new marks up a citation Section 14.5

index new generates the index Section 11.2

li cha list items now allow block content as in
XHTML

Section 14.5

metadata cha the optional attribute inherits dropped,
it was never sufficiently defined.

Section 11.3

presentation del replaced by the notation element. Chapter 19

style del obsolete, since it was never used.

tableofcontents new generates the tableofcontents Section 11.2

tgroup del replaced by the omgroup element, it turns
out that with RelaxNG we can do the nec-
essary validation of theory content after
all.

Chapter 15

A.2 Changes from 1.1 to 1.2

Most of the changes in version 1.2 are motivated by modularization. The goal
was to modularize the specification so that it can be used as a DTD module,
and that restricted sub-languages of OMDoc can be identified.

Perhaps the most disruptive change is in the presentation/style apparatus:
In version 1.1, OMDoc used the style attribute for all elements that have
an id attribute to specify generic style classes for the OMDoc elements. This
was based on a misunderstanding of the XML cascading style sheet (CSS)

http://omdoc.org/ns

changes1.2.tex 8685 2010-08-23 08:55:17Z kohlhase

A.2 Changes from 1.1 to 1.2 229

mechanism [Bos+98], which uses the class attribute to specify this infor-
mation and uses the style attribute to specify CSS directives that override
the class information. This error in Version 1.1 of OMDoc so severely limits
the usefulness for styling that we rename the Version 1.1 of OMDoc style

attribute to class, even though it breaks 1.1-compatible implementations.
Concretely, the Version 1.2 of OMDoc class attribute takes the role of the
Version 1.1 of OMDoc style. and the Version 1.2 of OMDoc style takes
CSS directives.

Furthermore, all xml:id on non-constitutive (see Section 15.1) elements
in OMDoc were made optional.

Version 1.1 of OMDoc files can be upgraded to version 1.2 with the XSLT
style sheet https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/
omdoc1.1adapt1.2.xsl.

element state comments cf.

alternative aug This element can now have theory,
generated-from, and generated-via at-
tributes.

162

argument cha The sort has been replaced by a type

child, so that higher-order sorts can be
specified.

172

assertion aug the assertion element now has an op-
tional for attribute. Furthermore, an op-
tional attribute generated-via has been
added to allow generation via a theory
morphism. Finally, two new attributes
status and just-by have been added to
mark up the deductive status of the asser-
tion.

158

assumption cha This element can now have an attribute
inductive for inductive assumptions. The
natural langauge description in the op-
tional CMP element is no longer allowed, use
a phrase element in a CMP that is a sibling
to the FMP instead.

162

adt aug the adt loses the CMP and commonname chil-
dren, use the Dublin Core metadata el-
ements dc:description and dc:subject

instead. The type attribute is now on
the sortdef element. Furthermore, an
optionala attribute generated-via has
been added to allow generation via a
theory morphism. Finally, an attribute
parameters has been added to allow for
parametric ADTs.

171

https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/omdoc1.1adapt1.2.xsl
https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/omdoc1.1adapt1.2.xsl

changes1.2.tex 8685 2010-08-23 08:55:17Z kohlhase

230 A Changes to the specification

answer cha the answer element does not allow symbol

children any more, if these are needed, the
exercise should have its own theory.

214

attribute aug the attribute element now has a optional
ns attribute for the namespace URI of the
generated attribute node and an attribute
select for an XPath expression that spec-
ifies the value of the generated attribute.

??

axiom aug the axiom element now has an optional for
attribute which can point to a list of sym-
bols. Furthermore, an optional attribute
generated-via has been added to allow
generation via a theory morphism and an
attribute type is now also allowed.

154

axiom-inclusion lib the axiom-inclusion element can
now contain multiple path-just

children to record multiple justifi-
cations. Furthermore, it can now
have theory, generated-from, and
generated-via attributes. New op-
tional attributes conservativity and
conservativity-just for stating and
justifying conservativity.

196

catalogue dep the catalogue mechanism has been elimi-
nated.

choice cha the choice element does not allow symbol

children any more, if these are needed, the
exercise should have its own theory

214

code cha Attributes classid and codebase are
deprecated. The attributes pto and
pto-version have moved to the data

element. The attribute type has been
removed and optional attributes theory,
generated-from, and generated-via have
been added.

206

commonname dep This element is deprecated in favor of a
metadata/dc:subject element.

conclusion cha The natural langauge description in the
optional CMP element is no longer allowed,
use a phrase element in a CMP that is a
sibling to the FMP instead.

140

constructor cha The role attribute is now fixed to object.
The commonname child has been replaced by
an initial metadata element.

172

changes1.2.tex 8685 2010-08-23 08:55:17Z kohlhase

A.2 Changes from 1.1 to 1.2 231

data aug new optional attributes original to spec-
ify whether the external resource ref-
erenced by the href attribute (value
external) or the data content is the orig-
inal (value local). The data element has
acquired attributes pto and pto-version

from the code and private elements.

207

dc:* aug All Dublin Core tags have been lowercased
to synchronize with the tag syntax recom-
mended by the Dublin Core Initiative. The
tags were capitalized in OMDoc1.1. Fur-
thermore, dc:contributor, dc:creator,
dc:publisher have received an optional
xml:id attribute, so that they can be cross-
referenced by the new who of the dc:date

element.

113

decomposition aug The for attribute is now optional, it
need not be given, if the element is a
child of a theory-inclusion element. Fur-
thermore, it can now have a theory,
generated-from, and generated-via at-
tributes.

200

dc:description aug The dc:description can now have the op-
tional xml:id, and CSS attributes

114

definition aug The definition element can now have
the type pattern for pattern-defined func-
tions. This is a degenerate case of the type
inductive. Furthermore, an optional at-
tribute generated-via has been added to
allow generation via a theory morphism.

155

effect aug allows an optional xml:id attribute 208

example aug The example element now has the op-
tional theory attribute that specifies the
home theory. Furthermore, it can now have
attributes theory, generated-from, and
generated-via.

163

exercise cha the exercise element does not allow
symbol children any more, if these are
needed, the exercise should have its
own theory. Furthermore, it can now
have a theory, generated-from, and
generated-via attributes.

213

extradata cha The content of the old extradata el-
ement can now be directly in the
metadata/dc:subject element.

changes1.2.tex 8685 2010-08-23 08:55:17Z kohlhase

232 A Changes to the specification

element aug The element element now allows the map

and separator elements in the body.
Furthermore, it carries the optional at-
tributes crid for parallel markup, cr for
cross-references, and ns for specifying the
namespace.

??

hint aug the hint element can now appear on top-
level and has a for attribute. It does not
allow symbol children any more, if these
are needed, the exercise should have its
own theory. Furthermore, the exercise

can now have a theory, generated-from,
and generated-via attributes.

213

hypothesis cha the discharged-in attribute has been
eliminated. Scoping is now specified in
terms of the enclosing proof element. Fur-
thermore, the symbol child is no longer al-
lowed inside the element. A sibling symbol

should be used.

179

inclusion aug allows optional attributes
xml:id, conservativity, and
conservativity-just for stating and
justifying conservativity.

195

imports lib the xml:id is now optional. New op-
tional attributes conservativity and
conservativity-just for stating and jus-
tifying conservativity.

166

input aug allows an optional xml:id attribute 208

legacy new An element for encapsulating legacy math-
ematics, can be used wherever m:math and
om:OMOBJ are allowed.

134

loc dep The catalogue mechanism has been elimi-
nated.

m:math new Content-MathML is now allowed wher-
ever OpenMath objects were allowed be-
fore.

129

map new this element allows to map its style direc-
tives over a list of e.g. arguments

??

mc aug the mc element can now have a for at-
tribute. It does not allow symbol children
any more, if these are needed, the domi-
nating exercise element should have its
own theory. Furthermore, the mc element
can now have a theory, generated-from,
and generated-via attributes.

214

measure aug allows an optional xml:id attribute 157

changes1.2.tex 8685 2010-08-23 08:55:17Z kohlhase

A.2 Changes from 1.1 to 1.2 233

metacomment dep This element is superseded by the omtext

element.
141

morphism aug The morphism element now carries
the optional attributes consistency,
exhaustivity, hiding, and type. Further-
more the content model allows optional
elements measure and ordering after the
requation children to specify termination
information like in definition.

100

obligation aug allows an optional xml:id attribute 194

omdoc aug This element can now have a theory,
generated-from, and generated-via at-
tributes.

98

omgroup cha The values dataset and labeled-dataset

are deprecated in Version 1.2 of OMDoc,
since we provide tables in module RT;
see Section 14.5 for details. Furthermore,
the element can now have the attributes,
modules, theory, generated-from, and
generated-via.

166

omlet cha omlet can no longer occur at top-level (it
just does not make sense). The data model
for this element has been totally reworked,
inspired by the xhtml:object element.

209

omstyle aug This element can now have
generated-from, and generated-via

attributes. New attribute xref that allows
to inherit the information from another
omstyle element.

??

om:* aug with OpenMath2, the OpenMath ele-
ments carry an optional id attribute for
structure sharing via the om:OMR element.
Furthermore, in OMDoc, they carry cref

attributes for parallel markup with cross-
references.

122

om:OMFOREIGN new The om:OMFOREIGN element can be used to
encapsulate arbitrary XML data in Open-
Math attributions.

125

om:OMR new In the OpenMath2 standard, this element
is the main vehicle of the structure sharing
representation.

126

changes1.2.tex 8685 2010-08-23 08:55:17Z kohlhase

234 A Changes to the specification

omtext aug the type attribute can now also
have the values axiom, definition,
theorem, proposition, lemma,
corollary, postulate, conjecture,
false-conjecture, obligation,
assumption, and formula.
Furthermore, omtext can now
have theory, generated-from, and
generated-via and verbalizes at-
tributes.

141

ordering aug Now allows the optional xml:id and
terminating attributes. The latter points
to a termination assertion.

157

output aug allows an optional xml:id attribute 208

pattern aug this element is no longer used, the pattern
of a recursive equation is determined by
the position as the first child.

path-just aug The element can now appear as a top-level
element, if it does, the attribute for must
point to the axiom-inclusion element it
justifies. It also now allows an optional
xml:id attribute

200

phrase new used to mark up phrases in CMPs and sup-
ply them with identifiers and links to con-
text that can be used for presentation and
referencing.

142

presentation cha The theory is not allowed any more, to
refer to a symbol outside its theory use its
xml:id attribute. The element now also al-
lows a mutilingual CMP group, so that it can
be used as a notation definition element in
mathematical vernacular.

??

private cha The replaces attribute is now called
reformulates. The attributes pto and
pto-version have moved to the data el-
ement. The attribute type has been re-
moved and optional attributes theory,
generated-from, and generated-via have
been added.

206

proof lib The for attribute is now optional to al-
low for proofs as objects of mathematical
discourse. Furthermore, it can now have
generated-from and generated-via at-
tributes.

177

changes1.2.tex 8685 2010-08-23 08:55:17Z kohlhase

A.2 Changes from 1.1 to 1.2 235

proofobject lib The for attribute is now optional to al-
low for proofs as objects of mathematical
discourse. Furthermore, it can now have
generated-from and generated-via at-
tributes.

185

recognizer cha The role attribute was fixed to object.
The commonname child has been replaced
by an initial metadata element.

173

ref aug ref now has an optional xml:id attribute
that identifies it.

??

selector cha The role attribute was fixed to object.
The commonname child has been replaced
by an initial metadata element.

173

solution cha the solution element now allows arbitrary
OMDoc top-level elements as children.
Furthermore, it can now have a theory,
generated-from, and generated-via at-
tributes.

213

sortdef cha The role attribute was fixed to sort. The
type from the adt element is now on the
sortdef element. The commonname child
has been replaced by an initial metadata

element.

172

dc:subject aug The dc:subject can now have the optional
dc:id, and CSS attributes

114

style aug The style element now allows a map ele-
ment in the body

??

symbol cha may no longer contain selector, since
it only makes sense for constructors
in data types. The kind attribute has
been renamed to role for compatibility
with OpenMath2 and can have the
additional values binder, attribution,
semantic-attribution, and error cor-
responding to the OpenMath 2 roles.
Furthermore, an optional attribute
generated-via has been added to allow
generation via a theory morphism.

152

term new the term element can appear in mathemat-
ical text and contain it. It is used to link
technical terms to symbols defined in con-
tent dictionaries via its cd and name at-
tributes.

145

changes1.2.tex 8685 2010-08-23 08:55:17Z kohlhase

236 A Changes to the specification

theory cha the theory element loses the CMP and
commonname children, use the Dublin Core
metadata elements dc:description and
dc:subject instead. The theory element
also gains the optional cdbase attribute
to specify the disambiguating string pre-
scribed for content dictionaries by the
OpenMath2 standard. The xml:id is now
optional, it only needs to be specified, if
the theory has constitutive elements. Fi-
nally, the element has gained the optional
attributes cdurl, cdbase, cdreviewdate,
cdversion, cdrevision, and cdstatus at-
tributes for encoding the management
metadata of OpenMath content dictio-
naries.

165

dc:title aug The dc:title can now have the optional
dc:id, and CSS attributes.

113

tgroup new The tgroup can be used to structure the-
ories like documents.

??

type aug the type element now has the optional
just-by and theory attribute. The first
one points to an assertion or axiom that
justifies the type judgment, the second
specifies the home theory. The system at-
tribute is now optional.
Furthermore, the type element can have
two math objects as children. If it does,
then it is a term declaration, i.e. the first
element is interpreted as a mathematical
object and the second one is interpreted as
its type.
Finally, it can now have generated-from

and generated-via attributes.

155

theory-inclusion aug the theory-inclusion element can now
have obligation and decomposition chil-
dren that justify it. Furthermore, it can
now have a theory, generated-from,
and generated-via attributes. New op-
tional attributes conservativity and
conservativity-just for stating and jus-
tifying conservativity.

194

theory aug the theory element can now be nested. 165

changes1.1.tex 8718 2010-09-22 21:02:12Z kohlhase

A.3 Changes from 1.0 to 1.1 237

use cha can now contain element, text, recurse,
map, and value-of to specify XML con-
tent. We have deprecated the larg-group

and rarg-group attributes, since they were
never used.

??

value aug this element is no longer used, the value of
a recursive equation is determined by the
position as the second child.

with ren the role of this element is now taken by the
phrase element.

142

xslt cha the content of this element need not be es-
caped any more, it is now a valid XSLT
fragment.

??

A.3 Changes from 1.0 to 1.1

Version 1.1 was mainly a bug-fix release that has become necessary by the ex-
periments of encoding legacy material in OMDoc. The changes are relatively
minor, mostly added optional fields. The only non-conservative changes con-
cern the private, hypothesis, sortdef and signature elements. OMDoc
files can be upgraded to version 1.1 with the XSLT style sheet https://svn.
omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/omdoc1.0adapt1.1.xsl.

element state comments cf.

attribute new presentation of attributes for XML ele-
ments

??

alternative cha new form of the alternative-def el-
ement, it can now also used as an
alternative to axiom. Compared to
alternative-def it has a new optional
attribute generated-by to show that an
assertion is generated by expanding a
some other element like adt.

162

alternative-def dep new form is alternative, since there can
be alternative axioms too.

argument cha attribute sort is now of type IDREF, since
it must be local in the definition.

172

assertion aug more values for the type attribute, new
optional attribute generated-by to show
that an assertion is generated by expand-
ing a definition or an adt. New optional
attribute just-by.

158

assertion-just dep this is now obligation

https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/omdoc1.0adapt1.1.xsl
https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/omdoc1.0adapt1.1.xsl

changes1.1.tex 8718 2010-09-22 21:02:12Z kohlhase

238 A Changes to the specification

axiom aug new optional attribute generated-by to
show that an axiom is generated by ex-
panding a definition.

154

axiom-inclusion cha now allows a CMP group for descriptive
text, includes a set of obligation ele-
ments instead of an assertion-just. The
timestamp attribute is deprecated, use
dc:date with appropriate action instead

196

CMP cha the attribute format is now deprecated,
it makes no sense, since we are more strict
and consistent about CMP content. CMP

now allows an optional id attribute.

138

code cha Attributes width and height now in
omlet, got attributes classid and
codebase from private. Attribute
format moved to data children.
The multilingual group of CMP ele-
ments for description is deprecated,
use metadata/dc:description instead.
Child element data may appear multi-
ple times (with different values of the
format).

206

constructor aug new optional child recognizer for a rec-
ognizer predicate

172

Coverage dep this Dublin Core element specifies the
place or time which the publication’s con-
tents addresses. This does not seem ap-
propriate for the mathematical content of
OMDoc.

data aug new optional attributes size to specify
the size of the data file that is referenced
by the href attribute and format for the
format the data is in.

207

dc:date aug new optional who attribute that can be
used to specify who did the action on
this date.

114

Translator dep this element is not part of Dublin Core,
it got into OMDoc by mistake, we use
dc:contributor with role=trl for this.

114

decomposition aug has a new required id attribute. It is no
longer a child of theory-inclusion, but
specifies which theory-inclusion it jus-
tifies by the new required attribute for.

200

changes1.1.tex 8718 2010-09-22 21:02:12Z kohlhase

A.3 Changes from 1.0 to 1.1 239

definition aug new optional children measure and
ordering to specify termination of recur-
sive definitions. New optional attribute
generated-by to show that it is gener-
ated by expanding a definition.

155

element new presentation of XML elements ??

FMP aug now allows multiple conclusion ele-
ments, to represent general Gentzen-type
sequents (not only natural deduction.)
FMP now allows an optional id attribute.

139

hypothesis cha new required attribute discharged-in

to specify the derive element that dis-
charges this hypothesis.

179

measure new specifies a measure function (as an
OMOBJ)

157

metadata aug new optional attribute inherits allows
to inherit metadata from other declara-
tions

100

method cha first child that used to be an om:OMSTR

or ref element is now moved into a re-
quired xref attribute that holds an URI
that points to the element that defines
the method. The om:OMOBJ content of the
other children (they were parameter el-
ements) is now directly included in the
method element.

180

obligation new takes over the role of assertion-just.

omgroup aug also allows the elements that can only
appear in theory elements, so that
omgroups can also be used for group-
ing inside theory elements. The type

attribute is now restrained to one
of narrative, sequence, alternative,
contrast.

166

omlet aug obtained attributes width and height

from private. New optional attributes
action for the action to be taken when
activated, and data a URIref to data in
a private element. New optional attribute
type for the type of the applet.

209

omstyle new for specifying the style of OMDoc ele-
ments

??

omtext cha the from is deprecated, we only leave the
for attribute, to specify the referential
character of the type.

141

ordering new specifies a well-founded ordering (as an
OMOBJ)

157

changes1.1.tex 8718 2010-09-22 21:02:12Z kohlhase

240 A Changes to the specification

parameter dep the om:OMOBJ element child is now di-
rectly a child of method

pattern cha the child can be an arbitraryOpenMath
element.

premise cha new optional attribute rank for the im-
portance in the inference rule. The old
href attribute is renamed to xref to be
consistent with other cross-referencing.

presentation aug New attribute xref that allows to
inherit the information from another
presentation element. New attribute
theory to specify the theory the symbol
is from; without this, referencing in OM-
Doc is not unique.
The parent attribute has been renamed
to role and now takes the values
applied, binding, and key, since we want
to be less OpenMath-centric

??

private cha new optional attribute for to point to
an OMDoc element it provides data for.
As a consequence, private elements are
no longer allowed in other OMDoc ele-
ments, only on top-level. New attribute
replaces as a pointer to the OMDoc el-
ements that are replaced by the system-
specific information in this element. Old
attributes width and height now in
omlet. Attribute format moved to data

children.
The descriptive CMP elements are depre-
cated, use metadata/dc:description in-
stead.
Child element data may appear multi-
ple times (with different values of the
format). The attributes classid and
codebase are deprecated, since they only
make sense on the code element.

q 206

proof cha attribute theory is now optional, since
the element can appear inside a theory

element.

177

proofobject cha attribute theory is now optional, since
the element can appear inside a theory

element.

177

recognizer new specifies the recognizer predicate of a
sort.

173

recurse new recursive calls to presentation in style. ??

ref cha attribute kind renamed to type. ??

changes.tex 8685 2010-08-23 08:55:17Z kohlhase

A.3 Changes from 1.0 to 1.1 241

selector cha the old type attribute (had values total

and partial) is deprecated, its duty is
now carried by an attribute total (values
yes and no).

173

signature dep for the moment

sortdef cha has a mandatory name attribute, other-
wise the defined symbol has no name.

172

style new allows to specify style information in
presentation and omstyle elements us-
ing a simplified OMDoc-internalized ver-
sion of XSLT.

??

symbol aug new optional attribute generated-by to
show that it is generated by expanding a
definition.

152

text new presentation of text in omstyle. ??

theory-inclusion cha now allows CMP group for descriptive text,
no longer has a decomposition child,
this is now attached by its for attribute.
The timestamp attribute is deprecated,
use dc:date with appropriate action in-
stead.

194

type aug can now also appear on top-level. Has
an optional id attribute for identification,
and an optional for attribute to point to
a symbol element it declares type infor-
mation for.

155

use aug New attribute element allows to spec-
ify that the content should be encased in
an XML element with the attribute-value
pairs specified in the string specified in
the attribute attributes.

??

value-of new presentation of values in style. ??

with new used to supply fragments of text in CMPs
with style and id attributes that can be
used for presentation and referencing.

142

xslt new allows to embed XSLT into
presentation and omstyle elements.

??

quickref.tex 8718 2010-09-22 21:02:12Z kohlhase

quickref.tex 8718 2010-09-22 21:02:12Z kohlhase

B

Quick-Reference Table to the OMDoc Elements

Element p. Mod. Required Optional D Content

Attribs Attribs C

adt 171 ADT xml:id, type,
style, class,
theory,
generated-from,
generated-via

+ sortdef+

alternative 162 ST for,
entailed-by,
entails,
entailed-by-thm,
entails-thm

xml:id,
type, theory,
generated-from,
generated-via,
uniqueness,
exhaustivity,
consistency,
existence,
style, class

+ CMP*, (FMP|
requation*|
(OMOBJ |m:math
|legacy)*)

answer 214 QUIZ verdict xml:id,
style, class

+ CMP*, FMP*

m:apply 130 MML id,
xlink:href

– bvar?,〈〈CMel〉〉*

argument 172 ADT sort + selector?

assertion 158 ST xml:id,
type, theory,
generated-from,
generated-via,
style, class

+ CMP*, FMP*

assumption 140 MTXT xml:id,
inductive,
style, class

+ CMP*, (OMOBJ
|m:math
|legacy)?

attribute ?? PRES name – (value-of|
text)*

axiom 154 ST name xml:id, type,
generated-from,
generated-via,
style, class

+ CMP*, FMP*

axiom-inclusion196 CTH from, to xml:id,
style, class,
theory,
generated-from,
generated-via

+ morphism?,
(path-just|
obligation*)

m:bvar 130 MML id,
xlink:href

– ci*

quickref.tex 8718 2010-09-22 21:02:12Z kohlhase

244 B Quick-Reference

m:ci 129 MML id,
xlink:href

– PCDATA

m:cn 129 MML id,
xlink:href

– ([0-9]|,|.)
(*|e([0-9]|,|.)*)?

choice 214 QUIZ xml:id,
style, class

+ CMP*, FMP*

CMP 138 MTXT xml:lang,
xml:id

– (text| OMOBJ
|m:math |legacy
| with | term |
omlet)*

code 206 EXT xml:id,
for, theory,
generated-from,
generated-via,
requires,
style, class

+ input?, output?,
effect?, data+

conclusion 140 MTXT xml:id,
style, class

+ CMP*, (OMOBJ
|m:math
|legacy)?

constructor 172 ADT name type, scope,
style, class,
theory,
generated-from,
generated-via

+ argument*,
recognizer?

dc:contributor 114 DC xml:id, role,
style, class

– 〈〈text〉〉

dc:creator 114 DC xml:id, role,
style, class

– 〈〈text〉〉

m:csymbol 129 MML definitionURL id,
xlink:href

– EMPTY

data 207 EXT format,
href, size,
original

– <![CDATA[...]]>

dc:date 114 DC action, who – ISO 8601 norm

dd 147 RT xml:id,
style,
class, index,
verbalizes

+ CMPcontent

di 147 RT xml:id,
style,
class, index,
verbalizes

+ dt+,dd*

dl 147 RT xml:id,
style,
class, index,
verbalizes

+ li*

dt 147 RT xml:id,
style,
class, index,
verbalizes

+ CMPcontent

decomposition 200 DG links theory,
generated-from,
generated-via

– EMPTY

definition 155 ST xml:id, for uniqueness,
existence,
consistency,
exhaustivity,
type,
generated-from,
generated-via,
style, class

+ CMP*, (FMP|
requation+|
OMOBJ |m:math
|legacy)?,
measure?,
ordering?

dc:description 114 DC xml:lang – CMPcontent
derive 178 PF xml:id,

style, class
– CMP*, FMP?,

method?

quickref.tex 8718 2010-09-22 21:02:12Z kohlhase

B Quick-Reference 245

effect 208 EXT xml:id,
style, class

– CMP*,FMP*

element ?? PRES name xml:id, cr,
ns

– (attribute|
element| text|
recurse)*

example 163 ST for xml:id, type,
assertion,
proof, style,
class,
theory,
generated-from,
generated-via

+ CMP*| (OMOBJ
|m:math
|legacy)?

exercise 213 QUIZ xml:id, type,
for, from,
style, class,
theory,
generated-from,
generated-via

+ CMP*, FMP*,
hint?,
(solution*|mc*)

FMP 139 MTXT logic, xml:id – (assumption*,
conclusion*)|OMOBJ
|m:math |legacy

dc:format 115 DC – fixed:
"application/omdoc+xml"

hint 213 QUIZ xml:id,
style, class,
theory,
generated-from,
generated-via

+ CMP*, FMP*

hypothesis 179 PF xml:id,
style, class,
inductive

– CMP*, FMP*

dc:identifier 115 DC scheme – ANY

ide 144 RT index xml:id,sort-by,see,
seealso,
links, style,
class

– idp*

idp 144 RT xml:id,sort-by,see,
seealso,
links, style,
class

– CMPcontent

idt 144 RT style, class – CMPcontent
idx 144 RT xml:id,sort-by,see,

seealso,
links, style,
class

– idt?,idp+

ignore 101 DOC type, comment – ANY

imports 166 CTH from xml:id, type,
style, class

+ morphism?

inclusion 195 CTH for xml:id –
input 208 EXT xml:id,

style, class
– CMP*,FMP*

insort 172 ADT for –

dc:language 115 DC – ISO 8601 norm

li 146 RT xml:id,
style,
class, index,
verbalizes

– Math Vernacular

cc:license 118 CC jurisdiction – permissions,
prohibitions,
requirements

quickref.tex 8718 2010-09-22 21:02:12Z kohlhase

246 B Quick-Reference

link 147 RT xml:id,
style,
class, index,
verbalizes

– Math Vernacular

m:math 129 MML id,
xlink:href

– 〈〈CMel〉〉+

mc 214 QUIZ xml:id,
style, class,
theory,
generated-from,
generated-via

– choice, hint?,
answer

measure 157 ST xml:id – OMOBJ |m:math
|legacy

metadata 100 DC – (dc-element)*
method 180 PF xref – (OMOBJ |m:math

|legacy| premise
| proof |
proofobject)*

morphism 191 CTH xml:id, base,
consistency,
exhaustivity,
type, hiding,
style, class

– requation*,
measure?,
ordering?

note 143 RT type,xml:id,
style,
class, index,
verbalizes

– Math Vernacular

obligation 194 CTH induced-by,
assertion

xml:id – EMPTY

om:OMA 122 OM id, cdbase – 〈〈OMel〉〉*
om:OMATTR 124 OM id, cdbase – 〈〈OMel〉〉
om:OMATP 124 OM cdbase – (OMS, (〈〈OMel〉〉 |

om:OMFOREIGN))+

om:OMB 125 OM id, class,
style, class

– #PCDATA

om:OMBIND 123 OM id, cdbase – 〈〈OMel〉〉,
om:OMBVAR,
〈〈OMel〉〉?

om:OMBVAR 124 OM – (om:OMV |
om:OMATTR)+

om:OMFOREIGN 125 OM id, cdbase – ANY

omdoc 98 DOC xml:id,type,
version,
style, class,
xmlns,
theory,
generated-from,
generated-via

+ (top-level ele-
ment)*

om:OME 125 OM xml:id – (〈〈OMel〉〉)?
om:OMR 126 OM href –
om:OMF 125 OM id, dec, hex – #PCDATA

omgroup 166 DOC xml:id, type,
style, class,
modules,
theory,
generated-from,
generated-via

+ top-level element*

ol 146 RT xml:id,
style,
class, index,
verbalizes

– li*

om:OMI 125 OM id, class,
style

– [0-9]*

quickref.tex 8718 2010-09-22 21:02:12Z kohlhase

B Quick-Reference 247

omlet 209 EXT id, argstr,
type,
function,
action, data,
style, class

+ ANY

om:OMOBJ 122 OM id, cdbase,
class, style

– 〈〈OMel〉〉?

omstyle ?? PRES element for, xml:id,
xref, style,
class

– (style|xslt)*

om:OMS 122 OM cd, name class, style – EMPTY

omtext 141 MTXT xml:id, type,
for, from,
style,
theory,
generated-from,
generated-via

+ CMP+, FMP?

om:OMV 122 OM name class, style – EMPTY

ordering 157 ST xml:id – OMOBJ |m:math
|legacy

output 208 EXT xml:id,
style, class

– CMP*,FMP*

p 138 RT xml:id,
style,
class, index,
verbalizes

– Math Vernacular

param 211 EXT name value,
valuetype

– EMPTY

path-just 200 DG local,
globals

for, xml:id – EMPTY

cc:permissions 119 CC reproduction,
distribution,
derivative works

– EMPTY

premise 180 PF xref – EMPTY

presentation ?? PRES for xml:id, xref,
fixity, role,
lbrack,
rbrack,
separator,
bracket-style,
style, class,
precedence,
crossref-symbol

– (use | xslt |
style)*

private 206 EXT xml:id,
for, theory,
generated-from,
generated-via,
requires,
reformulates,
style, class

+ data+

cc:prohibitions119 CC commercial use – EMPTY

proof 177 PF xml:id,
for,theory,
generated-from,
generated-via,
style, class

+ (symbol |
definition |
omtext | derive
| hypothesis)*

proofobject 185 PF xml:id,
for, theory,
generated-from,
generated-via,
style, class

+ CMP*, (OMOBJ
|m:math |legacy)

dc:publisher 114 DC xml:id,
style, class

– ANY

ref ?? DOC xref, type – ANY

quickref.tex 8718 2010-09-22 21:02:12Z kohlhase

248 B Quick-Reference

recognizer 173 ADT name type, scope,
role, style,
class

+

recurse ?? PRES select – EMPTY

dc:relation 115 DC – ANY

requation 157 ST xml:id,
style, class

– (OMOBJ |m:math
|legacy),(OMOBJ
|m:math |legacy)

cc:requirements119 CC notice,
copyleft,
attribution

– EMPTY

dc:rights 115 DC – ANY

selector 173 ADT name type, scope,
role, total,
style, class

+

solution 213 QUIZ xml:id, for,
style, class,
theory,
generated-from,
generated-via

+ (CMP*, FMP*) |
proof

sortdef 172 ADT name role, scope,
style, class

+ (constructor|insort)*

dc:source 115 DC – ANY

style ?? PRES format xml:lang,
requires

– (element | text
| recurse |
value-of)*

dc:subject 114 DC xml:lang – CMPcontent
symbol 152 ST name role, scope,

style,
class,generated-from,generated-via

+ type*

table 147 RT xml:id,
style,
class, index,
verbalizes

– tr*

term 145 MTXT cd, name xml:id, role,
style, class

– CMP content

text ?? PRES – #PCDATA

td 147 RT xml:id,
style,
class, index,
verbalizes

– Math Vernacular

th 147 RT xml:id,
style,
class, index,
verbalizes

– Math Vernacular

theory 165 ST xml:id cdbase,
style, class

+ (statement|theory)*

theory-inclusion194 CTH from, to xml:id,
style, class,
theory,
generated-from,
generated-via

+ (morphism,
decomposition?)

tr 147 RT xml:id,
style,
class, index,
verbalizes

– (td|th)*

dc:title 113 DC xml:lang – CMPcontent
type 155 ST system xml:id, for,

style, class
– CMP*, (OMOBJ

|m:math |legacy)

dc:type 115 DC – fixed: "Dataset"
or "Text" or
"Collection"

quickref.tex 8718 2010-09-22 21:02:12Z kohlhase

B Quick-Reference 249

ul 146 RT xml:id,
style,
class, index,
verbalizes

– li*

use ?? PRES format xml:lang,
requires,
fixity,
lbrack,
rbrack,
separator,
crossref-symbol,
element,
attributes

– (use | xslt |
style)*

value-of ?? PRES select – EMPTY

phrase 142 MTXT xml:id,
style,
class, index,
verbalizes,
type

– CMP content

xslt ?? PRES format xml:lang,
requires

– XSLT fragment

quickref-attributes.tex 8754 2010-10-13 11:36:16Z kohlhase

quickref-attributes.tex 8754 2010-10-13 11:36:16Z kohlhase

C

Quick-Reference Table to the OMDoc
Attributes

Attribute element Values

action dc:date unspecified

specifies the action taken on the document on this date.

action omlet execute, display, other

specifies the action to be taken when executing the omlet, the
value is application-defined.

actuate omlet onPresent, onLoad, onRequest,

other

specifies the timing of the action specified in the action at-
tribute

assertion example

specifies the assertion that states that the objects given in the
example really have the expected properties.

assertion obligation

specifies the assertion that states that the translation of the
statement in the source theory specified by the induced-by at-
tribute is valid in the target theory.

attributes use

the attribute string for the start tag of the XML element substi-
tuted for the brackets (this is specified in the element attribute).

attribution cc:requirements required, not required

Specifies whether the copyright holder/author must be given
credit in derivative works

base morphism

specifies another morphism that should be used as a base for
expansion in the definition of this morphism

bracket-style presentation, use lisp, math

specifies whether a function application is of the form f(a, b) or
(fab)

cd om:OMS

specifies the content dictionary of an OpenMath symbol

quickref-attributes.tex 8754 2010-10-13 11:36:16Z kohlhase

252 C Table of Attributes

cd term

specifies the content dictionary of a technical term

cdbase om:*

specifies the base URI of the content dictionaries used in an
OpenMath object

cdreviewdate theory

specifies the date until which the content dictionary will remain
unchanged

cdrevision theory

specifies the minor version number of the content dictionary

cdstatus theory official, experimental,

private, obsolete

specifies the content dictionary status

cdurl theory

the main URL, where the newest version of the content dictio-
nary can be found

cdversion theory

specifies the major version number of the content dictionary

comment ignore

specifies a reason why we want to ignore the contents

crossref-symbol presentation, use all, brackets, lbrack, no,

rbrack, separator, yes

specifies whether cross-references to the symbol definition should
be generated in the output format.

class *

specifies the CSS class

commercial use cc:permissions permitted, prohibited

specifies, whether commercial use of the document with this
license is permitted

consistency morphism, definition OMDoc reference

points to an assertion stating that the cases are consistent, i.e.
that they give the same values, where they overlap

copyleft cc:restrictions required, not required

specifies whether derived works must be licensed with the same
license as the current document.

cr element yes/no

specifies whether an xlink:href cross-reference should be set
on the result element.

cref om:* URI reference

extra attribute for cross-references in parallel markup

crid element XPath expression

the path to the sub-element that corresponds to the result ele-
ment.

crossref-symbol presentation, use no, yes, brackets, separator,

lbrack, rbrack, all

quickref-attributes.tex 8754 2010-10-13 11:36:16Z kohlhase

C Table of Attributes 253

specifies which generated presentation elements should carry
cross-references to the definition.

data omlet

points to a private element that contains the data for this omlet

definitionURL m:* URI

points to the definition of a mathematical concept

derivative workscc:permissions permitted, not permitted

specifies whether the document may be used for making deriva-
tive works.

distribution cc:permissions permitted,not permitted

specifies whether distribution of the current document fragment
is permitted.

element use

the XML element tags to be substituted for the brackets.

element omstyle

the XML element, the presentation information contained in the
omstyle element should be applied to.

encoding m:annotation,om:OMFOREIGNMIME type of the content

specifies the format of the content

entails,

entailed-by

alternative

specifies the equivalent formulations of a definition or axiom

entails-thm,

entailed-by-thm

alternative

specifies the entailment statements for equivalent formulations
of a definition or axiom

exhaustivity morphism, definition OMDoc reference

points to an assertion that states that the cases are exhaustive.

existence definition OMDoc reference

points to an assertion that states that the symbol described in
an implicit definition exists

fixity presentation assoc, infix, postfix, prefix

specifies where the function symbol-of a function application
should be displayed in the output format

function omlet

specifies the function to be called when this omlet is activated.

format data

specifies the format of the data specified by a data element. The
value should e.g. be a MIME type [FB96].

for *

can be used to reference an element by its unique identifier given
in its xml:id attribute.

formalism legacy URI reference

specifies the formalism in which the content is expressed

format legacy URI reference

specifies the encoding format of the content

quickref-attributes.tex 8754 2010-10-13 11:36:16Z kohlhase

254 C Table of Attributes

format use cmml, default, html,

mathematica, pmml, TeX,...

specifies the output format for which the notation is specified

from imports,

theory-inclusion,

axiom-inclusion

URI reference

pointer to source theory of a theory morphism

from omtext URI reference

points to the source of a relation given by a text type

generated-from top-level elements URI reference

points to a higher-level syntax element, that generates this state-
ment.

generated-via top-level elements,... URI reference

points to a theory-morphism, via which it is translated from the
element pointed to by the generated-from attribute.

globals path-just

points to the axiom-inclusions or theory-inclusions that is
the rest of the inclusion path.

hiding morphism

specifies the names of symbols that are in the domain of the
morphism

href data, link, om:OMR URI reference

a URI to an external file containing the data.

xml:id

associates a unique identifier to an element, which can thus be
referenced by an for or xref attribute.

xml:base

specifies a base URL for a resource fragment

index on RT elements

A path identifier to establish multilingual correspondence

induced-by obligation

points to the statement in the source theory that induces this
proof obligation

inductive assumption, hypothesis yes, no

Marks an assumption or hypothesis inductive.

jurisdiction cc:license IANA Top level Domain

designator

specifies the country of jurisdiction for a Creative Commons
license

just-by type

points to an assertion that states the type property in question.

role symbol, constructor,

recognizer, selector,

sortdef

object, type, sort,

binder, attribution,

semantic-attribution, error

specifies the role (possible syntactic roles) of the symbol in this
declaration.

quickref-attributes.tex 8754 2010-10-13 11:36:16Z kohlhase

C Table of Attributes 255

role dc:creator,dc:contributorMARC relators

specifies the role of a person who has contributed to the docu-
ment

role presentation applied, binding, key

specifies which role of the symbol is annotated with notation
information

lbrack presentation, use

the left bracket to use in the notation of a function symbol

links decomposition

specifies a list of theory- or axiom-inclusions that justify (by
decomposition) the theory-inclusion specified in the for at-
tribute.

local path-just

points to the axiom-inclusion that is the first element in the
path.

logic FMP token

specifies the logical system used to encode the property.

modules omdoc, omgroup module and sub-language

shorthands, URI reference

specifies the modules or OMDoc sub-language used in this doc-
ument fragment

name om:OMS, om:OMV, symbol,

term

the name of a concept referenced by a symbol, variable, or tech-
nical term.

name attribute, element

the local name of generated element.

name param

the name of a parameter for an external object.

notice cc:requirements required, not required

specifies whether copyright and license notices must be kept in-
tact in distributed copies of this document

ns element, attribute URI

specifies the namespace URI of the generated element or at-
tribute node

original data local, external

specifies whether the local copy in the data element is the orig-
inal or the external resource pointed to by the href attribute.

parameters adt

The list of formal parameters of a higher-order abstract data
type

precedence presentation

the precedence of a function symbol (for elision of brackets)

just-by assertion

specifies a list of URIs to proofs or other justifications for the
proof status given in the status attribute.

quickref-attributes.tex 8754 2010-10-13 11:36:16Z kohlhase

256 C Table of Attributes

pto,

pto-version

private, code

specifies the system and its version this data or code is private
to

rank premise

specifies the rank (importance) of a premise

rbrack presentation, use

the right bracket to use in the notation of a function symbol

reformulates private

points to a set of elements whose content is reformulated by the
content of the private element for the system.

reproduction cc:permissions permitted,not permitted

specifies whether reproduction of the current document frag-
ment is permitted by the licensor

requires private, code, use,

xslt, style

URI reference

points to a code element that is needed for the execution of this
data by the system.

role dc:creator,

dc:collaborator

aft, ant, aqt, aui, aut, clb,

edt, ths, trc, trl

the MARC relator code for the contribution of the individual.

role phrase, term

the role of the phrase annotation

role presentation applied, binding, key

specifies for which role (as the head of a function application, as
a binding symbol, or as a key in a attribution, or as a stand-alone
symbol (the default)) of the symbol presentation is intended

scheme dc:identifier scheme name

specifies the identification scheme (e.g. ISBN) of a resource

scope symbol global, local

specifies the visibility of the symbol declared. This is a very
crude specification, it is better to use theories and importing to
specify symbol accessibility.

select map, recurse, value-of XPath expression

specifies the path to the sub-expression to act on

separator presentation, use

the separator for the arguments to use in the notation of a func-
tion symbol

show omlet new, replace, embed, other

specifies the desired presentation of the external object.

size data

specifies the size the data specified by a data element. The value
should be number of kilobytes

sort argument

specifies the argument sort of the constructor

style *

quickref-attributes.tex 8754 2010-10-13 11:36:16Z kohlhase

C Table of Attributes 257

specifies a token for a presentation style to be picked up in a
presentation element.

system type

A token that specifies the logical type system that governs the
type specified in the type element.

theory *

specifies the home theory of an OMDoc statement.

to theory-inclusion,

axiom-inclusion

specifies the target theory

total selector no, yes

specifies whether the symbol declared here is a total or partial
function.

type adt free, generated, loose

defines the semantics of an abstract data type free = no junk,
no confusion, generated = no junk, loose is the general case.

type assertion theorem, lemma, corollary,

conjecture, false-conjecture,

obligation, postulate,

formula, assumption,

proposition

tells you more about the intention of the assertion

type definition implicit, inductive, obj,

recursive, simple

specifies the definition principle

type derive conclusion, gap

singles out special proof steps: conclusions and gaps (unjustified
proof steps)

type example against, for

specifies whether the objects in this example support or falsify
some conjecture

type ignore

specifies the type of error, if ignore is used for in-place error
markup

type imports global, local

local imports only concern the assumptions directly stated in
the theory. global imports also concern the ones the source
theory inherits.

type morphism

specifies whether the morphism is recursive or merely pattern-
defined

type omgroup, omdoc enumeration, sequence, itemize

the first three give the text category, the second three are used
for generalized tables

quickref-attributes.tex 8754 2010-10-13 11:36:16Z kohlhase

258 C Table of Attributes

type omtext abstract, antithesis, comment,

conclusion, elaboration,

evidence, introduction,

motivation, thesis

a specification of the intention of the text fragment, in reference
to context.

type phrase

the linguistic or mathematical type of the phrase

uniqueness definition URI reference

points to an assertion that states the uniqueness of the concept
described in an implicit definition

value param

specifies the value of the parameter

valuetype param

specifies the type of the value of the parameter

verbalizes on RT elements URI references

contains a whitespace-separated list of pointers to OMDoc ele-
ments that are verbalized

verdict answer

specifies the truth or falsity of the answer. This can be used e.g.
by a grading application.

version omdoc 1.2

specifies the version of the document, so that the right DTD is
used

version cc:license

specifies the version of the Creative Commons license that ap-
plies, if not present, the newest one is assumed

via inclusion

points to a theory-inclusion that is required for an actualization

who dc:date

specifies who acted on the document fragment

xml:lang CMP, dc:* ISO 639 code

the language the text in the element is expressed in.

xml:lang use, xslt, style whitespace-separated list of

ISO 639 codes

specifies for which language the notation is meant

xlink:* om:OMR, m:* URI reference

specify the link behavior on the elements

xref ref, method, premise URI reference

Identifies the resource in question

xref presentation, omstyle URI reference

The element, this URI points to should be in the place of the
object containing this attribute.

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

D

The RelaxNG Schema for OMDoc

We reprint the modularized RelaxNG schema for OMDoc here. It is avail-
able at http://omdoc.org/rnc and consists of separate files for the OMDoc
modules, which are loaded by the schema driver omdoc.rnc in this directory.
We will use the abbreviated syntax for RelaxNG here, since the XML syn-
tax, document type definitions and even XML schemata can be generated
from it by standard tools.

The RelaxNG schema consists of the grammar fragments for the modules
(see Appendices D.2 to D.14), a definition of the most common attributes that
occur in several of the modules (see Appendix D.1), and the sub-language
driver files which we will introduce next.

D.1 Common Parts of the Schema

The RelaxNG grammar for OMDoc separates out declarations for com-
monly used objects.

A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Common attributes
2 # $Id: omdoc−common.rnc 8735 2010−09−24 18:19:57Z kohlhase $

$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdoc−common.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2010 Michael Kohlhase, released under the GNU Public License (GPL)

7 default namespace omdoc = ”http://omdoc.org/ns”
namespace local = ””

all the explicitly namespaced attributes, except xml:lang, which
is handled explicitly

12 nonlocal. attribs = attribute ∗ − (local:∗ | xml:∗) {xsd:string}∗

the attributes for CSS and PRES styling
css . attribs = attribute style {xsd:string}? & attribute class {xsd:string}?

17 omdocref = xsd:anyURI # an URI reference pointing to an OMDoc fragment
omdocrefs = list {xsd:anyURI∗} # a whitespace−separated list of omdocref

xref . attrib = attribute xref {omdocref}
tref = attribute tref {omdocref}

http://omdoc.org/rnc

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

260 D The RelaxNG Schema for OMDoc

22

idrest . attribs = css. attribs &
nonlocal. attribs∗ &
attribute xml:base {xsd:anyURI}? &
attribute about {xsd:anyURI}?

27

id . attribs = attribute xml:id {xsd:ID}? & idrest.attribs

toplevel . attribs = id.attribs , attribute generated−from {omdocref}?

32 iso639 = ”aa” | ”ab” | ”af” | ”am” | ”ar” | ”as” |
”ay” | ”az” | ”ba” | ”be” | ”bg” | ”bh” | ”bi” | ”bn” | ”bo” | ”br” | ”ca” | ”co”
| ”cs” | ”cy” | ”da” | ”de” | ”dz” | ”el” | ”en” | ”eo” | ”es” | ”et” | ”eu” |
”fa” | ”fi” | ”fj” | ”fo” | ”fr” | ”fy” | ”ga” | ”gd” | ”gl” | ”gn” | ”gu” | ”ha”
| ”he” | ”hi” | ”hr” | ”hu” | ”hy” | ”ia” | ”ie” | ”ik” | ”id” | ”is” | ”it” |

37 ”iu” | ”ja” | ”jv” | ”ka” | ”kk” | ”kl” | ”km” | ”kn” | ”ko” | ”ks” | ”ku” | ”ky”
| ”la” | ”ln” | ”lo” | ”lt” | ”lv” | ”mg” | ”mi” | ”mk” | ”ml” | ”mn” | ”mo” |
”mr” | ”ms” | ”mt” | ”my” | ”na” | ”ne” | ”nl” | ”no” | ”oc” | ”om” | ”or” | ”pa”
| ”pl” | ”ps” | ”pt” | ”qu” | ”rm” | ”rn” | ”ro” | ”ru” | ”rw” | ”sa” | ”sd” |
”sg” | ”sh” | ”si” | ”sk” | ”sl” | ”sm” | ”sn” | ”so” | ”sq” | ”sr” | ”ss” | ”st”

42 | ”su” | ”sv” | ”sw” | ”ta” | ”te” | ”tg” | ”th” | ”ti” | ”tk” | ”tl” | ”tn” |
”to” | ”tr” | ”ts” | ”tt” | ”tw” | ”ug” | ”uk” | ”ur” | ”uz” | ”vi” | ”vo” | ”wo”
| ”xh” | ”yi” | ”yo” | ”za” | ”zh” | ”zu”

xml.lang.attrib = attribute xml:lang {iso639}?
47

Anything = (AnyElement|text)∗
AnyElement = element ∗ {AnyAttribute,(text | AnyElement)∗}
AnyAttribute = attribute ∗ { text }∗

52 ## useful classes to be extended in the modules
inline . class = empty
block. class = omdoc.class
omdoc.class = empty
plike . class = empty

57

mixed models
flow.model = text & inline.class & block.class
inline .model = text & inline.class

62 metadata.model &= dublincore

D.2 Module MOBJ: Mathematical Objects and Text

The RNC module MOBJ includes the representations for mathematical ob-
jects and defines the legacy element (see Chapter 13 for a discussion). It
includes the standard RelaxNG schema for OpenMath (we have reprinted
it in Appendix E.1) adding the OMDoc identifier and CSS attributes to all
elements. If also includes a schema for MathML (see Appendix E.2).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module MOBJ
$Id: omdocmobj.rnc 8705 2010−09−21 20:23:20Z kohlhase $

3 # $HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocmobj.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2009 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://omdoc.org/ns”
8

namespace om = ”http://www.openmath.org/OpenMath”
namespace local = ””

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

D.3 Module MTXT: Mathematical Text 261

the legacy element, it can encapsulate the non−migrated formats
13 legacy. attribs = id.attribs &

attribute formalism {xsd:anyURI}? &
attribute format {xsd:anyURI}

legacy.model = Anything
legacy = element legacy {tref |(legacy. attribs & legacy.model)}

18

nonom.attribs = attribute ∗ − (local:∗ | om:∗) {text}∗

omobj = grammar {include ”openmath2.rnc”
common.attributes &= parent idrest.attribs & parent nonom.attribs}

23

cmml = grammar {include ”mathml3−common.rnc”
include ”mathml3−strict−content.rnc”}

mobj = legacy | omobj | cmml

D.3 Module MTXT: Mathematical Text

The RNC module MTXT provides infrastructure for mathematical vernacular
(see Chapter 14 for a discussion).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module MTXT
$Id: omdocmtxt.rnc 8734 2010−09−24 18:14:46Z kohlhase $

3 # $HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocmtxt.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://omdoc.org/ns”
8

omdoc.class &= omtext∗

#attribute for is a whitespace−separated list of URIrefs
for . attrib = attribute for {omdocrefs}

13 fori . attrib = attribute for {omdocrefs}?
from.attrib = attribute from {omdocref}
verbalizes . attrib = attribute verbalizes {omdocrefs}
parallel . attribs = verbalizes. attrib? & attribute index {xsd:NMTOKEN}?
mc.class = metadata.class & CMP∗

18 mcf.class = mc.class & FMP∗

what can go into a mathematical text (to be extended in other modules)
inline . class &= phrase∗ & term∗ & mobj∗

23 rsttype = ”abstract” | ”introduction” | ”annote” |
”conclusion” | ”thesis” | ”comment” | ”antithesis” |

”elaboration” | ”motivation” | ”evidence” | ”note” |
”warning” | ”question” | ”answer” | ”transition”

28 statementtype = ”axiom” | ”definition” | ”example” | ”proof” |
”derive” | ”hypothesis” | ”notation”

assertiontype = ”assertion” | ”theorem” | ”lemma” | ”corollary” | ”proposition” |
”conjecture” | ” false−conjecture” | ”obligation” |

33 ”postulate” | ”formula” | ”assumption” | ”rule”

omtext.type.attrib = attribute type {rsttype | statementtype | assertiontype | xsd:anyURI}
omtext.attribs = toplevel. attribs &

omtext.type.attrib? &
38 attribute for {omdocref}? &

attribute from {omdocref}? &

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

262 D The RelaxNG Schema for OMDoc

verbalizes . attrib?
omtext.model = mcf.class
omtext = element omtext {tref|(omtext.attribs & omtext.model)}

43

CMP.attribs = xml.lang.attrib & id. attribs
CMP.model = inline.model | plike.class
CMP = element CMP {tref|(CMP.attribs & CMP.model)}

48 phrase. attribs = id.attribs &
parallel . attribs &
omtext.type.attrib?

phrase.model = inline.model
phrase = element phrase {tref|(phrase. attribs & phrase.model)}

53

term.attribs = id.attribs &
attribute role {text}? &
attribute cdbase {xsd:anyURI}? &
attribute cd {xsd:NCName} &

58 attribute name {xsd:NCName}
term.model = inline.model
term = element term {tref|(term.attribs & term.model)}

FMP.attribs = id.attribs & attribute logic {xsd:NMTOKEN}?
63 FMP.model = (assumption∗,conclusion∗)|mobj

FMP = element FMP {tref|(FMP.attribs & FMP.model)}

assumption.attribs = id.attribs &
attribute inductive {”yes” | ”no”}?

68 assumption.model = mobj
assumption = element assumption {tref|(assumption.attribs & assumption.model)}

conclusion. attribs = id.attribs
conclusion.model = mobj

73 conclusion = element conclusion {tref |(conclusion. attribs & conclusion.model)}

D.4 Module DOC: Document Infrastructure

The RNC module DOC specifies the document infrastructure of OMDoc
documents (see Chapter 11 for a discussion).

1 # A RelaxNG for Open Mathematical documents (OMDoc 1.3) Module DOC
$Id: omdocdoc.rnc 8739 2010−09−27 08:48:12Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocdoc.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

6

default namespace omdoc = ”http://omdoc.org/ns”
extend the stuff that can go into a mathematical text

omdoc.class &= ignore∗ & tableofcontents∗
11

ignore. attribs = id.attribs &
attribute type {xsd:string}? &
attribute comment {xsd:string}?

ignore.model = Anything
16 ignore = element ignore {tref |(ignore. attribs & ignore.model)}

tableofcontents . attribs = attribute level {xsd:nonNegativeInteger}?
tableofcontents .model = empty
tableofcontents = element tableofcontents {tref |(tableofcontents . attribs & tableofcontents.model)}

21

index. attribs = id.attribs

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

D.4 Module DOC: Document Infrastructure 263

index.model = empty
index = element index {tref|(index. attribs & index.model)}

26 bibliography. attribs = id.attribs , attribute files {text}
bibliography.model = empty
bibliography = element bibliography {tref|(bibliography. attribs & bibliography.model)}

31 group.attribs = id.attribs ,
attribute type {xsd:anyURI}?,
attribute modules {xsd:anyURI}?,
attribute layout {text}?

the treatment of omgroup and omdoc is slightly special, since we need to special−case
36 ## it in the case of theories . We cannot just drop omgroup in with omdoc.class, but have

to add it separately in all cases , since we want to replace it with the tgroup
non−terminal in omdocst.rnc, which will recurse with tgroup instead of omgroup.
omgroup.attribs = toplevel.attribs & group.attribs
omgroup.model = metadata.class & omdoc.class & omgroup∗

41 omgroup = element omgroup {tref|(omgroup.attribs & omgroup.model)}

finally the definition of the OMDoc root element
omdoc.attribs = toplevel. attribs &

group.attribs &
46 attribute version {xsd:string {pattern = ”1.3”}}?

frontmatter = metadata.class & tableofcontents?
backmatter = index? & bibliography?
omdoc.model =frontmatter,(omdoc.class & omgroup∗),backmatter
omdoc = element omdoc {tref|(omdoc.attribs & omdoc.model)}

51

############################## deprecated ######################################
the following is for legacy only, and will be removed soon.
ref . attribs = id.attribs & xref. attrib & attribute type {”include” | ”cite”}

56 ref .model = empty
ref = element ref{ref. attribs & ref.model}

omdoc.class &= ref∗
inline . class &= ref∗

A RelaxNG for Open Mathematical documents (OMDoc 1.3) Module META
$Id: omdocmeta.rnc 8751 2010−10−13 10:45:36Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocmeta.rnc $
See the documentation and examples at http://www.omdoc.org

5 # Copyright (c) 2007−2008 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://omdoc.org/ns”

for the moment, we may get regexp at some point.
10 curie = xsd:string

curies = xsd:string
safecurie = xsd:string

rel . attrib = attribute rel {curies}
15 rev. attrib = attribute rev {curies}

content. attrib = attribute content {xsd:string}
about.attrib = attribute about {xsd:anyURI|safecurie}
resource. attrib = attribute resource {xsd:anyURI|safecurie}
property.attrib = attribute property {curies}

20 datatype.attrib = attribute datatype {curie}
typeof. attrib = attribute typeof {curies}

meta.attribs = id.attribs & property.attrib?& datatype.attrib?
meta.model = content.attrib | Anything | (content.attrib & Anything)

25 meta = element meta {tref|(meta.attribs & meta.model)}

mlink.attribs = id.attribs & rel. attrib? & rev.attrib? & resource.attrib?

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

264 D The RelaxNG Schema for OMDoc

mlink.class = resource∗ & mlink∗ & meta∗
mlink.model = attribute href {curie}|mlink.class

30 mlink = element link {tref |(mlink.attribs ,mlink.model)}

resource. attribs = id.attribs & typeof.attrib? & about.attrib?
resource. class = meta∗ & mlink∗
resource = element resource {tref |(resource. attribs & resource.class)}

35

metadata.class = metadata? & meta∗ & mlink∗
metadata.model = metadata.class
metadata.attribs = id.attribs
metadata = element metadata {tref|(metadata.attribs & metadata.model)}

40

rdfa. attribs = rel. attrib? & rev.attrib? & content.attrib? & about.attrib?
& resource.attrib? & property.attrib? & datatype.attrib?
& typeof.attrib?

45 id . attribs &= rdfa.attribs

D.5 Module DC: Dublin Core Metadata

The RNC module DC includes an extension of the Dublin Core vocabulary
for bibliographic metadata, see Sections 12.2 and 12.3 for a discussion.

A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module DC
$Id: omdocdc.rnc 8751 2010−10−13 10:45:36Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocdc.rnc $
See the documentation and examples at http://www.omdoc.org

5 # Copyright (c) 2004−2010 Michael Kohlhase, released under the GNU Public License (GPL)

we include the dublin core and MARC elements, filling them with our content types
dublincore = grammar {include ”MARCRelators.rnc”

include ”dublincore.rnc”
10 {dc.date = parent id.attribs &

parent nonlocal. attribs &
attribute action {xsd:NMTOKEN}? &
attribute who {xsd:anyURI}? &
(xsd:date|xsd:dateTime)

15 dc. identifier = parent tref |(parent id . attribs &
parent nonlocal. attribs &
attribute scheme {xsd:NMTOKEN} &
text)

dc.type = parent tref |(parent id . attribs &
20 parent nonlocal. attribs &

parent xml.lang.attrib &
(”Dataset” | ”Text” | ”Collection”))

dc.text = parent tref |(parent id . attribs &
parent nonlocal. attribs &

25 parent xml.lang.attrib &
(parent p∗|parent inline .model))

dc.person = parent tref |(parent id . attribs &
parent nonlocal. attribs &
attribute role {MARCRelators}? &

30 (parent p∗|parent inline .model))
dc. rights = parent tref |(parent id . attribs &

parent nonlocal. attribs &
parent xml.lang.attrib &
(parent p∗|parent inline .model))

35 dc.source = parent inline .model}}

metadata.class &= dublincore

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

D.6 Module ST: Mathematical Statements 265

D.6 Module ST: Mathematical Statements

The RNC module ST deals with mathematical statements like assertions and
examples in OMDoc and provides an infrastructure for mathematical theories
as contexts, for the OMDoc elements that fix the meaning for symbols, see
Chapter 15 for a discussion.

A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module ST
$Id: omdocst.rnc 8712 2010−09−22 05:48:49Z kohlhase $

3 # $HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocst.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://omdoc.org/ns”
8

constitutive . class = symbol∗ & axiom∗ & definition∗ & imports∗
nonconstit. class &= assertion∗ & type∗ & alternative∗ & example∗
omdoc.class &= nonconstit.class & theory∗

13 constitutive . attribs = id.attribs & attribute generated−from {omdocref}?
sym.role. attrib = attribute role {”type” | ”sort” | ”object” |

”binder” | ”attribution” | ”application” | ”constant” |
”semantic−attribution” | ”error”}

theory−unique = xsd:NCName
18 scope.attrib = attribute scope {”global” | ”local”}?

symbol.attribs = scope.attrib &
attribute name {theory−unique}? &
constitutive . attribs &
sym.role. attrib?

23 symbol.model = metadata.class & type∗
symbol = element symbol {tref|(symbol.attribs & symbol.model)}

forname.attrib = attribute for { list {xsd:NCName+}}
axiom.attribs = constitutive. attribs & forname.attrib & attribute type {xsd:string}?

28 axiom.model = metadata.class & mcf.class
axiom = element axiom {tref|(axiom.attribs & axiom.model)}

#informal definitions
def .informal = attribute type {”informal”}?

33

#simple definitions
def .simple. attribs = attribute type {”simple”}
def.simple = def.simple. attribs & mobj

38 #implicit definitions
exists . attrib = attribute existence {omdocref}
unique.attrib = attribute uniqueness {omdocref}
def. implicit . attribs = attribute type {”implicit”} & exists . attrib? & unique.attrib?
def . implicit = def. implicit . attribs & FMP∗

43

exhaust.attrib = attribute exhaustivity {omdocref}
consist . attrib = attribute consistency {omdocref}

def.pattern. attribs = attribute type {”pattern”}? & exhaust.attrib? & consist.attrib?
48 def.pattern.model = requation∗

def.pattern = def.pattern. attribs & def.pattern.model

def . inductive. attribs = attribute type {”inductive”}? & exhaust.attrib? & consist.attrib?
def . inductive.model = requation∗ & measure? & ordering?

53 def. inductive = def.inductive. attribs & def.inductive.model

def .eq = def.pattern | def. inductive

#all definition forms, add more by extending this.
58 defs . all = def.informal | def.simple | def. implicit | def.eq

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

266 D The RelaxNG Schema for OMDoc

Definitions contain CMPs, FMPs and concept specifications.
The latter define the set of concepts defined in this element.
They can be reached under this name in the content dictionary

63 # of the name specified in the theory attribute of the definition .
definition . attribs = constitutive. attribs & forname.attrib
definition = element definition {tref |(definition . attribs & mc.class & defs. all)}

requation. attribs = id.attribs
68 requation.model = mobj,mobj

requation = element requation {tref|(requation. attribs & requation.model)}

measure.attribs = id.attribs
measure.model = mobj

73 measure = element measure {tref|(measure.attribs & measure.model)}

ordering. attribs = id.attribs & attribute terminating {omdocref}?
ordering.model = mobj
ordering = element ordering {tref |(ordering. attribs & ordering.model)}

78

the non−constitutive statements, they need a theory attribute
toplevel . attribs &= attribute theory {omdocref}?

ded.status. class = ” satisfiable ” | ”counter−satisfiable” | ”no−consequence” |
83 ”theorem” | ”conter−theorem” | ”contradictory−axioms” |

”tautologous−conclusion” | ” tautology” | ”equivalent” |
”conunter−equivalent” | ”unsatisfiable−conclusion” | ” unsatisfiable ”

just−by.attrib = attribute just−by {omdocref}
88 assertion . attribs = toplevel. attribs &

attribute type {assertiontype}? &
attribute status {ded.status. class}? &
just−by.attrib?

assertion .model = mcf.class
93 assertion = element assertion {tref |(assertion . attribs & assertion.model)}

the assertiontype has no formal meaning yet, it is solely for human consumption.
’just−by’ is a list of URIRefs that point to proof objects, etc that justifies the status .

type. attribs = toplevel. attribs & just−by.attrib? &
98 attribute system {omdocref}? &

attribute for {omdocref}?
type.model = mc.class, mobj, mobj?
type = element type {tref|(type. attribs & type.model)}

103 ##just−by, points to the theorem justifying well−definedness
entailed−by, entails, point to other (equivalent definitions
entailed−by−thm, entails−thm point to the theorems justifying
the entailment relation)

alternative . attribs = toplevel. attribs & for . attrib &
108 ((attribute equivalence {omdocref},

attribute equivalence−thm {omdocref}) |
(attribute entailed−by {omdocref} &
attribute entails {omdocref} &
attribute entailed−by−thm {omdocref} &

113 attribute entails−thm {omdocref}))
alternative .model = mc.class & defs.all
alternative = element alternative {tref |(alternative . attribs & alternative .model)}

example.attribs = toplevel. attribs & for . attrib &
118 attribute type {”for” | ”against” }? &

attribute assertion {omdocref}?
example.model = mc.class,mobj∗
example = element example {tref|(example.attribs & example.model)}

123 theory. attribs = id.attribs &
attribute cdurl {xsd:anyURI}? &
attribute cdbase {xsd:anyURI}? &

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

D.7 Module ADT: Abstract Data Types 267

attribute cdreviewdate {xsd:date}? &
attribute cdversion {xsd:nonNegativeInteger}? &

128 attribute cdrevision {xsd:nonNegativeInteger}? &
attribute cdstatus {” official ” | ”experimental” |”private” | ”obsolete”}?

theory.model = metadata.class & omdoc.class & constitutive . class & tgroup∗
theory = element theory {tref|(theory. attribs & theory.model)}

133 imports.attribs = id.attribs & from.attrib
imports.model = metadata.class
imports = element imports {tref|(imports.attribs & imports.model)}

tgroup.attribs = constitutive. attribs & group.attribs
138 tgroup.model = metadata.class & omdoc.class & constitutive.class & tgroup∗

tgroup = element omgroup {tref|(tgroup.attribs & tgroup.model)}

D.7 Module ADT: Abstract Data Types

The RNC module ADT specifies the grammar for abstract data types in OM-
Doc, see Chapter 16 for a discussion.

A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module ADT
$Id: omdocadt.rnc 8704 2010−09−21 19:44:01Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocadt.rnc $
See the documentation and examples at http://www.omdoc.org

5 # Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://omdoc.org/ns”
omdoc.class &= adt∗

10 adt.sym.attrib = id.attribs ,scope.attrib , attribute name {xsd:NCName}

adts are abstract data types, they are short forms for groups of symbols
and their definitions , therefore , they have much the same attributes.

15 adt. attribs = toplevel. attribs &
attribute parameters {list {xsd:NCName∗}}?

adt. class = sortdef+
adt.model = metadata.class & adt.class
adt = element adt {tref|(adt. attribs & adt.model)}

20

adttype = ”loose” | ”generated” | ”free”
sortdef . attribs = adt.sym.attrib &

attribute role {”sort”}? &
attribute type {adttype}?

25 sortdef .model = metadata.class & constructor∗ & insort∗ & recognizer?
sortdef = element sortdef {tref |(sortdef . attribs &sortdef.model)}

insort . attribs = attribute for {omdocref}
insort .model = empty

30 insort = element insort {tref |(insort . attribs & insort.model)}

constructor. attribs = adt.sym.attrib & sym.role.attrib?
constructor.model = metadata.class & argument∗
constructor = element constructor {tref |(constructor. attribs & constructor.model)}

35

recognizer . attribs = adt.sym.attrib & sym.role.attrib?
recognizer .model = metadata.class
recognizer = element recognizer {tref |(recognizer . attribs & recognizer.model)}

40 argument.attribs = empty
argument.model = type & selector?
argument = element argument {tref|(argument.attribs & argument.model)}

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

268 D The RelaxNG Schema for OMDoc

selector . attribs = adt.sym.attrib &
45 sym.role. attrib? &

attribute total {”yes” | ”no”}?
selector .model = metadata.class
selector = element selector {tref |(selector . attribs & selector .model)}

D.8 Module PF: Proofs and Proof objects

The RNC module PF deals with mathematical argumentations and proofs in
OMDoc, see Chapter 17 for a discussion.

1 # A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module PF
$Id: omdocpf.rnc 8705 2010−09−21 20:23:20Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocpf.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

6

default namespace omdoc = ”http://omdoc.org/ns”

omdocpf.opt.content &= proof∗ & proofobject∗
omdoc.class &= proof∗ & proofobject∗

11

proof. attribs = toplevel. attribs & fori . attrib
proof.model = metadata.class & omtext∗ & symbol∗ & definition∗ & derive∗ & hypothesis∗
proof = element proof {tref|(proof. attribs & proof.model)}

16 proofobject. attribs = proof.attribs
proofobject.model = metadata.class & mobj
proofobject = element proofobject {tref|(proofobject. attribs & proofobject.model)}

derive . attribs = id.attribs & attribute type {”conclusion” | ”gap”}?
21 derive .model = mcf.class & method?

derive = element derive {tref |(derive . attribs & derive.model)}

hypothesis. attribs = id. attribs & attribute inductive {”yes” | ”no”}?
hypothesis.model = mcf.class

26 hypothesis = element hypothesis {tref|(hypothesis. attribs & hypothesis.model)}

method.attribs = id. attribs & xref. attrib?
method.model = mobj∗ & premise∗ & proof∗ & proofobject∗
method = element method {tref|(method.attribs & method.model)}

31

premise.attribs = xref. attrib & attribute rank {xsd:nonNegativeInteger}?
premise.model = empty
premise = element premise {tref|(premise.attribs & premise.model)}

36 # The rank of a premise specifies its importance in the inference rule .
Rank 0 (the default) is a real premise, whereas positive rank signifies
sideconditions of varying degree.

D.9 Module CTH: Complex Theories

The RNC presented in this section deals with the module CTH of complex
theories (see Chapter 18 for a discussion).

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

D.10 Module DG: Development Graphs 269

1 # A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module CTH
$Id: omdoccth.rnc 8704 2010−09−21 19:44:01Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdoccth.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

6

default namespace omdoc = ”http://omdoc.org/ns”

constitutive . class &= inclusion∗
omdocsth.imports.model &= morphism?,

11 attribute type { ”local” | ”global”}?,
attribute conservativity {”conservative” | ”monomorphism” | ”definitional”}?,
attribute conservativity−just {omdocref}?

toplevel . attribs &= attribute generated−via {omdocref}?
16 constitutive . attribs &= attribute generated−via {omdocref}?

omdoc.class &= theory−inclusion∗ & axiom−inclusion∗
omdoccth.theory−inclusion.justification = obligation∗
omdoccth.axiom−inclusion.justification = obligation∗

21

fromto.attrib = from.attrib, attribute to {omdocref}
attributes ’to’ and ’from’ are URIref

morphism.attribs = id.attribs &
26 attribute hiding {omdocrefs}? &

attribute base {omdocrefs}?
morphism.model = def.eq?
morphism = element morphism {tref|(morphism.attribs & morphism.model)}
base points to some other morphism it extends

31

inclusion . attribs = id.attribs & attribute via {omdocref}
inclusion .model = empty
inclusion = element inclusion {tref |(inclusion . attribs & inclusion.model)}
via points to a theory−inclusion

36

theory−inclusion.attribs = toplevel. attribs & fromto.attrib
theory−inclusion.model = metadata?, morphism?, omdoccth.theory−inclusion.justification
theory−inclusion = element theory−inclusion {tref|(theory−inclusion.attribs & theory−inclusion.model)}

41 axiom−inclusion.attribs = toplevel. attribs & fromto.attrib
axiom−inclusion.model = metadata?, morphism?, omdoccth.axiom−inclusion.justification
axiom−inclusion = element theory−inclusion {tref|(axiom−inclusion.attribs & axiom−inclusion.model)}

obligation . attribs = id.attribs &
46 attribute induced−by {omdocref} &

attribute assertion {omdocref}
obligation .model = empty
obligation = element obligation {tref |(obligation . attribs & obligation.model)}
attribute ’ assertion ’ is a URIref, points to an assertion

51 # that is the proof obligation induced by the axiom or definition
specified by ’induced−by’.

D.10 Module DG: Development Graphs

The RNC presented in this section deals with the module CTH of development
graphs (see Section 18.5 for a discussion).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module CTH
2 # $Id: omdoccth.rnc 8704 2010−09−21 19:44:01Z kohlhase $

$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdoccth.rnc $

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

270 D The RelaxNG Schema for OMDoc

See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

7 default namespace omdoc = ”http://omdoc.org/ns”

constitutive . class &= inclusion∗
omdocsth.imports.model &= morphism?,

attribute type { ”local” | ”global”}?,
12 attribute conservativity {”conservative” | ”monomorphism” | ”definitional”}?,

attribute conservativity−just {omdocref}?

toplevel . attribs &= attribute generated−via {omdocref}?
constitutive . attribs &= attribute generated−via {omdocref}?

17

omdoc.class &= theory−inclusion∗ & axiom−inclusion∗
omdoccth.theory−inclusion.justification = obligation∗
omdoccth.axiom−inclusion.justification = obligation∗

22 fromto.attrib = from.attrib, attribute to {omdocref}
attributes ’to’ and ’from’ are URIref

morphism.attribs = id.attribs &
attribute hiding {omdocrefs}? &

27 attribute base {omdocrefs}?
morphism.model = def.eq?
morphism = element morphism {tref|(morphism.attribs & morphism.model)}
base points to some other morphism it extends

32 inclusion . attribs = id.attribs & attribute via {omdocref}
inclusion .model = empty
inclusion = element inclusion {tref |(inclusion . attribs & inclusion.model)}
via points to a theory−inclusion

37 theory−inclusion.attribs = toplevel. attribs & fromto.attrib
theory−inclusion.model = metadata?, morphism?, omdoccth.theory−inclusion.justification
theory−inclusion = element theory−inclusion {tref|(theory−inclusion.attribs & theory−inclusion.model)}

axiom−inclusion.attribs = toplevel. attribs & fromto.attrib
42 axiom−inclusion.model = metadata?, morphism?, omdoccth.axiom−inclusion.justification

axiom−inclusion = element theory−inclusion {tref|(axiom−inclusion.attribs & axiom−inclusion.model)}

obligation . attribs = id.attribs &
attribute induced−by {omdocref} &

47 attribute assertion {omdocref}
obligation .model = empty
obligation = element obligation {tref |(obligation . attribs & obligation.model)}
attribute ’ assertion ’ is a URIref, points to an assertion
that is the proof obligation induced by the axiom or definition

52 # specified by ’induced−by’.

D.11 Module RT: Rich Text Structure

The RNC module RT provides text structuring elements for mathematical text
below the level of mathematical statements (see Section 14.5 for a discussion).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module DOC
2 # $Id: omdocrt.rnc 8748 2010−10−05 15:21:29Z kohlhase $

$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocrt.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

7 default namespace omdoc = ”http://omdoc.org/ns”

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

D.11 Module RT: Rich Text Structure 271

omdocrt.common.attrib = id.attribs & fori . attrib & parallel . attribs

ul . attribs = omdocrt.common.attrib
12 ul .model = metadata.class & li+

ul = element ul {tref |(ul . attribs & ul.model)}

ol . attribs = omdocrt.common.attrib
ol .model = metadata.class & li+

17 ol = element ol {tref |(ol . attribs & ol.model)}

li . attribs= omdocrt.common.attrib
li .model = metadata.class & flow.model
li = element li {tref |(li . attribs & li .model)}

22

dl . attribs = omdocrt.common.attrib
dl .model = metadata.class & (di+ | (dt|dd)+)
dl = element dl {tref |(dl . attribs & dl.model)}

27 di . attribs = omdocrt.common.attrib
di .model = metadata.class & (dt|dd)+
di = element di {tref |(di . attribs & di.model)}

dt. attribs = omdocrt.common.attrib
32 dt.model = metadata.class & inline.model

dt = element dt {tref|(dt. attribs & dt.model)}

dd.attribs = omdocrt.common.attrib
dd.model = metadata.class & flow.model

37 dd = element dd {tref|(dd.attribs & dd.model)}

note. attribs = omdocrt.common.attrib &
attribute type {xsd:NMTOKEN}?

note.model = inline.model
42 note = element note {tref|(note. attribs & note.model)}

link . attribs = omdocrt.common.attrib &
attribute href {xsd:anyURI}

link .model = inline.model
47 link = element link {tref |(link . attribs & link.model)}

index
index.att = attribute sort−by {text}? &

attribute see {omdocrefs}? &
52 attribute seealso {omdocrefs}? &

attribute links { list {xsd:anyURI∗}}?

idx. attribs = id.attribs |xref . attrib
idx.model = idt? & ide+

57 idx = element idx {tref |(idx. attribs & idx.model)}

ide . attribs = attribute index {xsd:NCName}? & index.att
ide .model = idp∗
ide = element ide {tref |(ide . attribs & ide.model)}

62

idt . attribs = idrest. attribs
idt .model = inline.model
idt = element idt {tref |(idt . attribs & idt.model)}

67 idp. attribs = index.att
idp.model = inline.model
idp = element idp {tref|(idp. attribs & idp.model)}

citations
72 citation . attribs = id.attribs & attribute bibrefs {text}

citation .model = empty
citation = element citation {tref |(citation . attribs & citation.model)}

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

272 D The RelaxNG Schema for OMDoc

citations
77 oref . attribs = id.attribs & attribute href {xsd:anyURI}

oref .model = empty
oref = element oref {tref |(oref . attribs & oref.model)}

a simplified html table
82 table . attribs = omdocrt.common.attrib

table .model = tr+
table = element table {tref |(table . attribs & table.model)}

tr . attribs = omdocrt.common.attrib
87 tr .model = (td|th)+

tr = element tr {tref |(tr . attribs & tr.model)}

td. attribs = omdocrt.common.attrib
td.model = inline.model | plike . class

92 td = element td {tref|(td. attribs & td.model)}

th. attribs = omdocrt.common.attrib
th.model = inline.model |plike. class
th = element th {tref|(th. attribs & th.model)}

97

we allow paragraphs in CMPs as well.
p. attribs = omdocrt.common.attrib
p.model = inline.model
p = element p {tref|(p. attribs & p.model)}

102

plike . class &= p∗ & ul∗ & ol∗ & dl∗ & table∗
inline . class &= note∗ & link∗ & idx∗ & citation∗ & oref∗
block. class &= p∗ & table∗ & ul∗ & ol∗ & dl∗

D.12 Module EXT: Applets and non-XML data

The RNC module EXT provides an infrastructure for applets, program code,
and non-XML data like images or measurements (see Chapter 20 for a dis-
cussion).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module EXT
$Id: omdocext.rnc 8743 2010−10−01 08:00:29Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocext.rnc $
See the documentation and examples at http://www.omdoc.org

5 # Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://omdoc.org/ns”

plike . class &= omlet∗
10 omdoc.class &= private∗ & code∗ & omlet∗

private . attribs = toplevel. attribs &
fori . attrib &
attribute requires {omdocref}? &

15 attribute reformulates {omdocref}?
private .model = metadata.class & data+
private = element private {tref |(private . attribs & private.model)}
reformulates is a URIref to the omdoc elements that are reformulated by the
system−specific information in this element

20

code.attribs = private. attribs
code.model = metadata.class & data∗ & input∗ & output∗ & effect∗
code = element code {tref|(code.attribs & code.model)}

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

D.13 Module PRES: Adding Presentation Information 273

25 input. attribs = id.attribs
input.model = mcf.class
input = element input {tref |(input. attribs & input.model)}

output.attribs = id.attribs
30 output.model = mcf.class

output = element output {tref|(output.attribs & output.model)}

effect . attribs = id.attribs
effect .model = mcf.class

35 effect = element effect {tref |(effect . attribs & effect .model)}

data.attribs = id.attribs &
attribute href {xsd:anyURI}? &
attribute size {xsd:string}? &

40 attribute pto {xsd:string}? &
attribute pto−version {xsd:string}? &
attribute original {”external” | ”local”}?

data.textformat = ”TeX”
45 data.text = data.attribs & attribute format {data.textformat}? & text

data.any = data.attribs & attribute format {xsd:anyURI}? & Anything
data.model = data.text | data.any
data = element data {tref|data.model}

50 omlet.attribs = id.attribs &
attribute action {”display” | ”execute” | ”other”}? &
attribute show {”new” | ”replace” | ”embed” | ”other”}? &
attribute actuate {”onPresent” | ”onLoad” | ”onRequest” | ”other”}?

omlet.param = text & inline.class & param∗
55 omlet.data = attribute data {xsd:anyURI}|(private|code)

omlet.model = metadata.class & omlet.param & omlet.data
omlet = element omlet {tref|(omlet.attribs & omlet.model)}

param.attribs = id.attribs &
60 attribute name {xsd:string} &

attribute value {xsd:string}? &
attribute valuetype {”data” | ”ref” | ”object”}?

param.model = mobj?
param = element param {tref|(param.attribs & param.model)}

D.13 Module PRES: Adding Presentation Information

The RNC module PRES provides a sub-language for defining notations for
mathematical symbols and for styling OMDoc elements (see Chapter 19 for
a discussion).

1 # A RelaxNG for Open Mathematical documents (OMDoc 1.3) Module PRES
$Id: omdocpres.rnc 8747 2010−10−05 07:07:28Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocpres.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2008 Michael Kohlhase, released under the GNU Public License (GPL)

6

default namespace omdoc = ”http://omdoc.org/ns”
omdoc.class &= notation∗

prototype.attribs = empty
11 prototype.model = protoexp

prototype = element prototype {tref|(prototype.attribs & prototype.model)}

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

274 D The RelaxNG Schema for OMDoc

protoexp = grammar {include ”openmath2.rnc”
{start = omel

16 common.attributes = attribute id {xsd:ID}?, parent idrest. attribs}
omel |= parent proto.class
omvar |= parent proto.class
common.attributes &= parent ntn.attrib}

| grammar {include ”mathml3.rnc” {start = ContExp}
21 ContExp |= parent proto.class

ci |= parent proto. class
CommonAtt &= parent ntn.attrib}

precedence.att = attribute precedence {xsd:integer}
26 context.att = attribute xml:lang {text}? &

attribute context {text}? &
attribute variant {text}?

format.att = attribute format {text}?
31

rendering. attribs = precedence.att? & context.att & format.att
rendering.model = renderexp

rendering = element rendering {tref|(rendering. attribs & rendering.model)}
36

renderexp = grammar {include ”mathml3−common.rnc” {start = PresentationExpression}
include ”mathml3−presentation.rnc”
PresentationExpression |= parent render.class
CommonAtt &= parent ntn.attrib

41 mtable.content.class |= parent render. class
mtr.content. class |= parent render. class}

| (pdata|render.class)∗

pdata.attribs = empty
46 pdata.model = text

pdata = element pdata {pdata.attribs & pdata.model}

iterexp = grammar {include ”mathml3.rnc”
{start = PresentationExpression|mtr|mlabeledtr|mtd}

51 PresentationExpression |= parent render. class
MathML.Common.attrib &= parent ntn.attrib
mtable.content.class |= parent render. class
mtr.content. class |= parent render. class}

56 name.attrib = attribute name {xsd:NCName}?
triple .att = attribute cdbase {xsd:anyURI}? & name.attrib & attribute cd {xsd:NCName}?

notation. attribs = id.attribs & triple .att
notation.model = metadata.class & CMP∗ & prototype+ & rendering∗

61 notation = element notation {tref |(notation. attribs & notation.model)}

we extend the content and presentation models by metavariables
proto. class = exprlist | expr
render. class = render | iterate

66 ntn.attrib = attribute cr {text}? & attribute egroup {text}?

exprlist . attribs = name.attrib
exprlist .model = protoexp∗
exprlist = element exprlist {exprlist . attribs & exprlist .model}

71

expr. attribs = name.attrib
expr.model = empty
expr = element expr {tref|(expr. attribs & expr.model)}

76 iterate . attribs = name.attrib & precedence.att?
iterate .model = separator & iterexp∗
iterate = element iterate {tref |(iterate . attribs & iterate .model)}

render. attribs = name.attrib & precedence.att?

rnc.tex 8750 2010-10-13 08:34:51Z kohlhase

D.14 Module QUIZ: Infrastructure for Assessments 275

81 render.model = empty
render = element render {tref|(render. attribs & render.model)}

separator. attribs = empty
separator.model = renderexp∗

86 separator = element separator {tref |(separator. attribs & separator.model)}

D.14 Module QUIZ: Infrastructure for Assessments

The RNC module QUIZ provides a basic infrastructure for various kinds of
exercises (see Chapter 21 for a discussion).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.3) Module QUIZ
$Id: omdocquiz.rnc 8749 2010−10−13 07:36:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/omdocquiz.rnc $

4 # See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://omdoc.org/ns”

9 omdoc.class &= exercise∗ & hint∗ & mc∗ & solution∗
plike . class &= hint∗

exercise . attribs = toplevel. attribs & fori . attrib
exercise .model = mcf.class | omdoc.class

14 exercise = element exercise {tref |(exercise . attribs & exercise.model)}

omdocpf.opt.content = notAllowed

hint. attribs = toplevel. attribs & fori . attrib
19 hint.model = mcf.class

hint = element hint {tref |(hint. attribs & hint.model)}

solution . attribs = toplevel. attribs & fori . attrib
solution .model = mcf.class | omdoc.class

24 solution = element solution {tref |(solution . attribs & solution.model)}

mc.attribs = toplevel. attribs & fori . attrib
mc.model = choice,hint?,answer
mc = element mc {tref|(mc.attribs & mc.model)}

29

choice . attribs = id.attribs
choice .model = mcf.class
choice = element choice {tref |(choice . attribs & choice.model)}

34 answer.attribs = id.attribs & attribute verdict {”true” | ” false”}?
answer.model = mcf.class
answer = element answer {tref|(answer.attribs & answer.model)}

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

E

The RelaxNG Schemata for Mathematical
Objects

For completeness we reprint the RelaxNG schemata for the external formats
OMDoc makes use of.

E.1 The RelaxNG Schema for OpenMath

For completeness we reprint the RelaxNG schema for OpenMath, the orig-
inal can be found in the OpenMath2 standard [Bus+04].

RELAX NG Schema for OpenMath 2
$Id: openmath2.rnc 8461 2009−08−04 13:41:23Z kohlhase $

3 # $HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.3/rnc/openmath2.rnc $
See the documentation and examples at http://www.openmath.org

default namespace om = ”http://www.openmath.org/OpenMath”

8 start = OMOBJ

OpenMath object constructor
OMOBJ = element OMOBJ { compound.attributes,

attribute version { xsd:string }?,
13 omel }

Elements which can appear inside an OpenMath object
omel =

OMS | OMV | OMI | OMB | OMSTR | OMF | OMA | OMBIND | OME | OMATTR |OMR
18

things which can be variables
omvar = OMV | attvar

attvar = element OMATTR { common.attributes,(OMATP , (OMV | attvar))}
23

cdbase = attribute cdbase { xsd:anyURI}?

attributes common to all elements
28 common.attributes = (attribute id { xsd:ID })?

attributes common to all elements that construct compount OM objects.
compound.attributes = common.attributes,cdbase

33 # symbol

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

278 E The RelaxNG Schemata for Mathematical Objects

OMS = element OMS { common.attributes,
attribute name {xsd:NCName},
attribute cd {xsd:NCName},
cdbase }

38

variable
OMV = element OMV { common.attributes,

attribute name { xsd:NCName} }

43 # integer
OMI = element OMI { common.attributes,

xsd:string {pattern = ”\s∗(−\s?)?[0−9]+(\s[0−9]+)∗\s∗”}}
byte array
OMB = element OMB { common.attributes, xsd:base64Binary }

48

string
OMSTR = element OMSTR { common.attributes, text }

IEEE floating point number
53 OMF = element OMF { common.attributes,

(attribute dec { xsd:double } |
attribute hex { xsd:string {pattern = ”[0−9A−F]+”}}) }

apply constructor
58 OMA = element OMA { compound.attributes, omel+ }

binding constructor
OMBIND = element OMBIND { compound.attributes, omel, OMBVAR, omel }

63 # variables used in binding constructor
OMBVAR = element OMBVAR { common.attributes, omvar+ }

error constructor
OME = element OME { common.attributes, OMS, (omel|OMFOREIGN)∗ }

68

attribution constructor and attribute pair constructor
OMATTR = element OMATTR { compound.attributes, OMATP, omel }

OMATP = element OMATP { compound.attributes, (OMS, (omel | OMFOREIGN))+ }
73

foreign constructor
OMFOREIGN = element OMFOREIGN {

compound.attributes, attribute encoding {xsd:string}?,
(omel|notom)∗ }

78

Any elements not in the om namespace
(valid om is allowed as a descendant)
notom =

(element ∗ − om:∗ {attribute ∗ { text }∗,(omel|notom)∗}
83 | text)

reference constructor
OMR = element OMR { common.attributes,

attribute href { xsd:anyURI }
88 }

E.2 The RelaxNG Schema for MathML

For completeness, we reprint the RelaxNG schema for MathML. It comes
in three parts, the schema driver, and the parts for content- and presentation
MathML which we will present in the next two subsections.

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

E.2 The RelaxNG Schema for MathML 279

1 # This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998−2009 W3C (MIT, ERCIM, Keio)

6 #
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright−software−20021231

11

default namespace m = ”http://www.w3.org/1998/Math/MathML”

Content MathML
include ”mathml3−content.rnc”

16

Presentation MathML
include ”mathml3−presentation.rnc”

math and semantics common to both Content and Presentation
21 include ”mathml3−common.rnc”

E.2.1 Presentation MathML

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.

4 #
Copyright 1998−2009 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License

9 # http://www.w3.org/Consortium/Legal/2002/copyright−software−20021231

default namespace m = ”http://www.w3.org/1998/Math/MathML”
namespace local = ””

14

start = math

math = element math {math.attributes,MathExpression∗}
MathExpression = semantics

19

NonMathMLAtt = attribute (∗ − (local:∗|m:∗)) {xsd:string}

CommonDeprecatedAtt = attribute other {text}?

24 CommonAtt = attribute id {xsd:ID}?,
attribute xref {text}?,
attribute class {xsd:NMTOKENS}?,
attribute style {xsd:string}?,
attribute href {xsd:anyURI}?,

29 CommonDeprecatedAtt,
NonMathMLAtt∗

math.attributes = CommonAtt,
34 attribute display {”block” | ” inline”}?,

attribute maxwidth {length}?,
attribute overflow {”linebreak” | ” scroll ” | ”elide” | ”truncate” | ”scale”}?,
attribute altimg {xsd:anyURI}?,
attribute altimg−width {length}?,

39 attribute altimg−height {length}?,

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

280 E The RelaxNG Schemata for Mathematical Objects

attribute altimg−valign {length | ”top” | ”middle” | ”bottom”}?,
attribute alttext {text}?,
attribute cdgroup {xsd:anyURI}?,
math.deprecatedattributes

44

the mathml3−presentation schema adds additional attributes
to the math element, all those valid on mstyle

math.deprecatedattributes = attribute mode {xsd:string}?,
49 attribute macros {xsd:string}?

name = attribute name {xsd:NCName}
cd = attribute cd {xsd:NCName}

54

src = attribute src {xsd:anyURI}?

annotation = element annotation {annotation.attributes,text}

59 annotation−xml.model = (MathExpression|anyElement)∗

anyElement = element (∗ − m:∗) {(attribute ∗ {text}|text| anyElement)∗}

annotation−xml = element annotation−xml {annotation.attributes,
64 annotation−xml.model}

annotation.attributes = CommonAtt,
cd?,
name?,
DefEncAtt,

69 src?

DefEncAtt = attribute encoding {xsd:string}?,
attribute definitionURL {xsd:anyURI}?

74 semantics = element semantics {semantics.attributes,
MathExpression,

(annotation|annotation−xml)∗}
semantics.attributes = CommonAtt,DefEncAtt,cd?,name?

79

length = xsd:string {
pattern = ’\s∗((−?[0−9]∗(\.[0−9]∗)?(e[mx]|in|cm|mm|p[xtc]|%)?)|(negative)?((very){0,2}thi(n|ck)|medium)mathspace)\s∗’
}

E.2.2 Presentation MathML

1

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#

6 # Copyright 1998−2010 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright−software−20021231

11

default namespace m = ”http://www.w3.org/1998/Math/MathML”

MathExpression |= PresentationExpression

16 ImpliedMrow = MathExpression∗

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

E.2 The RelaxNG Schema for MathML 281

TableRowExpression = mtr|mlabeledtr

TableCellExpression = mtd
21

MstackExpression = MathExpression|mscarries|msline|msrow|msgroup

MsrowExpression = MathExpression|none

26 MultiScriptExpression = (MathExpression|none),(MathExpression|none)

mpadded−length = xsd:string {
pattern = ’\s∗([\+\−]?[0−9]∗(\.[0−9]∗)?\s∗((%?\s∗(height|depth|width)?)|e[mx]|in|cm|mm|p[xtc]|((negative)?((very){0,2}thi(n|ck)|medium)mathspace)))\s∗’ }

31 linestyle = ”none” | ”solid” | ”dashed”

verticalalign =
”top” |
”bottom” |

36 ”center” |
”baseline” |
”axis”

columnalignstyle = ”left” | ”center” | ”right”
41

notationstyle =
”longdiv” |
”actuarial” |
”radical” |

46 ”box” |
”roundedbox” |
” circle ” |
” left ” |
”right” |

51 ”top” |
”bottom” |
”updiagonalstrike” |
”downdiagonalstrike” |
” verticalstrike ” |

56 ” horizontalstrike ” |
”madruwb”

idref = text
unsigned−integer = xsd:unsignedLong

61 integer = xsd:integer
number = xsd:decimal

character = xsd:string {
pattern = ’\s∗\S\s∗’}

66

color = xsd:string {
pattern = ’\s∗((#[0−9a−fA−F]{3}([0−9a−fA−F]{3})?)|[aA][qQ][uU][aA]|[bB][lL][aA][cC][kK]|[bB][lL][uU][eE]|[fF][uU][cC][hH][sS][iI][aA]|[gG][rR][aA][yY]|[gG][rR][eE][eE][nN]|[lL][iI][mM][eE]|[mM][aA][rR][oO][oO][nN]|[nN][aA][vV][yY]|[oO][lL][iI][vV][eE]|[pP][uU][rR][pP][lL][eE]|[rR][eE][dD]|[sS][iI][lL][vV][eE][rR]|[tT][eE][aA][lL]|[wW][hH][iI][tT][eE]|[yY][eE][lL][lL][oO][wW])\s∗’}

71 group−alignment = ”left” | ”center” | ”right” | ”decimalpoint”
group−alignment−list = list {group−alignment+}
group−alignment−list−list = xsd:string {

pattern = ’(\s∗\{\s∗(left |center | right |decimalpoint)(\s+(left|center | right |decimalpoint))∗\})∗\s∗’ }
positive−integer = xsd:positiveInteger

76

TokenExpression = mi|mn|mo|mtext|mspace|ms

token.content = mglyph|malignmark|text
81

mi = element mi {mi.attributes, token.content∗}
mi.attributes =

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

282 E The RelaxNG Schemata for Mathematical Objects

CommonAtt,
CommonPresAtt,

86 TokenAtt

mn = element mn {mn.attributes, token.content∗}
mn.attributes =

91 CommonAtt,
CommonPresAtt,
TokenAtt

96 mo = element mo {mo.attributes, token.content∗}
mo.attributes =

CommonAtt,
CommonPresAtt,
TokenAtt,

101 attribute form {”prefix” | ” infix” | ”postfix”}?,
attribute fence {”true” | ” false ”}?,
attribute separator {”true” | ” false ”}?,
attribute lspace {length}?,
attribute rspace {length}?,

106 attribute stretchy {”true” | ” false ”}?,
attribute symmetric {”true” | ”false”}?,
attribute maxsize {length | ” infinity ”}?,
attribute minsize {length}?,
attribute largeop {”true” | ” false ”}?,

111 attribute movablelimits {”true” | ” false ”}?,
attribute accent {”true” | ” false ”}?,
attribute linebreak {”auto” | ”newline” | ”nobreak” | ”goodbreak” | ”badbreak”}?,
attribute lineleading {length}?,
attribute linebreakstyle {”before” | ”after” | ”duplicate” | ” infixlinebreakstyle ”}?,

116 attribute linebreakmultchar {text}?,
attribute indentalign {” left” | ”center” | ”right” | ”auto” | ”id”}?,
attribute indentshift {length}?,
attribute indenttarget { idref}?,
attribute indentalignfirst {” left” | ”center” | ”right” | ”auto” | ”id” | ”indentalign”}?,

121 attribute indentshiftfirst {length | ”indentshift”}?,
attribute indentalignlast {” left” | ”center” | ”right” | ”auto” | ”id” | ”indentalign”}?,
attribute indentshiftlast {length | ”indentshift”}?

126 mtext = element mtext {mtext.attributes, token.content∗}
mtext.attributes =

CommonAtt,
CommonPresAtt,
TokenAtt

131

mspace = element mspace {mspace.attributes, empty}
mspace.attributes =

CommonAtt,
136 CommonPresAtt,

TokenAtt,
attribute width {length}?,
attribute height {length}?,
attribute depth {length}?,

141 attribute linebreak {”auto” | ”newline” | ”nobreak” | ”goodbreak” | ”badbreak” | ”indentingnewline”}?

ms = element ms {ms.attributes, token.content∗}
ms.attributes =

146 CommonAtt,
CommonPresAtt,
TokenAtt,
attribute lquote {text}?,
attribute rquote {text}?

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

E.2 The RelaxNG Schema for MathML 283

151

mglyph = element mglyph {mglyph.attributes,mglyph.deprecatedattributes,empty}
mglyph.attributes =

CommonAtt, CommonPresAtt,
156 attribute src {xsd:anyURI}?,

attribute width {length}?,
attribute height {length}?,
attribute valign {length}?,
attribute alt {text}?

161 mglyph.deprecatedattributes =
attribute index {integer}?,
attribute mathvariant {”normal” | ”bold” | ”italic” | ”bold−italic” | ”double−struck” | ”bold−fraktur” | ”script” | ”bold−script” | ”fraktur” | ”sans−serif” | ”bold−sans−serif” | ”sans−serif−italic” | ”sans−serif−bold−italic” | ”monospace” | ”initial” | ”tailed” | ”looped” | ”stretched”}?,
attribute mathsize {”small” | ”normal” | ”big” | length}?,
DeprecatedTokenAtt

166

msline = element msline {msline.attributes,empty}
msline. attributes =

CommonAtt, CommonPresAtt,
attribute position {integer}?,

171 attribute length {unsigned−integer}?,
attribute leftoverhang {length}?,
attribute rightoverhang {length}?,
attribute mslinethickness {length | ”thin” | ”medium” | ”thick”}?

176 none = element none {none.attributes,empty}
none.attributes =

CommonAtt,
CommonPresAtt

181 mprescripts = element mprescripts {mprescripts.attributes,empty}
mprescripts.attributes =

CommonAtt,
CommonPresAtt

186

CommonPresAtt =
attribute mathcolor {color}?,
attribute mathbackground {color | ”transparent”}?

191 TokenAtt =
attribute mathvariant {”normal” | ”bold” | ”italic” | ”bold−italic” | ”double−struck” | ”bold−fraktur” | ”script” | ”bold−script” | ”fraktur” | ”sans−serif” | ”bold−sans−serif” | ”sans−serif−italic” | ”sans−serif−bold−italic” | ”monospace” | ”initial” | ”tailed” | ”looped” | ”stretched”}?,
attribute mathsize {”small” | ”normal” | ”big” | length}?,
attribute dir {”ltr” | ”rtl ”}?,
DeprecatedTokenAtt

196

DeprecatedTokenAtt =
attribute fontfamily {text}?,
attribute fontweight {”normal” | ”bold”}?,
attribute fontstyle {”normal” | ” italic ”}?,

201 attribute fontsize {length}?,
attribute color {color}?,
attribute background {color | ”transparent”}?

MalignExpression = maligngroup|malignmark
206

malignmark = element malignmark {malignmark.attributes, empty}
malignmark.attributes =

CommonAtt, CommonPresAtt,
attribute edge {”left” | ”right”}?

211

maligngroup = element maligngroup {maligngroup.attributes, empty}
maligngroup.attributes =

CommonAtt, CommonPresAtt,
216 attribute groupalign {” left” | ”center” | ”right” | ”decimalpoint”}?

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

284 E The RelaxNG Schemata for Mathematical Objects

PresentationExpression = TokenExpression|MalignExpression|
mrow|mfrac|msqrt|mroot|mstyle|merror|mpadded|mphantom|

221 mfenced|menclose|msub|msup|msubsup|munder|mover|munderover|
mmultiscripts|mtable|mstack|mlongdiv|maction

226 mrow = element mrow {mrow.attributes, MathExpression∗}
mrow.attributes =

CommonAtt, CommonPresAtt,
attribute dir {”ltr” | ”rtl”}?

231

mfrac = element mfrac {mfrac.attributes, MathExpression, MathExpression}
mfrac.attributes =

CommonAtt, CommonPresAtt,
attribute linethickness {length | ”thin” | ”medium” | ”thick”}?,

236 attribute numalign {”left” | ”center” | ”right”}?,
attribute denomalign {”left” | ”center” | ”right”}?,
attribute bevelled {”true” | ” false”}?

241 msqrt = element msqrt {msqrt.attributes, ImpliedMrow}
msqrt.attributes =

CommonAtt, CommonPresAtt

246 mroot = element mroot {mroot.attributes, MathExpression, MathExpression}
mroot.attributes =

CommonAtt, CommonPresAtt

251 mstyle = element mstyle {mstyle.attributes, ImpliedMrow}
mstyle.attributes =

CommonAtt, CommonPresAtt,
mstyle. specificattributes ,
mstyle.generalattributes ,

256 mstyle.deprecatedattributes

mstyle. specificattributes =
attribute scriptlevel {integer}?,
attribute displaystyle {”true” | ” false ”}?,

261 attribute scriptsizemultiplier {number}?,
attribute scriptminsize {length}?,
attribute infixlinebreakstyle {”before” | ”after” | ”duplicate”}?,
attribute decimalpoint {character}?

266 mstyle.generalattributes =
attribute accent {”true” | ” false ”}?,
attribute accentunder {”true” | ” false ”}?,
attribute align {” left” | ”right” | ”center”}?,
attribute alignmentscope {list {(”true” | ” false”) +}}?,

271 attribute bevelled {”true” | ” false ”}?,
attribute charalign {” left” | ”center” | ”right”}?,
attribute charspacing {length | ”loose” | ”medium” | ”tight”}?,
attribute close {text}?,
attribute columnalign {list {columnalignstyle+} }?,

276 attribute columnlines { list { linestyle +}}?,
attribute columnspacing {list {(length) +}}?,
attribute columnspan {positive−integer}?,
attribute columnwidth {list {(”auto” | length | ” fit ”) +}}?,
attribute crossout { list {(”none” | ”updiagonalstrike” | ”downdiagonalstrike” | ” verticalstrike ” | ” horizontalstrike ”)∗}}?,

281 attribute denomalign {”left” | ”center” | ”right”}?,
attribute depth {length}?,
attribute dir {”ltr” | ”rtl ”}?,
attribute edge {”left” | ”right”}?,

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

E.2 The RelaxNG Schema for MathML 285

attribute equalcolumns {”true” | ”false”}?,
286 attribute equalrows {”true” | ” false ”}?,

attribute fence {”true” | ” false ”}?,
attribute form {”prefix” | ” infix” | ”postfix”}?,
attribute frame { linestyle }?,
attribute framespacing { list {length, length}}?,

291 attribute groupalign {group−alignment−list−list}?,
attribute height {length}?,
attribute indentalign {” left” | ”center” | ”right” | ”auto” | ”id”}?,
attribute indentalignfirst {” left” | ”center” | ”right” | ”auto” | ”id” | ”indentalign”}?,
attribute indentalignlast {” left” | ”center” | ”right” | ”auto” | ”id” | ”indentalign”}?,

296 attribute indentshift {length}?,
attribute indentshiftfirst {length | ”indentshift”}?,
attribute indentshiftlast {length | ”indentshift”}?,
attribute indenttarget { idref}?,
attribute largeop {”true” | ” false ”}?,

301 attribute leftoverhang {length}?,
attribute length {unsigned−integer}?,
attribute linebreak {”auto” | ”newline” | ”nobreak” | ”goodbreak” | ”badbreak”}?,
attribute linebreakmultchar {text}?,
attribute linebreakstyle {”before” | ”after” | ”duplicate” | ” infixlinebreakstyle ”}?,

306 attribute lineleading {length}?,
attribute linethickness {length | ”thin” | ”medium” | ”thick”}?,
attribute location {”w” | ”nw” | ”n” | ”ne” | ”e” | ”se” | ”s” | ”sw”}?,
attribute longdivstyle {”lefttop” | ”stackedrightright” | ”mediumstackedrightright” | ”shortstackedrightright” | ”righttop” | ” left /\right” | ” left)(right” | ” :right=right” | ” stackedleftleft ” | ” stackedleftlinetop ”}?,
attribute lquote {text}?,

311 attribute lspace {length}?,
attribute mathsize {”small” | ”normal” | ”big” | length}?,
attribute mathvariant {”normal” | ”bold” | ”italic” | ”bold−italic” | ”double−struck” | ”bold−fraktur” | ”script” | ”bold−script” | ”fraktur” | ”sans−serif” | ”bold−sans−serif” | ”sans−serif−italic” | ”sans−serif−bold−italic” | ”monospace” | ”initial” | ”tailed” | ”looped” | ”stretched”}?,
attribute maxsize {length | ” infinity ”}?,
attribute minlabelspacing {length}?,

316 attribute minsize {length}?,
attribute movablelimits {”true” | ” false ”}?,
attribute mslinethickness {length | ”thin” | ”medium” | ”thick”}?,
attribute notation {text}?,
attribute numalign {”left” | ”center” | ”right”}?,

321 attribute open {text}?,
attribute position {integer}?,
attribute rightoverhang {length}?,
attribute rowalign { list { verticalalign +} }?,
attribute rowlines { list { linestyle +}}?,

326 attribute rowspacing { list {(length) +}}?,
attribute rowspan {positive−integer}?,
attribute rquote {text}?,
attribute rspace {length}?,
attribute selection {positive−integer}?,

331 attribute separator {”true” | ” false ”}?,
attribute separators {text}?,
attribute shift {integer}?,
attribute side {” left” | ”right” | ” leftoverlap ” | ”rightoverlap”}?,
attribute stackalign {” left” | ”center” | ”right” | ”decimalpoint”}?,

336 attribute stretchy {”true” | ” false ”}?,
attribute subscriptshift {length}?,
attribute superscriptshift {length}?,
attribute symmetric {”true” | ”false”}?,
attribute valign {length}?,

341 attribute width {length}?

mstyle.deprecatedattributes =
DeprecatedTokenAtt,
attribute veryverythinmathspace {length}?,

346 attribute verythinmathspace {length}?,
attribute thinmathspace {length}?,
attribute mediummathspace {length}?,
attribute thickmathspace {length}?,
attribute verythickmathspace {length}?,

351 attribute veryverythickmathspace {length}?

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

286 E The RelaxNG Schemata for Mathematical Objects

math.attributes &= CommonPresAtt
math.attributes &= mstyle.specificattributes
math.attributes &= mstyle.generalattributes

356

merror = element merror {merror.attributes, ImpliedMrow}
361 merror.attributes =

CommonAtt, CommonPresAtt

mpadded = element mpadded {mpadded.attributes, ImpliedMrow}
366 mpadded.attributes =

CommonAtt, CommonPresAtt,
attribute height {mpadded−length}?,
attribute depth {mpadded−length}?,
attribute width {mpadded−length}?,

371 attribute lspace {mpadded−length}?,
attribute voffset {mpadded−length}?

mphantom = element mphantom {mphantom.attributes, ImpliedMrow}
376 mphantom.attributes =

CommonAtt, CommonPresAtt

mfenced = element mfenced {mfenced.attributes, MathExpression∗}
381 mfenced.attributes =

CommonAtt, CommonPresAtt,
attribute open {text}?,
attribute close {text}?,
attribute separators {text}?

386

menclose = element menclose {menclose.attributes, ImpliedMrow}
menclose.attributes =

CommonAtt, CommonPresAtt,
391 attribute notation {text}?

msub = element msub {msub.attributes, MathExpression, MathExpression}
msub.attributes =

396 CommonAtt, CommonPresAtt,
attribute subscriptshift {length}?

msup = element msup {msup.attributes, MathExpression, MathExpression}
401 msup.attributes =

CommonAtt, CommonPresAtt,
attribute superscriptshift {length}?

406 msubsup = element msubsup {msubsup.attributes, MathExpression, MathExpression, MathExpression}
msubsup.attributes =

CommonAtt, CommonPresAtt,
attribute subscriptshift {length}?,
attribute superscriptshift {length}?

411

munder = element munder {munder.attributes, MathExpression, MathExpression}
munder.attributes =

CommonAtt, CommonPresAtt,
416 attribute accentunder {”true” | ” false ”}?,

attribute align {” left” | ”right” | ”center”}?

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

E.2 The RelaxNG Schema for MathML 287

mover = element mover {mover.attributes, MathExpression, MathExpression}
421 mover.attributes =

CommonAtt, CommonPresAtt,
attribute accent {”true” | ” false ”}?,
attribute align {” left” | ”right” | ”center”}?

426

munderover = element munderover {munderover.attributes, MathExpression, MathExpression, MathExpression}
munderover.attributes =

CommonAtt, CommonPresAtt,
attribute accent {”true” | ” false ”}?,

431 attribute accentunder {”true” | ” false ”}?,
attribute align {” left” | ”right” | ”center”}?

mmultiscripts = element mmultiscripts {mmultiscripts.attributes, MathExpression,MultiScriptExpression∗,(mprescripts,MultiScriptExpression∗)?}
436 mmultiscripts.attributes =

msubsup.attributes

mtable = element mtable {mtable.attributes, TableRowExpression∗}
441 mtable.attributes =

CommonAtt, CommonPresAtt,
attribute align {xsd:string {

pattern =’\s∗(top|bottom|center|baseline|axis)\s∗[0−9]∗’}}?,
attribute rowalign { list { verticalalign +} }?,

446 attribute columnalign {list {columnalignstyle+} }?,
attribute groupalign {group−alignment−list−list}?,
attribute alignmentscope {list {(”true” | ” false”) +}}?,
attribute columnwidth {list {(”auto” | length | ” fit ”) +}}?,
attribute width {”auto” | length}?,

451 attribute rowspacing { list {(length) +}}?,
attribute columnspacing {list {(length) +}}?,
attribute rowlines { list { linestyle +}}?,
attribute columnlines { list { linestyle +}}?,
attribute frame { linestyle }?,

456 attribute framespacing { list {length, length}}?,
attribute equalrows {”true” | ” false ”}?,
attribute equalcolumns {”true” | ”false”}?,
attribute displaystyle {”true” | ” false ”}?,
attribute side {” left” | ”right” | ” leftoverlap ” | ”rightoverlap”}?,

461 attribute minlabelspacing {length}?

mlabeledtr = element mlabeledtr {mlabeledtr.attributes, TableCellExpression+}
mlabeledtr.attributes =

466 mtr.attributes

mtr = element mtr {mtr.attributes, TableCellExpression∗}
mtr.attributes =

471 CommonAtt, CommonPresAtt,
attribute rowalign {”top” | ”bottom” | ”center” | ”baseline” | ”axis”}?,
attribute columnalign {list {columnalignstyle+} }?,
attribute groupalign {group−alignment−list−list}?

476

mtd = element mtd {mtd.attributes, ImpliedMrow}
mtd.attributes =

CommonAtt, CommonPresAtt,
attribute rowspan {positive−integer}?,

481 attribute columnspan {positive−integer}?,
attribute rowalign {”top” | ”bottom” | ”center” | ”baseline” | ”axis”}?,
attribute columnalign {columnalignstyle}?,
attribute groupalign {group−alignment−list}?

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

288 E The RelaxNG Schemata for Mathematical Objects

486

mstack = element mstack {mstack.attributes, MstackExpression∗}
mstack.attributes =

CommonAtt, CommonPresAtt,
attribute align {xsd:string {

491 pattern =’\s∗(top|bottom|center|baseline|axis)\s∗[0−9]∗’}}?,
attribute stackalign {” left” | ”center” | ”right” | ”decimalpoint”}?,
attribute charalign {” left” | ”center” | ”right”}?,
attribute charspacing {length | ”loose” | ”medium” | ”tight”}?

496

mlongdiv = element mlongdiv {mlongdiv.attributes, MstackExpression,MstackExpression,MstackExpression+}
mlongdiv.attributes =

msgroup.attributes,
attribute longdivstyle {”lefttop” | ”stackedrightright” | ”mediumstackedrightright” | ”shortstackedrightright” | ”righttop” | ” left /\right” | ” left)(right” | ” :right=right” | ” stackedleftleft ” | ” stackedleftlinetop ”}?

501

msgroup = element msgroup {msgroup.attributes, MstackExpression∗}
msgroup.attributes =

CommonAtt, CommonPresAtt,
506 attribute position {integer}?,

attribute shift {integer}?

msrow = element msrow {msrow.attributes, MsrowExpression∗}
511 msrow.attributes =

CommonAtt, CommonPresAtt,
attribute position {integer}?

516 mscarries = element mscarries {mscarries.attributes, (MsrowExpression|mscarry)∗}
mscarries. attributes =

CommonAtt, CommonPresAtt,
attribute position {integer}?,
attribute location {”w” | ”nw” | ”n” | ”ne” | ”e” | ”se” | ”s” | ”sw”}?,

521 attribute crossout { list {(”none” | ”updiagonalstrike” | ”downdiagonalstrike” | ” verticalstrike ” | ” horizontalstrike ”)∗}}?,
attribute scriptsizemultiplier {number}?

mscarry = element mscarry {mscarry.attributes, MsrowExpression∗}
526 mscarry.attributes =

CommonAtt, CommonPresAtt,
attribute location {”w” | ”nw” | ”n” | ”ne” | ”e” | ”se” | ”s” | ”sw”}?,
attribute crossout { list {(”none” | ”updiagonalstrike” | ”downdiagonalstrike” | ” verticalstrike ” | ” horizontalstrike ”)∗}}?

531

maction = element maction {maction.attributes, MathExpression+}
maction.attributes =

CommonAtt, CommonPresAtt,
attribute actiontype {text}?,

536 attribute selection {positive−integer}?

E.2.3 Strict Content MathML

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.

4 #
Copyright 1998−2009 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License

9 # http://www.w3.org/Consortium/Legal/2002/copyright−software−20021231

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

E.2 The RelaxNG Schema for MathML 289

default namespace m = ”http://www.w3.org/1998/Math/MathML”

14 ContExp = semantics−contexp | cn | ci | csymbol | apply | bind | share | cerror | cbytes | cs

cn = element cn {cn.attributes,cn.content}
cn.content = text
cn.attributes = attribute type {”integer” | ”real” | ”double” | ”hexdouble”}

19

semantics−ci = element semantics {semantics.attributes,(ci|semantics−ci),
(annotation|annotation−xml)∗}

semantics−contexp = element semantics {semantics.attributes,ContExp,
24 (annotation|annotation−xml)∗}

ci = element ci {ci . attributes , ci .content}
ci . attributes = CommonAtt, ci.type?
ci .type = attribute type {”integer” | ”rational” | ”real” | ”complex” | ”complex−polar” | ”complex−cartesian” | ”constant” | ”function” | ”vector” | ”list” | ”set” | ”matrix”}

29 ci .content = text

csymbol = element csymbol {csymbol.attributes,csymbol.content}

34 SymbolName = xsd:NCName
csymbol.attributes = CommonAtt, cd
csymbol.content = SymbolName

BvarQ = bvar∗
39 bvar = element bvar { ci | semantics−ci}

apply = element apply {CommonAtt,apply.content}
apply.content = ContExp+

44

bind = element bind {CommonAtt,bind.content}
bind.content = ContExp,bvar∗,ContExp

share = element share {CommonAtt, src, empty}
49

cerror = element cerror {cerror. attributes , csymbol, ContExp∗}
cerror . attributes = CommonAtt

cbytes = element cbytes {cbytes.attributes, base64}
54 cbytes. attributes = CommonAtt

base64 = xsd:base64Binary

cs = element cs {cs.attributes , text}
cs . attributes = CommonAtt

59

MathExpression |= ContExp

E.2.4 Content MathML

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.

5 #
Copyright 1998−2010 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

290 E The RelaxNG Schemata for Mathematical Objects

10 # http://www.w3.org/Consortium/Legal/2002/copyright−software−20021231

include ”mathml3−strict−content.rnc”{
cn.content = (text | mglyph | sep | PresentationExpression)∗
cn.attributes = CommonAtt, DefEncAtt, attribute type {text}?, base?

15

ci . attributes = CommonAtt, DefEncAtt, ci.type?
ci .type = attribute type {text}
ci .content = (text | mglyph | PresentationExpression)∗

20 csymbol.attributes = CommonAtt, DefEncAtt, attribute type {text}?,cd?
csymbol.content = (text | mglyph | PresentationExpression)∗

bvar = element bvar { (ci | semantics−ci) & degree?}

25 cbytes. attributes = CommonAtt, DefEncAtt

cs . attributes = CommonAtt, DefEncAtt

apply.content = ContExp+ | (ContExp, BvarQ, Qualifier∗, ContExp∗)
30

bind.content = apply.content
}

base = attribute base {text}
35

sep = element sep {empty}
PresentationExpression |= notAllowed

40

DomainQ = (domainofapplication|condition|interval|(lowlimit,uplimit?))∗
domainofapplication = element domainofapplication {ContExp}
condition = element condition {ContExp}
uplimit = element uplimit {ContExp}

45 lowlimit = element lowlimit {ContExp}

Qualifier = DomainQ|degree|momentabout|logbase
degree = element degree {ContExp}
momentabout = element momentabout {ContExp}

50 logbase = element logbase {ContExp}

type = attribute type {text}
order = attribute order {”numeric” | ”lexicographic”}
closure = attribute closure {text}

55

ContExp |= piecewise

60 piecewise = element piecewise {CommonAtt, DefEncAtt,(piece∗ & otherwise?)}

piece = element piece {CommonAtt, DefEncAtt, ContExp, ContExp}

otherwise = element otherwise {CommonAtt, DefEncAtt, ContExp}
65

DeprecatedContExp = reln | fn | declare
ContExp |= DeprecatedContExp

70 reln = element reln {ContExp∗}
fn = element fn {ContExp}
declare = element declare {attribute type {xsd:string}?,

attribute scope {xsd:string}?,
attribute nargs {xsd:nonNegativeInteger}?,

75 attribute occurrence {”prefix”|” infix ”|”function−model”}?,
DefEncAtt,

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

E.2 The RelaxNG Schema for MathML 291

ContExp+}

80 interval . class = interval
ContExp |= interval.class

interval = element interval { CommonAtt, DefEncAtt,closure?, ContExp,ContExp}
85

unary−functional.class = inverse | ident | domain | codomain | image | ln | log | moment
ContExp |= unary−functional.class

90 inverse = element inverse { CommonAtt, DefEncAtt, empty}
ident = element ident { CommonAtt, DefEncAtt, empty}
domain = element domain { CommonAtt, DefEncAtt, empty}
codomain = element codomain { CommonAtt, DefEncAtt, empty}
image = element image { CommonAtt, DefEncAtt, empty}

95 ln = element ln { CommonAtt, DefEncAtt, empty}
log = element log { CommonAtt, DefEncAtt, empty}
moment = element moment { CommonAtt, DefEncAtt, empty}

lambda.class = lambda
100 ContExp |= lambda.class

lambda = element lambda { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp}

105 nary−functional.class = compose
ContExp |= nary−functional.class

compose = element compose { CommonAtt, DefEncAtt, empty}
110

binary−arith.class = quotient | divide | minus | power | rem | root
ContExp |= binary−arith.class

115 quotient = element quotient { CommonAtt, DefEncAtt, empty}
divide = element divide { CommonAtt, DefEncAtt, empty}
minus = element minus { CommonAtt, DefEncAtt, empty}
power = element power { CommonAtt, DefEncAtt, empty}
rem = element rem { CommonAtt, DefEncAtt, empty}

120 root = element root { CommonAtt, DefEncAtt, empty}

unary−arith.class = factorial | minus | root | abs | conjugate | arg | real | imaginary | floor | ceiling | exp
ContExp |= unary−arith.class

125

factorial = element factorial { CommonAtt, DefEncAtt, empty}
abs = element abs { CommonAtt, DefEncAtt, empty}
conjugate = element conjugate { CommonAtt, DefEncAtt, empty}
arg = element arg { CommonAtt, DefEncAtt, empty}

130 real = element real { CommonAtt, DefEncAtt, empty}
imaginary = element imaginary { CommonAtt, DefEncAtt, empty}
floor = element floor { CommonAtt, DefEncAtt, empty}
ceiling = element ceiling { CommonAtt, DefEncAtt, empty}
exp = element exp { CommonAtt, DefEncAtt, empty}

135

nary−minmax.class = max | min
ContExp |= nary−minmax.class

140 max = element max { CommonAtt, DefEncAtt, empty}
min = element min { CommonAtt, DefEncAtt, empty}

nary−arith.class = plus | times | gcd | lcm

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

292 E The RelaxNG Schemata for Mathematical Objects

ContExp |= nary−arith.class
145

plus = element plus { CommonAtt, DefEncAtt, empty}
times = element times { CommonAtt, DefEncAtt, empty}
gcd = element gcd { CommonAtt, DefEncAtt, empty}

150 lcm = element lcm { CommonAtt, DefEncAtt, empty}

nary−logical. class = and | or | xor
ContExp |= nary−logical.class

155

and = element and { CommonAtt, DefEncAtt, empty}
or = element or { CommonAtt, DefEncAtt, empty}
xor = element xor { CommonAtt, DefEncAtt, empty}

160 unary−logical.class = not
ContExp |= unary−logical.class

not = element not { CommonAtt, DefEncAtt, empty}
165

binary−logical. class = implies | equivalent
ContExp |= binary−logical.class

170 implies = element implies { CommonAtt, DefEncAtt, empty}
equivalent = element equivalent { CommonAtt, DefEncAtt, empty}

quantifier . class = forall | exists
ContExp |= quantifier.class

175

forall = element forall { CommonAtt, DefEncAtt, empty}
exists = element exists { CommonAtt, DefEncAtt, empty}

180 nary−reln.class = eq | gt | lt | geq | leq
ContExp |= nary−reln.class

eq = element eq { CommonAtt, DefEncAtt, empty}
185 gt = element gt { CommonAtt, DefEncAtt, empty}

lt = element lt { CommonAtt, DefEncAtt, empty}
geq = element geq { CommonAtt, DefEncAtt, empty}
leq = element leq { CommonAtt, DefEncAtt, empty}

190 binary−reln.class = neq | approx | factorof | tendsto
ContExp |= binary−reln.class

neq = element neq { CommonAtt, DefEncAtt, empty}
195 approx = element approx { CommonAtt, DefEncAtt, empty}

factorof = element factorof { CommonAtt, DefEncAtt, empty}
tendsto = element tendsto { CommonAtt, DefEncAtt, type?, empty}

int . class = int
200 ContExp |= int.class

int = element int { CommonAtt, DefEncAtt, empty}

205 Differential −Operator.class = diff
ContExp |= Differential−Operator.class

diff = element diff { CommonAtt, DefEncAtt, empty}
210

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

E.2 The RelaxNG Schema for MathML 293

partialdiff . class = partialdiff
ContExp |= partialdiff. class

215 partialdiff = element partialdiff { CommonAtt, DefEncAtt, empty}

unary−veccalc.class = divergence | grad | curl | laplacian
ContExp |= unary−veccalc.class

220

divergence = element divergence { CommonAtt, DefEncAtt, empty}
grad = element grad { CommonAtt, DefEncAtt, empty}
curl = element curl { CommonAtt, DefEncAtt, empty}
laplacian = element laplacian { CommonAtt, DefEncAtt, empty}

225

nary−setlist−constructor.class = set | \ list
ContExp |= nary−setlist−constructor.class

230 set = element set { CommonAtt, DefEncAtt, type?, BvarQ∗, DomainQ∗, ContExp∗}
\ list = element \list { CommonAtt, DefEncAtt, order?, BvarQ∗, DomainQ∗, ContExp∗}

nary−set.class = union | intersect | cartesianproduct
ContExp |= nary−set.class

235

union = element union { CommonAtt, DefEncAtt, empty}
intersect = element intersect { CommonAtt, DefEncAtt, empty}
cartesianproduct = element cartesianproduct { CommonAtt, DefEncAtt, empty}

240

binary−set.class = in | notin | notsubset | notprsubset | setdiff
ContExp |= binary−set.class

245 in = element in { CommonAtt, DefEncAtt, empty}
notin = element notin { CommonAtt, DefEncAtt, empty}
notsubset = element notsubset { CommonAtt, DefEncAtt, empty}
notprsubset = element notprsubset { CommonAtt, DefEncAtt, empty}
setdiff = element setdiff { CommonAtt, DefEncAtt, empty}

250

nary−set−reln.class = subset | prsubset
ContExp |= nary−set−reln.class

255 subset = element subset { CommonAtt, DefEncAtt, empty}
prsubset = element prsubset { CommonAtt, DefEncAtt, empty}

unary−set.class = card
ContExp |= unary−set.class

260

card = element card { CommonAtt, DefEncAtt, empty}

sum.class = sum
265 ContExp |= sum.class

sum = element sum { CommonAtt, DefEncAtt, empty}

270 product.class = product
ContExp |= product.class

product = element product { CommonAtt, DefEncAtt, empty}
275

limit . class = limit
ContExp |= limit.class

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

294 E The RelaxNG Schemata for Mathematical Objects

280 limit = element limit { CommonAtt, DefEncAtt, empty}

unary−elementary.class = sin | cos | tan | sec | csc | cot | sinh | cosh | tanh | sech | csch | coth | arcsin | arccos | arctan | arccosh | arccot | arccoth | arccsc | arccsch | arcsec | arcsech | arcsinh | arctanh
ContExp |= unary−elementary.class

285

sin = element sin { CommonAtt, DefEncAtt, empty}
cos = element cos { CommonAtt, DefEncAtt, empty}
tan = element tan { CommonAtt, DefEncAtt, empty}
sec = element sec { CommonAtt, DefEncAtt, empty}

290 csc = element csc { CommonAtt, DefEncAtt, empty}
cot = element cot { CommonAtt, DefEncAtt, empty}
sinh = element sinh { CommonAtt, DefEncAtt, empty}
cosh = element cosh { CommonAtt, DefEncAtt, empty}
tanh = element tanh { CommonAtt, DefEncAtt, empty}

295 sech = element sech { CommonAtt, DefEncAtt, empty}
csch = element csch { CommonAtt, DefEncAtt, empty}
coth = element coth { CommonAtt, DefEncAtt, empty}
arcsin = element arcsin { CommonAtt, DefEncAtt, empty}
arccos = element arccos { CommonAtt, DefEncAtt, empty}

300 arctan = element arctan { CommonAtt, DefEncAtt, empty}
arccosh = element arccosh { CommonAtt, DefEncAtt, empty}
arccot = element arccot { CommonAtt, DefEncAtt, empty}
arccoth = element arccoth { CommonAtt, DefEncAtt, empty}
arccsc = element arccsc { CommonAtt, DefEncAtt, empty}

305 arccsch = element arccsch { CommonAtt, DefEncAtt, empty}
arcsec = element arcsec { CommonAtt, DefEncAtt, empty}
arcsech = element arcsech { CommonAtt, DefEncAtt, empty}
arcsinh = element arcsinh { CommonAtt, DefEncAtt, empty}
arctanh = element arctanh { CommonAtt, DefEncAtt, empty}

310

nary−stats.class = mean | sdev | variance | median | mode
ContExp |= nary−stats.class

315 mean = element mean { CommonAtt, DefEncAtt, empty}
sdev = element sdev { CommonAtt, DefEncAtt, empty}
variance = element variance { CommonAtt, DefEncAtt, empty}
median = element median { CommonAtt, DefEncAtt, empty}
mode = element mode { CommonAtt, DefEncAtt, empty}

320

nary−constructor.class = vector | matrix | matrixrow
ContExp |= nary−constructor.class

325 vector = element vector { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp∗}
matrix = element matrix { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp∗}
matrixrow = element matrixrow { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp∗}

unary−linalg.class = determinant | transpose
330 ContExp |= unary−linalg.class

determinant = element determinant { CommonAtt, DefEncAtt, empty}
transpose = element transpose { CommonAtt, DefEncAtt, empty}

335

nary−linalg.class = selector
ContExp |= nary−linalg.class

340 selector = element selector { CommonAtt, DefEncAtt, empty}

binary−linalg.class = vectorproduct | scalarproduct | outerproduct
ContExp |= binary−linalg.class

mobj-rnc.tex 8685 2010-08-23 08:55:17Z kohlhase

E.2 The RelaxNG Schema for MathML 295

345

vectorproduct = element vectorproduct { CommonAtt, DefEncAtt, empty}
scalarproduct = element scalarproduct { CommonAtt, DefEncAtt, empty}
outerproduct = element outerproduct { CommonAtt, DefEncAtt, empty}

350 constant−set.class = integers | reals | rationals | naturalnumbers | complexes | primes | emptyset
ContExp |= constant−set.class

integers = element integers { CommonAtt, DefEncAtt, empty}
355 reals = element reals { CommonAtt, DefEncAtt, empty}

rationals = element rationals { CommonAtt, DefEncAtt, empty}
naturalnumbers = element naturalnumbers { CommonAtt, DefEncAtt, empty}
complexes = element complexes { CommonAtt, DefEncAtt, empty}
primes = element primes { CommonAtt, DefEncAtt, empty}

360 emptyset = element emptyset { CommonAtt, DefEncAtt, empty}

constant−arith.class = exponentiale | imaginaryi | notanumber | true | false | pi | eulergamma | infinity
ContExp |= constant−arith.class

365

exponentiale = element exponentiale { CommonAtt, DefEncAtt, empty}
imaginaryi = element imaginaryi { CommonAtt, DefEncAtt, empty}
notanumber = element notanumber { CommonAtt, DefEncAtt, empty}
true = element true { CommonAtt, DefEncAtt, empty}

370 false = element false { CommonAtt, DefEncAtt, empty}
pi = element pi { CommonAtt, DefEncAtt, empty}
eulergamma = element eulergamma { CommonAtt, DefEncAtt, empty}
infinity = element infinity { CommonAtt, DefEncAtt, empty}

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

REFERENCES 297

References

[AB08] Ben Adida and Mark Birbeck. RDFa Primer. Bridging the Hu-
man and Data Webs. W3C Working Group Note. World Wide
Web Consortium (W3C), Oct. 14, 2008. url: http://www.w3.
org/TR/2008/NOTE-xhtml-rdfa-primer-20081014/. (Cit. on
p. 108).

[ABD03] Andrea Asperti, Bruno Buchberger, and James Harold Dav-
enport, eds. Mathematical Knowledge Management, MKM’03.
LNCS 2594. Springer Verlag, 2003.

[Abe+08] Hal Abelson et al. ccREL: The Creative Commons Rights Expres-
sion Language. Tech. rep. Creative Commons, Mar. 3, 2008. url:
http://wiki.creativecommons.org/images/d/d6/Ccrel-

1.0.pdf (visited on 10/22/2009). (Cit. on p. 109).
[Adi+08] Ben Adida et al. RDFa in XHTML: Syntax and Processing. W3C

Recommendation. World Wide Web Consortium (W3C), Oct.
2008. url: http://www.w3.org/TR/2008/REC-rdfa-syntax-
20081014/. (Cit. on pp. 105, 106).

[AK02] Andrea Asperti and Michael Kohlhase. “MathML in the
MoWGLI Project”. In: Second International Conference on
MathML and Technologies for Math on the Web. Chicago,
USA, 2002. url: http://www.mathmlconference.org/2002/
presentations/asperti/. (Cit. on p. 176).

[AKSC03] Andrea Asperti, Michael Kohlhase, and Claudio Sacerdoti Coen.
Prototype n. D2.b Document Type Descriptors: OMDoc Proofs.
MoWGLI Deliverable. The MoWGLI Project, 2003. (Cit. on
p. 176).

[And02] Peter B. Andrews. An Introduction to Mathematical Logic and
Type Theory: To Truth Through Proof. second. Kluwer Academic
Publishers, 2002. (Cit. on p. 49).

[Asp+01] Andrea Asperti et al. “HELM and the Semantic Math-Web”. In:
Theorem Proving in Higher Order Logics: TPHOLs’01. Ed. by
Richard. J. Boulton and Paul B. Jackson. LNCS 2152. Springer
Verlag, 2001, pp. 59–74. (Cit. on p. 176).

[Aus+03a] Ron Ausbrooks et al. Mathematical Markup Language (MathML)
Version 2.0 (second edition). W3C Recommendation. World
Wide Web Consortium (W3C), 2003. url: http://www.w3.

org/TR/MathML2. (Cit. on pp. 14, 15, 29, 121, 128, 218).
[Aus+03b] Ron Ausbrooks et al. Mathematical Markup Language (MathML)

Version 2.0 (second edition). W3C Recommendation. World
Wide Web Consortium (W3C), 2003. url: http://www.w3.

org/TR/MathML2. (Cit. on p. 128).
[Aut+00] Serge Autexier et al. “Towards an Evolutionary Formal Software-

Development Using CASL”. In: Proceedings Workshop on Alge-
braic Development Techniques, WADT-99. Ed. by C. Choppy and

http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014/
http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014/
http://wiki.creativecommons.org/images/d/d6/Ccrel-1.0.pdf
http://wiki.creativecommons.org/images/d/d6/Ccrel-1.0.pdf
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.mathmlconference.org/2002/presentations/asperti/
http://www.mathmlconference.org/2002/presentations/asperti/
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML2

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

298 REFERENCES

D. Bert. LNCS 1827. Springer Verlag, 2000, pp. 73–88. (Cit. on
p. 223).

[Bar80] Hendrik P. Barendregt. The Lambda-Calculus: Its Syntax and
Semantics. North-Holland, 1980. (Cit. on p. 49).

[Bau99] Judith Baur. “Syntax und Semantik mathematischer Texte —
ein Prototyp”. MA thesis. SaarbrückenGermany: Fachrichtung
Computerlinguistik, Universität des Saarlandes, 1999. (Cit. on
p. 179).

[BB01] P. Baumgartner and A. Blohm. “Automated deduction tech-
niques for the management of personalized documents”. In: Elec-
tronic Proceedings of the First International Workshop on Math-
ematical Knowledge Management: MKM’2001. Ed. by Bruno
Buchberger and Olga Caprotti. 2001. url: http : / / www .

risc.uni- linz.ac.at/institute/conferences/MKM2001/

Proceedings/. (Cit. on p. 37).
[BC01] Henk Barendregt and Arjeh M. Cohen. “Electronic communi-

cation of mathematics and the interaction of computer algebra
systems and proof assistants”. In: Journal of Symbolic Compu-
tation 32 (2001), pp. 3–22. (Cit. on p. 175).

[Ben+97] Christoph Benzmüller et al. “Ωmega: Towards a mathematical
assistant”. In: Proceedings of the 14th Conference on Automated
Deduction. Ed. by William McCune. LNAI 1249. Townsville,
Australia: Springer Verlag, 1997, pp. 252–255. url: http://

kwarc.info/kohlhase/papers/Omega97-CADE.pdf. (Cit. on
pp. 23, 38, 180).

[Ber91] Paul Bernays. Axiomatic Set Theory. Dover Publications, 1991.
(Cit. on p. 141).

[BHL99] Namespaces in XML. W3C Recommendation. World Wide Web
Consortium (W3C), 1999. url: http://www.w3.org/TR/REC-
xml-names. (Cit. on p. 7).

[Bir09] Mark Birbeck. Proposal for ‘URIs everywhere’. e-mail to public-

rdf-in-xhtml-tf@w3.org. Nov. 25, 2009. url: http://lists.
w3.org/Archives/Public/public-rdf-in-xhtml-tf/2009

Nov/0081.html. (Cit. on p. 107).
[BL98] Tim Berners-Lee. The Semantic Web. W3C Architecture Note.

1998. url: http://www.w3.org/DesignIssues/Semantic.

html. (Cit. on p. 32).
[BLFM98] Tim Berners-Lee, Roy T. Fielding, and Larry. Masinter. Uniform

Resource Identifiers (URI), Generic Syntax. RFC 2717. Internet
Engineering Task Force (IETF), 1998. url: http://www.ietf.
org/rfc/rfc2717.txt. (Cit. on pp. 5, 134).

[BM04] Paul V. Biron and Ashok Malhotra. XML Schema Part 2:
Datatypes Second Edition. W3C Recommendation. World Wide
Web Consortium (W3C), Oct. 28, 2004. url: http://www.w3.

http://www.risc.uni-linz.ac.at/institute/conferences/MKM2001/Proceedings/
http://www.risc.uni-linz.ac.at/institute/conferences/MKM2001/Proceedings/
http://www.risc.uni-linz.ac.at/institute/conferences/MKM2001/Proceedings/
http://kwarc.info/kohlhase/papers/Omega97-CADE.pdf
http://kwarc.info/kohlhase/papers/Omega97-CADE.pdf
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml-names
public-rdf-in-xhtml-tf@w3.org
public-rdf-in-xhtml-tf@w3.org
http://lists.w3.org/Archives/Public/public-rdf-in-xhtml-tf/2009Nov/0081.html
http://lists.w3.org/Archives/Public/public-rdf-in-xhtml-tf/2009Nov/0081.html
http://lists.w3.org/Archives/Public/public-rdf-in-xhtml-tf/2009Nov/0081.html
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/DesignIssues/Semantic.html
http://www.ietf.org/rfc/rfc2717.txt
http://www.ietf.org/rfc/rfc2717.txt
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

REFERENCES 299

org/TR/2004/REC-xmlschema-2-20041028/. (Cit. on pp. 110,
114).

[BM09] Mark Birbeck and Shane McCarron. CURIE Syntax 1.0. A syn-
tax for expressing Compact URIs. W3C Candidate Recommenda-
tion. World Wide Web Consortium (W3C), Jan. 16, 2009. url:
http://www.w3.org/TR/2009/CR-curie-20090116. (Cit. on
p. 107).

[Bos+98] Cascading Style Sheets, level 2; CSS2 Specification. W3C Rec-
ommendation. World Wide Web Consortium (W3C), 1998. url:
http://www.w3.org/TR/1998/REC-CSS2-19980512. (Cit. on
pp. 6, 92, 93, 229).

[Bou74] Nicolas Bourbaki. Algebra I. Elements of Mathematics. Springer
Verlag, 1974. (Cit. on pp. 37, 38).

[BPSM97] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible
Markup Language (XML). W3C Recommendation. World Wide
Web Consortium (W3C), Dec. 1997. url: http://www.w3.org/
TR/PR-xml.html. (Cit. on pp. 6, 8, 9).

[Bra+02] R. Bradford et al. “Reasoning About the Elementary Functions
of Complex Analysis.” In: Annals of Mathematics and Artificial
Intelligence 36 (2002), pp. 303 –318. (Cit. on p. 197).

[Bra+04] Tim Bray et al. Extensible Markup Language (XML) 1.1. W3C
Recommendation REC-xml11-20040204. World Wide Web Con-
sortium (W3C), 2004. url: http://www.w3.org/TR/2004/REC-
xml11-20040204/. (Cit. on p. 153).

[Bru80] Nicolaas Govert de Bruijn. “A Survey of the Project AU-
TOMATH”. In: To H.B. Curry: Essays in Combinator Logic,
Lambda Calculus and Formalisms. Ed. by R. Hindley and J.
Seldin. Academic Press, 1980, pp. 579–606. (Cit. on p. 23).

[Bus+04] Stephen Buswell et al. The Open Math Standard, Version 2.0.
Tech. rep. The OpenMath Society, 2004. url: http://www.

openmath.org/standard/om20. (Cit. on pp. 14, 18, 29, 53, 121,
123, 125, 169, 170, 218, 222, 277).

[Bus+99] Stephen Buswell et al. Mathematical Markup Language
(MathML) 1.01 Specification. W3C Recommendation. World
Wide Web Consortium (W3C), 1999. url: http://www.w3.

org/TR/REC-MathML. (Cit. on p. 14).
[CD99] James Clark and Steve DeRose. XML Path Language (XPath)

Version 1.0. W3C Recommendation. World Wide Web Consor-
tium (W3C), Nov. 1999. url: http://www.w3.org/TR/1999/
REC-xpath-19991116. (Cit. on p. 10).

[Cha+92] Bruce W. Char et al. First leaves: a tutorial introduction to Maple
V. Berlin: Springer Verlag, 1992. (Cit. on p. 29).

[Cla+03] Edmund Clarke et al. “System Description: Analytica 2”. In:
Proceedings of the 11th Symposium on the Integration of Symbolic
Computation and Mechanized Reasoning (Calculemus 2003). Ed.

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2009/CR-curie-20090116
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.w3.org/TR/PR-xml.html
http://www.w3.org/TR/PR-xml.html
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20
http://www.w3.org/TR/REC-MathML
http://www.w3.org/TR/REC-MathML
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

300 REFERENCES

by Thérèse Hardin and Renaud Rioboo. Rome, Italy, Sept.
2003, pp. 69–74. url: http://kwarc.info/kohlhase/papers/
calculemus03.pdf. (Cit. on p. 207).

[Cla99a] Associating Style Sheets with XML Documents Version 1.0. W3C
Recommendation. World Wide Web Consortium (W3C), 1999.
url: http://www.w3.org/TR/xml-stylesheet. (Cit. on p. 93).

[Cla99b] XSL Transformations (XSLT) Version 1.0. W3C Recommenda-
tion. World Wide Web Consortium (W3C), 1999. url: http:

//www.w3.org/TR/xslt. (Cit. on p. 218).
[Com] Userland Com. XML Remote Procedure Call Specification. web

page at http://www.xmlrpc.com/. url: http://www.xmlrpc.
com/. (Cit. on p. 81).

[Con+86] Robert L. Constable et al. Implementing Mathematics with the
Nuprl Proof Development System. Englewood Cliffs, NJUSA:
Prentice-Hall, 1986. (Cit. on pp. 23, 38, 181).

[Cor] Microsoft Corp. Microsoft Internet Explorer. web page at http:
/ / www . microsoft . com / windows / ie/. url: http : / / www .

microsoft.com/windows/ie/. (Cit. on p. 16).
[Cre08] Creative Commons, ed. Creative Commons. http : / / www .

creativecommons.org. 2008. url: http://creativecommons.
org. (Cit. on p. 118).

[CT04] XML Information Set (Second Edition). W3C Recommendation.
World Wide Web Consortium (W3C), Feb. 4, 2004. url: http:
//www.w3.org/TR/2004/REC-xml-infoset-20040204. (Cit. on
p. 18).

[Dah01] Ingo Dahn. “Slicing Book Technology – Providing Online Sup-
port for Textbooks”. In: The 20th ICDE World Conference on
Open Learning and Distance Education. 2001. (Cit. on p. 37).

[de 94] N. G. de Bruijn. “The Mathematical Vernacular, A Language
for Mathematics with Typed Sets”. In: Selected Papers on Au-
tomath. Ed. by R. P Nederpelt, J. H. Geuvers, and R. C. de Vrijer.
Vol. 133. Studies in Logic and the Foundations of Mathematics.
Elsevier, 1994, pp. 865 –935. (Cit. on p. 137).

[DeR+01] Steve DeRose et al. XML Linking Language (XLink Version 1.0).
W3C Recommendation. World Wide Web Consortium (W3C),
2001. url: http://www.w3.org/TR/2000/REC-xlink-2001062
7/. (Cit. on pp. 147, 210).

[DUB03a] The DCMI Usage Board. DCMI Metadata Terms. DCMI Recom-
mendation. Dublin Core Metadata Initiative, 2003. url: http:
//dublincore.org/documents/dcmi-terms/. (Cit. on pp. 27,
113, 227).

[DUB03b] The DCMI Usage Board. DCMI Type Vocabulary. DCMI Recom-
mendation. Dublin Core Metadata Initiative, 2003. url: http:
//dublincore.org/documents/dcmi-type-vocabulary/. (Cit.
on p. 115).

http://kwarc.info/kohlhase/papers/calculemus03.pdf
http://kwarc.info/kohlhase/papers/calculemus03.pdf
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.xmlrpc.com/
http://www.xmlrpc.com/
http://www.xmlrpc.com/
http://www.microsoft.com/windows/ie/
http://www.microsoft.com/windows/ie/
http://www.microsoft.com/windows/ie/
http://www.microsoft.com/windows/ie/
http://www.creativecommons.org
http://www.creativecommons.org
http://creativecommons.org
http://creativecommons.org
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.w3.org/TR/2000/REC-xlink-20010627/
http://www.w3.org/TR/2000/REC-xlink-20010627/
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-type-vocabulary/
http://dublincore.org/documents/dcmi-type-vocabulary/

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

REFERENCES 301

[DuC97] Bob DuCharme. “Formatting Documents with DSSSL Specifica-
tions and Jade”. In: The SGML Newsletter 10.5 (1997), pp. 6–10.
(Cit. on p. 6).

[DW05] Mark Davis and Ken Whistler. Unicode Collation Algorithm.
Unicode Technical Standard #10. 2005. url: http://www.

unicode.org/reports/tr10/. (Cit. on p. 144).
[Far93] William M. Farmer. “Theory Interpretation in Simple Type The-

ory”. In: HOA’93, an International Workshop on Higher-order
Algebra, Logic and Term Rewriting. LNCS 816. Amsterdam, The
Netherlands: Springer Verlag, 1993. (Cit. on p. 189).

[FB96] N. Freed and N. Borenstein. Multipurpose Internet Mail Exten-
sions (MIME) Part Two: Media Types. RFC 2046: http://www.
faqs.org/rfcs/rfc2046.html. 1996. url: http://www.faqs.
org/rfcs/rfc2046.html. (Cit. on pp. 41, 115, 125, 207, 253).

[FGT93] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer.
“IMPS: An Interactive Mathematical Proof System”. In: Journal
of Automated Reasoning 11.2 (Oct. 1993), pp. 213–248. (Cit. on
p. 194).

[FH97] Amy P. Felty and Douglas J. Howe. “Hybrid Interactive The-
orem Proving using NuPRL and HOL”. In: Proceedings of the
14th Conference on Automated Deduction. Ed. by William Mc-
Cune. LNAI 1249. Townsville, Australia: Springer Verlag, 1997,
pp. 351–365. (Cit. on p. 26).

[Fie97] Armin Fiedler. “Towards a Proof Explainer”. In: Proceedings of
the First International Workshop on Proof Transformation and
Presentation. Ed. by J. Siekmann, F. Pfenning, and X. Huang.
Schloss DagstuhlGermany, 1997, pp. 53–54. (Cit. on p. 179).

[FK99] Andreas Franke and Michael Kohlhase. “System Description:
MathWeb, an Agent-Based Communication Layer for Dis-
tributed Automated Theorem Proving”. In: Automated De-
duction — CADE-16. Ed. by Harald Ganzinger. LNAI 1632.
Springer Verlag, 1999, pp. 217–221. url: http://kwarc.info/
kohlhase/papers/cade99.pdf. (Cit. on pp. 26, 81).

[Gen35] Gerhard Gentzen. “Untersuchungen über das logische Schließen
I & II”. In: Mathematische Zeitschrift 39 (1935), pp. 176–210,
572–595. (Cit. on pp. 182, 183).

[GM93] M. J. C. Gordon and T. F. Melham. Introduction to HOL – A
theorem proving environment for higher order logic. Cambridge
University Press, 1993. (Cit. on pp. 23, 38).

[Gog+03] George Goguadze et al. “Problems and Solutions for Markup
for Mathematical Examples and Exercises”. In: Mathemati-
cal Knowledge Management, MKM’03. Ed. by Andrea Asperti,
Bruno Buchberger, and James Harold Davenport. LNCS 2594.
Springer Verlag, 2003, pp. 80–93. (Cit. on p. 213).

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr10/
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2046.html
http://kwarc.info/kohlhase/papers/cade99.pdf
http://kwarc.info/kohlhase/papers/cade99.pdf

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

302 REFERENCES

[Gol90] C. F. Goldfarb. The SGML Handbook. Oxford University Press,
1990. (Cit. on p. 6).

[Gro+03a] Paul Grosso et al. W3C XPointer Framework. W3C Recommen-
dation. World Wide Web Consortium (W3C), Mar. 25, 2003.
url: http://www.w3.org/TR/2003/REC-xptr-framework-

20030325/. (Cit. on p. 10).
[Gro+03b] Paul Grosso et al. XPointer element() Scheme. W3C Recommen-

dation. World Wide Web Consortium (W3C), 2003. url: http:
//www.w3.org/TR/xptr-element. (Cit. on p. 10).

[Gro99] The Open eBook Group. Open eBook[tm] Publication Structure
1.0. Draft Recommendation. The OpenEBook Initiative, 1999.
url: http://www.openEbook.org. (Cit. on p. 116).

[Gud+03] Martin Gudgin et al. SOAP 1.2 Part 2: Adjuncts. W3C Rec-
ommendation. 2003. url: http://www.w3.org/TR/2003/REC-
soap12-part2-20030624. (Cit. on p. 81).

[Har+] Jens Hartmann et al. Ontology Metadata Vocabulary – OMV.
url: http://omv2.sourceforge.net (visited on 01/12/2010).
(Cit. on p. 110).

[Har01] Eliotte Rusty Harold. XML Bible. Gold Edition. Hungry Minds,
2001. (Cit. on pp. 3, 6).

[Har03] Eliotte Rusty Harold. “Effective XML”. In: Addison Wesley,
2003. Chap. 15. (Cit. on p. 218).

[HC09] Aidan Hogan and Richard Cyganiak. Frequently Observed Prob-
lems on the Web of Data. Tech. rep. Version v0.3. Pedantic Web
Group, Nov. 13, 2009. url: http://pedantic-web.org/fops.
html. (Cit. on p. 108).

[Her+08] Ivan Herman et al. Team Comment on ccREL: The Creative
Commons Rights Expression Language Member Submission.
W3C Team Comment. World Wide Web Consortium (W3C),
Feb. 2008. url: http://www.w3.org/Submission/2008/02/
Comment. (Cit. on p. 110).

[HF96] Xiaorong Huang and Armin Fiedler. “Presenting Machine-Found
Proofs”. In: Proceedings of the 13th Conference on Automated
Deduction. Ed. by M. A. McRobbie and J. K. Slaney. LNAI 1104.
New Brunswick, NJ, USA: Springer Verlag, 1996, pp. 221–225.
(Cit. on p. 179).

[HHA08] Michael Hausenblas, Ivan Herman, and Ben Adida. RDFa –
Bridging the Web of Documents and the Web of Data. 2008. url:
http://www.w3.org/2008/Talks/1026-ISCW-RDFa/ (visited on
11/26/2009). (Cit. on p. 108).

[HKW96] Reiner Hähnle, Manfred Kerber, and Christoph Weidenbach.
Common Syntax of DFG-Schwerpunktprogramm “Deduktion”.
Interner Bericht 10/96. Universität Karlsruhe, Fakultät für In-
formatik, 1996. (Cit. on p. 26).

http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/xptr-element
http://www.w3.org/TR/xptr-element
http://www.openEbook.org
http://www.w3.org/TR/2003/REC-soap12-part2-20030624
http://www.w3.org/TR/2003/REC-soap12-part2-20030624
http://omv2.sourceforge.net
http://pedantic-web.org/fops.html
http://pedantic-web.org/fops.html
http://www.w3.org/Submission/2008/02/Comment
http://www.w3.org/Submission/2008/02/Comment
http://www.w3.org/2008/Talks/1026-ISCW-RDFa/

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

REFERENCES 303

[Hut00] Dieter Hutter. “Management of Change in Verification Systems”.
In: Proceedings 15th IEEE International Conference on Auto-
mated Software Engineering, ASE-2000. IEEE Computer Soci-
ety, 2000, pp. 23–34. (Cit. on pp. 193, 196, 223).

[Ian] Root-Zone Whois Information. http://www.iana.org/cctld/
cctld-whois.htm. url: http://www.iana.org/cctld/cctld-
whois.htm. (Cit. on p. 118).

[IL10] Toby A. Inkster and Christoph Lange. RDFa Host Languages.
Feb. 23, 2010. url: http://rdfa.info/wiki/?title=RDFa_
Host_Languages&oldid=1032 (visited on 08/27/2010). (Cit. on
p. 106).

[Inc03] Unicode Inc., ed. The Unicode Standard, Version 4.0. Addison-
Wesley, 2003. (Cit. on pp. 6, 218).

[JFF02] Dean Jackson, Jon Ferraiolo, and Jun Fujisawa. Scalable Vector
Graphics (SVG) 1.1 Specification. W3C Candidate Recommen-
dation. World Wide Web Consortium (W3C), Apr. 2002. url:
http://www.w3.org/TR/2002/CR-SVG11-20020430. (Cit. on
pp. 125, 134).

[Joh05] Pete Johnston. MARC Relator Properties in Dublin Core Meta-
data. Tech. rep. UKOLN, Dec. 2005. url: http://www.ukoln.
ac.uk/metadata/dcmi/marcrel-ex/. (Cit. on p. 109).

[Jom] JOMDoc Project — Java Library for OMDoc documents. url:
http://jomdoc.omdoc.org (visited on 10/22/2009). (Cit. on
p. 203).

[KA03] Michael Kohlhase and Romeo Anghelache. “Towards Collabora-
tive Content Management And Version Control For Structured
Mathematical Knowledge”. In: Mathematical Knowledge Man-
agement, MKM’03. Ed. by Andrea Asperti, Bruno Buchberger,
and James Harold Davenport. LNCS 2594. Springer Verlag, 2003,
pp. 147–161. url: http://kwarc.info/kohlhase/papers/

mkm03.pdf. (Cit. on p. 220).
[KD03a] Michael Kohlhase and Stan Devitt. Bound Variables in MathML.

W3C Working Group Note. 2003. url: http://www.w3.org/TR/
mathml-bvar/. (Cit. on p. 134).

[KD03b] Michael Kohlhase and Stan Devitt. Structured Types in MathML
2.0. W3C Note. 2003. url: http://www.w3.org/TR/mathml-
types/. (Cit. on p. 131).

[KK06a] Andrea Kohlhase and Michael Kohlhase. “An Exploration in the
Space of Mathematical Knowledge”. In: Mathematical Knowledge
Management, MKM’05. Ed. by Michael Kohlhase. LNAI 3863.
Springer Verlag, 2006, pp. 17–32. url: http://kwarc.info/

kohlhase/papers/mkm05.pdf. (Cit. on pp. 198, 218).
[KK06b] Andrea Kohlhase and Michael Kohlhase. “Communities of Prac-

tice in MKM: An Extensional Model”. In: Mathematical Knowl-
edge Management, MKM’06. Ed. by Jon Borwein and William

http://www.iana.org/cctld/cctld-whois.htm
http://www.iana.org/cctld/cctld-whois.htm
http://www.iana.org/cctld/cctld-whois.htm
http://www.iana.org/cctld/cctld-whois.htm
http://rdfa.info/wiki/?title=RDFa_Host_Languages&oldid=1032
http://rdfa.info/wiki/?title=RDFa_Host_Languages&oldid=1032
http://www.w3.org/TR/2002/CR-SVG11-20020430
http://www.ukoln.ac.uk/metadata/dcmi/marcrel-ex/
http://www.ukoln.ac.uk/metadata/dcmi/marcrel-ex/
http://jomdoc.omdoc.org
http://kwarc.info/kohlhase/papers/mkm03.pdf
http://kwarc.info/kohlhase/papers/mkm03.pdf
http://www.w3.org/TR/mathml-bvar/
http://www.w3.org/TR/mathml-bvar/
http://www.w3.org/TR/mathml-types/
http://www.w3.org/TR/mathml-types/
http://kwarc.info/kohlhase/papers/mkm05.pdf
http://kwarc.info/kohlhase/papers/mkm05.pdf

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

304 REFERENCES

M. Farmer. LNAI 4108. Springer Verlag, 2006, pp. 179–193. url:
http://kwarc.info/kohlhase/papers/mkm06cp.pdf. (Cit. on
p. 138).

[KMR08] Michael Kohlhase, Christine Müller, and Florian Rabe. “Nota-
tions for Living Mathematical Documents”. In: Intelligent Com-
puter Mathematics. 9th International Conference, AISC 2008,
15th Symposium, Calculemus 2008 7th International Conference
MKM 2008 (Birmingham, UK, July 28–Aug. 1, 2008). Ed. by
Serge Autexier et al. LNAI 5144. Springer Verlag, 2008, pp. 504–
519. url: http://omdoc.org/pubs/mkm08-notations.pdf.
(Cit. on p. 203).

[Knu84] Donald E. Knuth. The TEXbook. Addison Wesley, 1984. (Cit. on
p. 4).

[Koha] Michael Kohlhase. “CodeML: An Open Markup Format the Con-
tent and Presentatation of Program Code”. Internet Draft at
https://svn.omdoc.org/repos/codeml/doc/spec/codeml.

pdf. url: https://svn.omdoc.org/repos/codeml/doc/spec/
codeml.pdf. (Cit. on pp. 138, 206).

[Kohb] Michael Kohlhase. OMDoc: An open markup format for mathe-
matical documents (latest released version). Specification, http:
//www.omdoc.org/pubs/spec.pdf. url: http://www.omdoc.
org/pubs/spec.pdf. (Cit. on p. 90).

[Koh06a] Michael Kohlhase, ed. Mathematical Knowledge Management,
MKM’05. LNAI 3863. Springer Verlag, 2006.

[Koh06b] Michael Kohlhase. OMDoc – An open markup format for math-
ematical documents [Version 1.2]. LNAI 4180. Springer Verlag,
Aug. 2006. url: http://omdoc.org/pubs/omdoc1.2.pdf. (Cit.
on p. 109).

[Kohen] Michael Kohlhase. Inference Rules. OMDoc Content Dictionary
at https://svn.omdoc.org/repos/omdoc/trunk/examples/

logics/inference-rules.omdoc. seen Jan 2005. url: https:
//svn.omdoc.org/repos/omdoc/trunk/examples/logics/

inference-rules.omdoc. (Cit. on p. 180).
[KR93] Hans Kamp and Uwe Reyle. From Discourse to Logic. Dordrecht:

Kluwer, 1993. (Cit. on p. 149).
[Lam94] Leslie Lamport. LaTeX: A Document Preparation System, 2/e.

Addison Wesley, 1994. (Cit. on p. 4).
[LS99] Ora Lassila and Ralph R. Swick. Resource Description Frame-

work (RDF) Model and Syntax Specification. W3C Recommen-
dation. World Wide Web Consortium (W3C), 1999. url: http:
//www.w3.org/TR/1999/REC-rdf-syntax. (Cit. on pp. 100,
119).

[MAH06] Till Mossakowski, Serge Autexier, and Dieter Hutter. “Devel-
opment Graphs – Proof Management for Structured Specifica-

http://kwarc.info/kohlhase/papers/mkm06cp.pdf
http://omdoc.org/pubs/mkm08-notations.pdf
https://svn.omdoc.org/repos/codeml/doc/spec/codeml.pdf
https://svn.omdoc.org/repos/codeml/doc/spec/codeml.pdf
https://svn.omdoc.org/repos/codeml/doc/spec/codeml.pdf
https://svn.omdoc.org/repos/codeml/doc/spec/codeml.pdf
http://www.omdoc.org/pubs/spec.pdf
http://www.omdoc.org/pubs/spec.pdf
http://www.omdoc.org/pubs/spec.pdf
http://www.omdoc.org/pubs/spec.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
https://svn.omdoc.org/repos/omdoc/trunk/examples/logics/inference-rules.omdoc
https://svn.omdoc.org/repos/omdoc/trunk/examples/logics/inference-rules.omdoc
https://svn.omdoc.org/repos/omdoc/trunk/examples/logics/inference-rules.omdoc
https://svn.omdoc.org/repos/omdoc/trunk/examples/logics/inference-rules.omdoc
https://svn.omdoc.org/repos/omdoc/trunk/examples/logics/inference-rules.omdoc
http://www.w3.org/TR/1999/REC-rdf-syntax
http://www.w3.org/TR/1999/REC-rdf-syntax

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

REFERENCES 305

tions”. In: Journal of Logic and Algebraic Programming 67.1–2
(2006), pp. 114–145. (Cit. on pp. 192, 194, 223).

[Mar] MARC code list for Relators, Sources, Description Conventions.
2003. url: http://www.loc.gov/marc/relators. (Cit. on
pp. 113, 116).

[Mat] MathPlayer ¡display math in your browser¿. web page at http:

//www.dessci.com/en/products/mathplayer. url: http://
www.dessci.com/en/products/mathplayer. (Cit. on p. 16).

[McC97] William McCune, ed. Proceedings of the 14th Conference on Au-
tomated Deduction. LNAI 1249. Townsville, Australia: Springer
Verlag, 1997.

[Mei00] Andreas Meier. “System Description: Tramp: Transformation of
Machine-Found Proofs into ND-Proofs at the Assertion Level”.
In: Automated Deduction – CADE-17. Ed. by David McAllester.
LNAI 1831. Springer Verlag, 2000, pp. 460–464. (Cit. on p. 85).

[Mel+03] Erica Melis et al. “Knowledge Representation and Management
in ActiveMath”. In: Annals of Mathematics and Artificial Intel-
ligence 38 (2003). see http://www.activemath.org, pp. 47–64.
(Cit. on p. 80).

[Mit03] Nilo Mitra. SOAP 1.2 Part 0: Primer. W3C Recommendation.
2003. url: http://www.w3.org/TR/2003/REC-soap12-part0-
20030624. (Cit. on p. 81).

[Miz] Mizar Mathematical Library. Web Page at http://www.mizar.

org/library. 2008. url: http://www.mizar.org/library.
(Cit. on p. 22).

[Mos04] P. D. Mosses, ed. Casl Reference Manual. LNCS 2960 (IFIP
Series). Springer Verlag, 2004. (Cit. on pp. 23, 59, 171, 192, 223).

[MR+07] Peter Murray-Rust et al. Chemical Markup Language (CML).
2007. url: http : / / cml . sourceforge . net/ (visited on
01/08/2007). (Cit. on p. 138).

[MSLK01] M. Murata, S. St. Laurent, and D. Kohn. XML Media Types.
RFC 3023. Jan. 2001. url: ftp://ftp.isi.edu/in-notes/

rfc3023.txt. (Cit. on p. 115).
[Mül10] Christine Müller. “Adaptation of Mathematical Documents”.

PhD thesis. Jacobs University Bremen, 2010. url: http://

kwarc.info/cmueller/papers/thesis.pdf. (Cit. on p. 203).
[MVW05] Jonathan Marsh, Daniel Veillard, and Norman Walsh. xml:id

Version 1.0. W3C Recommendation. World Wide Web Consor-
tium (W3C), Sept. 9, 2005. url: http://www.w3.org/TR/2005/
REC-xml-id-20050909/. (Cit. on pp. 10, 27, 92, 227).

[NS81] Alan Newell and Herbert A. Simon. “Computer Science as em-
pirical inquiry: Symbols and search”. In: Communications of the
Association for Computing Machinery 19 (1981), pp. 113–126.
(Cit. on p. 152).

http://www.loc.gov/marc/relators
http://www.dessci.com/en/products/mathplayer
http://www.dessci.com/en/products/mathplayer
http://www.dessci.com/en/products/mathplayer
http://www.dessci.com/en/products/mathplayer
http://www.activemath.org
http://www.w3.org/TR/2003/REC-soap12-part0-20030624
http://www.w3.org/TR/2003/REC-soap12-part0-20030624
http://www.mizar.org/library
http://www.mizar.org/library
http://www.mizar.org/library
http://cml.sourceforge.net/
ftp://ftp.isi.edu/in-notes/rfc3023.txt
ftp://ftp.isi.edu/in-notes/rfc3023.txt
http://kwarc.info/cmueller/papers/thesis.pdf
http://kwarc.info/cmueller/papers/thesis.pdf
http://www.w3.org/TR/2005/REC-xml-id-20050909/
http://www.w3.org/TR/2005/REC-xml-id-20050909/

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

306 REFERENCES

[Odl95] A. M. Odlyzko. “Tragic loss or good riddance? The impending
demise of traditional scholarly journals”. In: International Jour-
nal of Human-Computer Studies 42 (1995), pp. 71–122. (Cit. on
p. X).

[Org] The Mozilla Organization. Mozilla. web page at http://www.

mozilla.org. url: http://www.mozilla.org. (Cit. on p. 16).
[ORS92] S. Owre, J. M. Rushby, and N. Shankar. “PVS: A Prototype

Verification System”. In: Proceedings of the 11th Conference on
Automated Deduction. Ed. by D. Kapur. LNCS 607. Saratoga
Springs, NY, USA: Springer Verlag, 1992, pp. 748–752. (Cit. on
p. 59).

[Orw49] George Orwell. Nineteen Eighty-Four. London: Secker & War-
burg, 1949. (Cit. on p. 110).

[Pal+09] Raúl Palma et al. “Change Representation For OWL 2 Ontolo-
gies”. In: OWL: Experiences and Directions (OWLED). Ed. by
Rinke Hoekstra and Peter F. Patel-Schneider. Oct. 2009. (Cit. on
p. 110).

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover.
LNCS 828. Springer Verlag, 1994. (Cit. on p. 181).

[Pfe01] Frank Pfenning. “Logical Frameworks”. In: Handbook of Auto-
mated Reasoning. Ed. by Alan Robinson and Andrei Voronkov.
Vol. I and II. Elsevier Science and MIT Press, 2001. (Cit. on
p. 21).

[Pfe91] Frank Pfenning. “Logic Programming in the LF Logical Frame-
work”. In: Logical Frameworks. Ed. by Gérard P. Huet and
Gordon D. Plotkin. Cambridge University Press, 1991. (Cit. on
p. 23).

[Pie80] John R. Pierce. An Introduction to Information Theory. Symbols,
Signals and Noise. Dover Publications Inc., 1980. (Cit. on p. 13).

[PN90] Lawrence C. Paulson and Tobias Nipkow. Isabelle Tutorial and
User’s Manual. Tech. rep. 189. Computer Laboratory, University
of Cambridge, Jan. 1990. (Cit. on p. 23).

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Lan-
guage for RDF. W3C Recommendation. World Wide Web Con-
sortium (W3C), Jan. 15, 2008. url: http://www.w3.org/TR/
2008/REC-rdf-sparql-query-20080115/. (Cit. on p. 107).

[Rei87] Glenn C. Reid. PostScript, Language, Program Design. Addison
Wesley, 1987. (Cit. on p. 4).

[RHJ98] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Spec-
ification. W3C Recommendation REC-html40. World Wide Web
Consortium (W3C), Apr. 1998. url: http://www.w3.org/TR/
PR-xml.html. (Cit. on p. 5).

[Rud92] Piotr Rudnicki. “An Overview of the MIZAR Project”. In: Pro-
ceedings of the 1992 Workshop on Types and Proofs as Programs.
1992, pp. 311–332. (Cit. on pp. 23, 38).

http://www.mozilla.org
http://www.mozilla.org
http://www.mozilla.org
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/PR-xml.html
http://www.w3.org/TR/PR-xml.html

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

REFERENCES 307

[SC06] Claudio Sacerdoti Coen. “Explanation in Natural Language
of λµµ-terms”. In: Mathematical Knowledge Management,
MKM’05. Ed. by Michael Kohlhase. LNAI 3863. Springer Verlag,
2006. (Cit. on p. 176).

[Sie+00] Jörg Siekmann et al. “Adaptive Course Generation and Presen-
tation”. In: Proceedings of ITS-2000 workshop on Adaptive and
Intelligent Web-Based Education Systems. Ed. by P. Brusilovski
and Chrisoph Peylo. Montreal, 2000. (Cit. on p. 95).

[Sie+02] Jörg Siekmann et al. “Proof Development with OMEGA”.
In: Proceedings of the 18th International Conference on Auto-
mated Deduction (CADE-18). Ed. by Andrei Voronkov. LNAI
2392. Copenhagen, Denmark: Springer, 2002, pp. 144–149. isbn:
3540439315. url: http : / / www . ags . uni - sb . de / ~chris /

papers/C11.pdf. (Cit. on p. 25).
[SSY94] Geoff Sutcliffe, Christian Suttner, and Theodor Yemenis. “The

TPTP Problem Library”. In: Proceedings of the 12th Conference
on Automated Deduction. Ed. by Alan Bundy. LNAI 814. Nancy,
France: Springer Verlag, 1994. (Cit. on p. 26).

[SZS04] G. Sutcliffe, J. Zimmer, and S. Schulz. “TSTP Data-Exchange
Formats for Automated Theorem Proving Tools”. In: Distributed
Constraint Problem Solving and Reasoning in Multi-Agent Sys-
tems. Ed. by W. Zhang and V. Sorge. Frontiers in Artificial In-
telligence and Applications 112. IOS Press, 2004, pp. 201–215.
(Cit. on p. 159).

[TDO07] Giovanni Tummarello, Renaud Delbru, and Eyal Oren.
“Sindice.com: Weaving the Open Linked Data”. In:
ISWC/ASWC. 6th International Semantic Web Conference, 2nd

Asian Semantic Web Conference, ISWC 2007 + ASWC 2007
(Busan, Korea, Nov. 11–15, 2007). Ed. by Karl Aberer et al.
Lecture Notes in Computer Science 4825. Springer Verlag, 2007,
pp. 552–565. isbn: 978-3-540-76297-3. (Cit. on p. 106).

[The02] The W3C HTML Working Group. XHTML 1.0 The Extensible
HyperText Markup Language (Second Edition) – A Reformula-
tion of HTML 4 in XML 1.0. W3C Recommendation. World
Wide Web Consortium (W3C), Aug. 1, 2002. url: http://www.
w3.org/TR/2002/REC-xhtml1-20020801. (Cit. on pp. 146, 210,
218, 224).

[Tho91] Simon Thompson. Type Theory and Functional Programming.
International Computer Science Series. Addison-Wesley, 1991.
(Cit. on p. 185).

[Urla] Creative Commons Worldwide. web page at http :

/ / creativecommons . org / worldwide. url: http : / /

creativecommons.org/worldwide. (Cit. on p. 118).
[Urlb] Document Object Model DOM. web page at http://www.w3.

org/DOM/. url: http://www.w3.org/DOM/. (Cit. on p. 18).

http://www.ags.uni-sb.de/~chris/papers/C11.pdf
http://www.ags.uni-sb.de/~chris/papers/C11.pdf
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://creativecommons.org/worldwide
http://creativecommons.org/worldwide
http://creativecommons.org/worldwide
http://creativecommons.org/worldwide
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/DOM/

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

308 REFERENCES

[Urlc] Metadata Commons Worldwide. web page at http : / /

creativecommons . org / learn / technology / metadata. url:
http://creativecommons.org/learn/technology/metadata.
(Cit. on p. 119).

[Urld] Mizar Language. web page at http://mizar.org/language.
seen III 2006. url: http://mizar.org/language. (Cit. on
p. 27).

[Urle] OpenMath Content Dictionaries. web page at http://www.

openmath.org/cd/. 2008. url: http://www.openmath.org/

cd/. (Cit. on pp. 18, 20, 53, 130).
[Vat] Irène Vatton. Welcome to Amaya. web page at http://www.w3.

org/Amaya. url: http://www.w3.org/Amaya. (Cit. on p. 16).
[Vli03] Eric van der Vlist. Relax NG. O’Reilly, 2003. (Cit. on p. 8).
[W3c] W3 Consortium. webpage at http://www.w3.org. 2007. url:

http://www.w3.org (visited on 01/18/2010). (Cit. on p. 6).
[Wei97] Christoph Weidenbach. “SPASS: Version 0.49”. In: Journal of

Automated Reasoning 18.2 (1997). Special Issue on the CADE-
13 Automated Theorem Proving System Competition, pp. 247–
252. (Cit. on p. 81).

[WM99] Norman Walsh and Leonard Muellner. DocBook: The Definitive
Guide. O’Reilly, 1999. (Cit. on p. 224).

[Wol02] Stephen Wolfram. The Mathematica Book. Cambridge University
Press, 2002. (Cit. on pp. 14, 29).

[WR10] Alfred North Whitehead and Bertrand Russell. Principia Math-
ematica. Vol. I. Cambridge, Great Britain; second edition: Cam-
bridge University Press, 1910. (Cit. on p. 21).

[Xml] XML Schema. Web page at http://www.w3.org/XML/Schema.
url: http://www.w3.org/XML/Schema. (Cit. on pp. 8, 9).

[ZK02] Jürgen Zimmer and Michael Kohlhase. “System Description: The
MathWeb Software Bus for Distributed Mathematical Reason-
ing”. In: Automated Deduction — CADE-18. Ed. by Andrei
Voronkov. LNAI 2392. Springer Verlag, 2002, pp. 247–252. url:
http://kwarc.info/kohlhase/papers/cade02.pdf. (Cit. on
pp. 26, 81).

http://creativecommons.org/learn/technology/metadata
http://creativecommons.org/learn/technology/metadata
http://creativecommons.org/learn/technology/metadata
http://mizar.org/language
http://mizar.org/language
http://www.openmath.org/cd/
http://www.openmath.org/cd/
http://www.openmath.org/cd/
http://www.openmath.org/cd/
http://www.w3.org/Amaya
http://www.w3.org/Amaya
http://www.w3.org/Amaya
http://www.w3.org
http://www.w3.org
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://kwarc.info/kohlhase/papers/cade02.pdf

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index

Ωmega, XIII, 23, 25
λµEµ

calculus, 176
T -theorem, 193
dc:*

element, 231
om:*

element, 233
-->, 8, 101, 219
<!--, 8, 101, 219
&, 8
', 8
>, 8
<, 8
", 8
OpenMath

object, 122

639
ISO, 113
ISO (), 115, 138

8601
ISO, 113
ISO (), 40, 114, 244, 245

abbreviation
namespace, 8

Abelian
semigroup, 168

about

attribute
on ,, 109
on , 106
on a, 107, 108

about data

data, 91, 100, 105

abstract, 114

data type, 60, 171, 223

structure, 43

syntax, 43

abstract

attribute value

for type on omtext, 141

Abstract Data Types

RNC Module ADT, 267

spec Module ADT, 91, 162, 171, 172,
222, 223, 243–245, 248

action

attribute

on dc:date, 115, 238, 241

on omlet, 210, 211, 239, 251

active

document, 205

ActiveMath, XIII, 37, 71, 73, 80, 95,
98

actual

parameter

theory, 62

actualization, 60

actuate

attribute, 210

on omlet, 210

acyclic, 167

directed (), 126, 127, 139, 175, 221

adt

element, 154, 158, 171–174, 221, 229,
235, 237

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

310 Index

ADT (Abstract Data Types)
RNC Module, 267
spec Module, 91, 162, 171, 172, 222,

223, 243–245, 248
advisor

thesis, 116
against

attribute value
for type on example, 47, 163

agent
web, 5

Alan
Bundy, 26

Algebra
Fundamental Theorem of, 14

algebra
system, 29

algebraic
hierarchy, 190
specification, 23, 27, 60, 227

α-conversion, 133
alphabet, 164
alternative

attribute value
for type on omgroup, 239

alternative

element, 162, 163, 229, 237
alternative

element, 162
Amaya, 16
Analytica, 207
anchor

named, 10
Andrzej

Trybulec, 27
animal, 72
m:annotation

element, 130
m:annotation-xml

element, 17, 130
answer

element, 214, 230
ant

attribute value
for role on dc:*, 116

antecedent
bibliographic, 116
scientific, 116

antithesis

attribute value
for type on omtext, 141

applet, 208, 209
Java, 211

application, 18, 122, 130
Xml, 6
XML, 3, 14, 92, 218, 224

application

attribute value
for role on symbol, 153

application/omdoc+xml, 41
applied

attribute value
for role on presentation, 240

m:apply

element, 16, 18, 130, 153
archiving

document, 37
argument

element, 60, 172, 173, 229, 237
arith1, 29, 223
arith1.ocd, 20
artefacts

electronic, 118
assertion, 75, 175, 178
assertion

attribute value
for type on omtext, 142

assertion

element, 75, 76, 83, 155, 157–159,
162–164, 178, 180–182, 194, 200,
229, 237, 252, 258

assertion

attribute
on example, 50, 75, 163, 164
on obligation, 194

assertional
element, 162, 163, 185, 187, 193

assertions
type, 161

assessment, 213
assistant

mathematical (), 25
assumption, 178

local, 179
assumption

attribute value
for type on assertion, 159, 234
for type on omtext, 142

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 311

assumption

element, 140, 160, 182, 229

attribute, 7

CSS, 92, 95, 102, 145, 231, 235, 236,
260

node, 7

type, 9

attribute

element, 230, 237

attributes

attribute

on use, 241

attribution

attribute value

for role on symbol, 124, 153, 235

attribution

attribute

on cc:requirements, 119

attribute value, 153

augmented, 228

aural, 92

aut

attribute value

for role on dc:*, 116

author, 116

automated

concept formation

system, 81

deduction, 27, 227

proof

assistant, 81

theorem

prover, 25, 81

automated theorem prover, 29

AutoMath, 23

axiom, 23, 90, 141, 149, 178, 191, 222

commutativity, 168

implicit, 155

inclusion, 196, 199

system, 151

axiom

attribute value

for type on omtext, 42, 141, 234

axiom

element, 73, 74, 154–156, 162, 163,
168, 174, 179–182, 230, 237, 238

axiom inclusion, 199

axiom-inclusion

element, 193, 196, 200, 201, 221, 230,
234, 238, 254, 255

axioms, 155
Peano, 150, 151, 171

back
matter, 99

background
scientific, 2

Backus Naur form
notation, 99

backward
reasoning, 184

balanced
bracketing

structure, 7
base

content dictionary, 170
knowledge, 179
morphism, 192, 193
URI, 167

base

attribute
on morphism, 67, 192, 193

Berners-Lee
Tim, 32

bibliographic
antecedent, 116

bibliography

element, 99, 100, 228
bibrefs

attribute
on citation, 148

binary
document model, 218

binary

attribute value
for format on data, 207

binder

attribute value
for role on symbol, 124, 153, 235

binder

attribute value
for role, 123

binding, 130, 133
object, 153
operator, 123, 125

binding

attribute value

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

312 Index

for role on presentation, 240
binding structure, 18, 122
body, 124
bottom-up

proof
step, 184

bound
occurrence, 134
variable, 18, 122, 124, 133

box
layout, 92

bracketing
balanced (), 7

browser, 5
building blocks, 89
bullet

symbol, 102
bulleted

list, 146
Bundy

Alan, 26
m:bvar

element, 18, 130, 134, 153
by pointing

semantics, 19
byte array, 125

C
programming

language, 18
calculus
λµEµ, 176
formal, 30
logical, 175

Carnegie Mellon University, 71
Cartesian

product, 45
CAS, 29
Cascading

Style Sheet, 92
cascading

style sheet, 228
Casl, 23, 59, 171, 223
catalog

XML, 9, 40
Catholic

church, 137
CC

license, 117

metadata, 118
CC (Creative Commons Metadata)

spec Module, 91, 105, 117, 245, 247,
248

cc:, 40, 119
cc:license

element, 118
cc:permissions

element, 41, 119
cc:prohibitions

element, 41, 119
cc:requirements

element, 41, 119
cd

attribute value
for module on omdoc, 44

cd

attribute
on om:OMS, 31, 122, 133
on OMS, 18, 45, 222
on term, 145, 235

cd*

attribute
on theory, 54

CDATA, 77
section, 8

CDATA, 207
cdbase

attribute, 122, 123
on om:OMOBJ, 19
on om:theory, 165
on OMS, 165
on term, 145
on theory, 167, 169, 170, 236

omcd:CDDefinition

element, 123
omcd:CDName

element, 54
cdreviewdate

attribute
on theory, 170, 236

cdrevision

attribute
on theory, 170, 236

cdstatus

attribute
on theory, 169, 236

omcd:CDURL

element, 54

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 313

cdurl

attribute
on theory, 170, 236

cdversion

attribute
on theory, 170, 236

chain
local, 199, 200

change
management, 198, 223

changed, 227
chapter, 22, 102
character

hash, 10
lists of, 63

character data
parsed, 99

checking
proof, 30

chemistry
vernacular, 138

choice

element, 214, 230
church

Catholic, 137
m:ci

element, 16, 129, 134
citation, 148
citation

element, 148, 228
cite

attribute value
for type on ref (deprecated in

OMDoc 1.2), 148
clarity

conceptual, X
class

equivalence, 218
class

attribute, 93, 98, 102, 144, 214, 229
on dc:title, 77
on phrase, 142
on ref, 77, 95

class definition
CSS, 77

classical
first-order

logic, 182
classid

old attribute on code (deprecated in
OMDoc 1.2), 230, 238

old attribute on private (deprecated
in OMDoc 1.2), 240

clause
copyleft, 41

clb

attribute value
for role on dc:*, 116

closing
tag, 7, 41

CMP

element, 7, 41, 42, 47, 48, 101, 113,
114, 138, 139, 141–143, 154, 155,
157, 163, 179, 180, 186, 193, 208,
209, 213, 214, 220, 221, 229, 230,
234, 236, 238, 240, 241, 244, 245,
248, 249

omcd:CMP

element, 20
m:cn

element, 16, 129
co-reference, 17
code

country, 138
fragment, 76, 138

code

element, 76, 77, 180, 206–212, 221,
230, 231, 238, 240, 256

codebase

old attribute on code (deprecated in
OMDoc 1.2), 230, 238

old attribute on private (deprecated
in OMDoc 1.2), 240

collaborator, 116
Collection as Dublin Core Type, 115
Collection, 115
collection

multi-format, 212
color

text, 92
comment, 101

persistent, 101
source, 101
XML, 8, 101, 219

comment

attribute value
for type on omtext, 101, 141

commented

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

314 Index

mathematical
property, 20

commercial use

attribute
on cc:permission, 119

common
greatest (), VIII

community, 27, 227
commutativity

axiom, 168
Complex Theories

DG Module CTH, 269
RNC Module CTH, 268
spec Module CTH, 91, 189, 191, 193,

196, 198, 222, 223, 243, 245, 246,
248

composition, 192
computer

graphics, VIII
science, 71

computer algebra, VIII
system, 19, 25, 29, 81, 125, 206, 207

computer science
vernacular, 138

computer-supported
education, 27, 227

concatenation
strings, 164

concept, 73, 75, 144, 152
extension, 73
mathematical, 152

concept formation
automated (), 81

conceptual
clarity, X

conceptual clarity, 89
conclusion

attribute value
for type on derive, 178
for type on omtext, 141

conclusion

element, 140, 160, 182, 230, 239
Conjecture

Kepler’s, VIII
conjecture, 158

false, 164
conjecture

attribute value
for type on assertion, 159

for type on omtext, 142, 234
consequence, 30

relation, 30
conservative, 194

extension, 151, 161
principle of (), 23

conservative

attribute value
for conservativity, 194

conservativity, 193
conservativity

attribute, 194
on axiom-inclusion, 230
on imports, 193, 232
on inclusion, 232
on theory-inclusion, 236

conservativity-just

attribute
on axiom-inclusion, 230
on imports, 193, 232
on inclusion, 232
on theory-inclusion, 236

consistency, 151, 191
consistency

attribute
on definition, 157
on morphism, 191, 233

constant

attribute value
for role on symbol, 153

constitutive, 149, 222
property, 20
theory element, 150

constraint
solver, 81

constructor, 45, 60
symbol, 171, 172
term, 171

constructor

element, 172, 173, 230, 238
Content

markup, 30
content, 97, 124

dictionary, 18, 121, 133, 144
management, 72
markup, 4, 28, 30, 31
OMDoc, 72
structure, 142

content

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 315

attribute
on ,, 109
on , 106

content dictionary, 130
content dictionary, 18, 19, 21, 31, 44,

45, 122, 123, 138
base, 170
format, 169
metadata, 169
OMDoc, 44, 169, 222
OpenMath, 169
status, 169
version number, 170

content OMDoc, 220
Content MathML, 10, 15–19, 21,

22, 27, 29, 31, 37, 42, 43, 121,
128–134, 140, 142, 145, 169, 227,
232

contents
table of, 99

context, 158, 184
markup, 22, 28
mathematical, 142

context-free
grammar, 8

contradictory-axioms

attribute value
for status on assertion, 160

contrast

attribute value
for type on omgroup, 239

dc:contributor

element, 114–116, 231, 238
convention

structural, 2
copyleft

clause, 41
copyleft

attribute
on cc:requirements, 119

corollary, 158
corollary

attribute value
for type on assertion, 159
for type on omtext, 142, 234

correct, 72
correctness

management, 179
counter-equivalent

attribute value
for status on assertion, 160

counter-example, 75, 164
counter-satisfiable

attribute value
for status on assertion, 160

counter-theorem

attribute value
for status on assertion, 160

country
code, 138

courseware, 71
CPoint, 71
cr

attribute
on element, 232

created

attribute value
for action on dc:date, 115

Creative Commons
Initiative, 100, 118
license, 41, 117
namespace, 40, 119

URI, 119
Creative Commons Metadata

spec Module CC, 91, 105, 117, 245,
247, 248

dc:creator

element, 113–116, 231
cref

attribute
on om:*, 233

crid

attribute
on element, 232

cross-reference, 5, 17, 72, 114, 126, 139,
141, 147, 178, 181, 233, 240, 252

CSS
attribute, 92, 95, 102, 145, 231, 235,

236, 260
class definition, 77
directive, 92, 93, 229
markup, 209
property, 95
style sheet, 93

CSS, 6, 15, 16, 77, 92, 93, 95, 98, 102,
142, 145, 179, 209, 228, 229, 231,
235, 236, 252, 260

m:csymbol

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

316 Index

element, 129–131, 134, 142
CTH (Complex Theories)

DG Module, 269
RNC Module, 268
spec Module, 91, 189, 191, 193, 196,

198, 222, 223, 243, 245, 246, 248
cyclic, 94

DAG, 126, 139, 175, 178, 180, 181
explosion, 126

data
about data, 91, 100, 105
table, 147

data

attribute value
for valuetype on param, 212

data

element, 76, 207, 208, 210, 212, 221,
230, 231, 234, 238, 240, 253, 255,
256

data

attribute
on omlet, 209–211, 239

data type
abstract, 60, 171, 223

Dataset as Dublin Core Type, 115
Dataset, 40, 115, 220, 221
dataset

attribute value
for type on omgroup (deprecated in

OMDoc 1.2), 102, 233
datatype

attribute
on , 107
on, 109

date
review, 170

dc:date

element, 114, 231, 238, 241
dateTime, 114
DC (Dublin Core Metadata)

RNC Module, 264
spec Module, 91, 105, 113, 222, 224,

244–248
dc:, 40, 113
dc:*

element, 231
dc:contributor

element, 114–116, 231, 238

dc:creator

element, 113–116, 231
dc:date

element, 114, 231, 238, 241
dc:description

element, 45, 54, 114, 154, 221, 229,
231, 236, 238, 240

dc:format

element, 115
dc:identifier

element, 115
dc:language

element, 115
dc:publisher

element, 114, 231
dc:relation

element, 115
dc:rights

element, 115–118
dc:source

element, 54, 115
dc:subject

element, 114, 154, 229–231, 235, 236
dc:title

element, 77, 102, 113, 221, 236
dc:type

element, 115, 220, 221
dd

element, 147, 228
de, 115, 138
de-referencing, 6
decision

procedure, 25
declaration, 144

document type, 9, 10
local, 184
namespace, 7, 8, 40, 90
namespace prefix, 44
symbol, 22, 155, 169
term, 155, 236
type, 155

decomposition, 62, 200
decomposition

element, 200, 201, 231, 236, 238, 241
deduction

automated, 27, 227
natural, 186, 239
natural (), 85, 183

default

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 317

namespace, 92
defined

symbol, 155
definiendum, 151, 156
definiens, 151, 164, 187
definiens

attribute value
for role on term, 45, 145

defining
occurrence, 133

definite
description

operator, 66
definition, 23, 90, 141, 149, 151, 164,

222
document type, 44, 217
implicit, 151
inductive, 152
loose, 152
simple, 151

definition

attribute value
for type on omtext, 42, 141, 234

definition

element, 45, 48, 49, 155–157, 162,
163, 165, 168, 179, 180, 187, 191,
231, 233, 237–239, 241

definition by description, 156
definitional, 194

form, 23
theory

inclusion, 194
definitional

attribute value
for conservativity, 194

definitionURL, 129
definitionURL

attribute
on m:annotation, 130
on m:ci, 134
on m:csymbol, 130, 134, 142

deprecated, 227
derivative works

attribute
on cc:permissions, 119

derive

attribute value
for type on omtext, 141

derive

element, 76, 85, 178–184, 239
derived

inference
rule, 187

description
definite (), 66
list, 147

dc:description

element, 45, 54, 114, 154, 221, 229,
231, 236, 238, 240

development
graph, 62, 198, 223
proof (), 25
theory (), 206

Development Graphs
RNC Module DG, 269
spec Module DG, 91, 189, 198, 200,

222, 244, 247
DG (Development Graphs)

RNC Module, 269
spec Module, 91, 189, 198, 200, 222,

244, 247
DG Module

CTH (Complex Theories), 269
di

element, 147
dictionary

content, 18, 121, 133, 144
didactic

figure, 79, 80
differential

equation, 14, 29
Digital

rights
management, 117

digital
universal (), IX

directed
acyclic

graph, 126, 127, 139, 175, 221
directive

CSS, 92, 93, 229
discharged-in

old attribute on hypothesis (dep-
recated in OMDoc 1.2), 232,
239

discourse theory, 149
display

attribute value

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

318 Index

for action on omlet, 210, 211
display:none

attribute value
for style, 165

distinction
presentation vs. content, 97

distribution, 41
distribution

attribute
on cc:permissions, 119

distributivity, 20
m:divide

element, 16
dl

element, 138, 147
DOC (Document Structure)

RNC Module, 262
spec Module, 89, 90, 97, 138, 222,

224, 245–247
DocBook, 224
document

active, 205
archiving, 37
fragment, 105
hypertext, 5
knowledge-centered, 72
lexical (), 218
management, 6, 105
markup, 1
mathematical, 2, 21
model, 218
narrative-structured, 72
object model, 209, 217
retrieval, 37
root, 7, 9, 90, 114, 222
source, 4
structure, 222
target, 4
tree, 6

document model
binary, 218

document object
model, 18

Document Structure
RNC Module DOC, 262
spec Module DOC, 89, 90, 97, 138,

222, 224, 245–247
document type

declaration, 9, 10

definition, 44, 217
document type definition, 8
document-unique, 9
documents

multilingual, 138
domain

top-level, 118
dominate, 127
DRM, 117
DSSSL, 6
dt

element, 147
DTD, 8, 41, 44, 92, 98, 134, 217, 259
Dublin Core, 100

namespace, 40, 113
URI, 113

Dublin Core Metadata
RNC Module DC, 264
spec Module DC, 91, 105, 113, 222,

224, 244–248
DVI, 4
dynamic

HTML, 209

editor, 116
edt

attribute value
for role on dc:*, 116

education, XI
computer-supported, 27, 227

Educational OMDoc, 224
effect

element, 77, 208, 231
effective

URI, 168
elaboration

attribute value
for type on omtext, 141

electronic
artefacts, 118

element, 6
assertional, 162, 163, 185, 187, 193
empty, 7
theory-constitutive, 150
token, 129
top-level, 98

element

element, 232, 237, 239, 251
element

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 319

attribute
on use, 241

elements
Euclid’s, X

embed

attribute value
for show on omlet, 210

empty
element, 7
namespace, 92
string, 164

en, 115, 138
en

attribute value
for xml:lang, 138

xml:en

attribute value
for lang, 41

encoding
UTF-8, 40

encoding

attribute
on m:annotation, 130
on om:OMFOREIGN, 125

endnote, 143
entailed-by

attribute
on alternative, 162

entailed-by-thm

attribute
on alternative, 162

entails

attribute
on alternative, 162

entails-thm

attribute
on alternative, 162

entity
mnemonic, 10
parameter, 44
XML, 8, 9

entry
index, 144

enumeration

attribute value
for type on omgroup, 43, 102

equation
differential, 14, 29
recursive, 157

equivalence
class, 218

equivalent

attribute value
for status on assertion, 160

error
in-place (), 101, 125
mathematical, 101
operator, 125
semantic, 125

error

attribute value
for role on symbol, 125, 153, 235

escaping
XML, 8

Euclid, X
Euclid’s

elements, X
Euclid’s algorithm, VIII
evidence

higher-level, 179
evidence

attribute value
for type on omtext, 141

example, 74, 90
example

attribute value
for type on omtext, 42, 47, 141

example

element, 47, 50, 74–76, 163, 164, 231
execute

attribute value
for action on omlet, 210

exercise, 213
exercise

element, 213, 214, 231, 232
Exercises

RNC Module QUIZ, 275
spec Module QUIZ, 91, 213, 222, 224,

243–246, 248
exhaustivity, 191
exhaustivity

attribute
on definition, 157
on morphism, 191, 233

existence

attribute
on definition, 156
on morphism, 191

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

320 Index

expansion, 180
tree, 221

experimental

attribute value
for cdstatus on theory, 169

explicit
namespace

prefix, 129
explosion

DAG, 126
export

symbol, 153
EXT (Extensions)

RNC Module, 272
spec Module, 91, 138, 205, 222, 223,

244, 245, 247
extension

concept, 73
conservative, 151, 161

Extensions
RNC Module EXT, 272
spec Module EXT, 91, 138, 205, 222,

223, 244, 245, 247
external

object, 208
external

attribute value
for original on data, 207, 231

factual
knowledge, 25

false
conjecture, 164

false

attribute value
for verdict on answer, 214

false-conjecture

attribute value
for type on assertion, 159
for type on omtext, 142, 234

family
font, 93

feature, 124
symbol, 131

figure
didactic, 79, 80
rhetoric/didactic, 79, 80

file
style, 4, 16

files

attribute
on bibliography, 100

FireFox, 83
first-order

classical (), 182
logic, 29, 48, 139
theorem

prover, 83
flatten, 94
FMP

element, 49, 76, 85, 101, 139–143,
154, 156, 160, 179, 180, 182, 208,
213, 214, 221, 229, 230, 239

omcd:FMP

element, 19, 20
FOAF, 110
font

family, 93
variant, 92

footnote, 143
footnote

attribute value
for type on note, 144

for

attribute value
for type on example, 47, 163

for

attribute, 254, 255
on alternative, 162
on assertion, 229
on axiom, 74, 154, 230
on decomposition, 200, 231, 238,

241
on definition, 45, 155, 156
on example, 47, 75, 163
on hint, 232
on insort, 172
on mc, 232
on note, 144
on omtext, 141, 239
on path-just, 201, 234
on private, code, 206
on private, 240
on proof, 84, 177, 182, 234, 235
on solution, 213
on type, 155, 241

foreign
namespace, 92

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 321

form, 3
definitional, 23

formal
calculus, 30
mathematical

property, 19
mathematics, 30
parameter

theory, 62
system, 30

formalism

attribute
on legacy, 135

format
content dictionary, 169
migration, 31

dc:format

element, 115
format

attribute
on data, 76, 207, 238, 240
on legacy, 135

old attribute on CMP (deprecated in
OMDoc 1.1), 238

formula, 121
mathematical, 14, 21

formula

attribute value
for type on assertion, 159
for type on omtext, 142, 234

formulae as
types, 21

forward
reasoning, 183

Four-Colour
Theorem, VIII

fr, 115, 138
fragment

code, 76, 138
document, 105
identifier, 10

frame, 92
framework

logical, 21
free, 171
free

attribute value
for type on adt, 172

from

attribute
on axiom-inclusion, 196
on imports, 44, 166
on omtext, 141, 239
on theory-inclusion, 194

front
matter, 99

frozen

attribute value
for action on dc:date, 115

function, 3, 14
partial, 173
predecessor, 60, 171, 172
recursive, 157, 171
successor, 171, 173
total, 173

Fundamental Theorem of
Algebra, 14

Fundamentals of Computer Science, 71
future-proof, IX

Gödel’s
Incompleteness

Theorem, VIII
gap

steps, 178
gap

attribute value
for type on derive, 178

generated, 171
generated

attribute value
for type on adt, 172

generated-by

old attribute on alternative

(deprecated in OMDoc 1.1), 237
old attribute on assertion (depre-

cated in OMDoc 1.2), 237
old attribute on axiom (deprecated in

OMDoc 1.2), 238
old attribute on definition

(deprecated in OMDoc 1.2), 239
old attribute on symbol (deprecated

in OMDoc 1.2), 241
generated-from

attribute, 196, 254
on alternative, 229
on assertion, 158
on axiom-inclusion, 230

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

322 Index

on axiom, 154, 174
on decomposition, 231
on example, 231
on exercise, 231
on hint, 232
on mc, 232
on omdoc, 233
on omgroup, 233
on omstyle, 233
on omtext, 234
on private, 230, 234
on proofobject, 235
on proof, 234
on solution, 235
on theory-inclusion, 236
on type, 236

generated-via

attribute, 196
on adt, 229
on alternative, 229
on assertion, 229–231
on axiom-inclusion, 230
on decomposition, 231
on example, 231
on exercise, 231
on hint, 232
on mc, 232
on omdoc, 233
on omgroup, 233
on omstyle, 233
on omtext, 234
on private, 230, 234
on proofobject, 235
on proof, 234
on solution, 235
on symbol, 235
on theory-inclusion, 236
on type, 236

generator
model, 81

global, 166, 196
link, 28

global

attribute value
for scope on symbol, 153, 173
for type on imports, 166, 196

globals

attribute
on axiom-inclusion, 201

on path-just, 201
glyph, 153
grammar

context-free, 8
graph, 194

development, 62, 198, 223
theory, 194

graphics
computer, VIII

greatest
common

divisor, VIII
grounded, 181
group, 14

multi-logic, 139, 154, 213
multi-system, 153
multilingual, 41, 42, 138, 139, 143,

154, 163, 179, 208, 213, 220
group, 152, 167, 168
group representation, 29

hash
character, 10

header
table, 147

height

old attribute on omlet (deprecated in
OMDoc 1.2), 238–240

hiding

attribute
on morphism, 68, 192, 233

hierarchy
algebraic, 190

higher-level
evidence, 179
structure, 42

higher-order
logic, 139

hint, 213
hint

element, 213, 214, 232
Hol, 23, 38
home

theory, 150
href

attribute
on data, 207, 231, 238, 255
on link, 147
on om:OMR, 126, 127

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 323

on OMR, 50
old attribute on premise (deprecated

in OMDoc 1.1), 240
xlink:href

attribute
on in MathML, 17

HTML
dynamic, 209

HTML, 5, 6, 10, 14, 15, 208, 209
html

attribute value
for format on legacy, 135

HTTP, 81, 83
hyperlink, 147
hypertext

document, 5
Hypertext Markup Language, 5
hypothesis

inductive, 140, 179, 184
hypothesis

attribute value
for type on omtext, 141

hypothesis

element, 179, 183, 232, 237, 239

ID
type, 10, 27, 92, 94, 227

ID, 9
dc:id

attribute
on xml:creator, 114
on xml:subject, 235
on xml:title, 236

id

attribute, 92, 228
on CMP, 238
on decomposition, 238
on FMP, 239
on m:bvar, 134
on om:*, 233
on type, 241
on with, 241

attribute (in MathML), 17
attribute (in OpenMath objects),

126, 127
xml:id

attribute, 7, 10, 92, 140, 179, 214,
229, 253

on assertion, 158

on code, 211
on derive, 178, 183
on description, 231
on effect, 231
on idx, 144
on imports, 201, 232
on inclusion, 232
on input, 232, 234
on legacy, 135
on measure, 232
on obligation, 233
on omdoc, 40, 54, 98
on omgroup, 43
on omtext, 42, 95, 141
on ordering, 234
on phrase, 142
on private, code, 206
on proof, 177
on ref, 235
on symbol, 234
on term, 145
on theory, 165, 167–169, 236

ID-type, 10
ide

element, 144
Identifier

public, 9
identifier, 129

fragment, 10
public, 40

dc:identifier

element, 115
idp

element, 144
IDREF

type, 237
IDREF, 9
idt

element, 144
idx

element, 138, 144
ignore

element, 95, 101, 102, 138
image/gif

attribute value
for format on data, 207

image/jpeg

attribute value
for format on data, 207

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

324 Index

implicit
axiom, 155
definition, 151

implicit

attribute value
for type on definition, 49, 156,

157
import

local, 166
imported

attribute value
for action on dc:date, 115

imports

element, 44, 46, 48, 62, 68, 166–168,
191–193, 196, 201, 232

Imps, 194
in scope of

theory, 181
in-place

error
markup, 101, 125

include

attribute value
for type on ref (deprecated in

OMDoc 1.2), 93
included

structurally, 193
inclusion

axiom, 196, 199
theory, 61, 63, 189, 193, 196, 199

inclusion

element, 62, 195, 232
incomplete

proof, 178
Incompleteness

Gödel’s (), VIII
inconsistent, 23, 150
index

entry, 144
markup, 144
phrase, 144
text, 144

index

element, 99, 100, 228
index

attribute
on ide, 144
on in module RT, 148
on phrase, 143

induced-by

attribute, 251
on obligation, 194

inductive
definition, 152
hypothesis, 140, 179, 184
proof, 184
step, 184

inductive

attribute value
for type on definition, 157, 231

inductive

attribute
on assumption, 140, 229
on hypothesis, 179

inductively defined
set, 60

inference
derived (), 187
rule, 179, 180

informal
mathematics, 30

informal

attribute value
for type on definition, 157

information
retrieval, VIII

infoset, 18
inherit, 191
inheritance, 222

relation, 167, 189
theory, 79

inherited, 166, 169
inherits

attribute
on metadata, 239

old attribute on metadata (deprecated
in OMDoc 1.2), 228

Initiative
Creative Commons, 100, 118

ink-on-paper, 2, 3
input, 77
input

element, 77, 208, 211, 232
insertion

set, 171
insort

element, 172
instance

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 325

theory, 60
integer, 125
integrity condition, 162
intellectual

property, 117
internal

subset, 44
international

mathematics
community, IX

Internet
publication, 2

Internet Explorer, 16, 83
interpretation

theory, 189
intersection

set, 140
introduction

attribute value
for type on omtext, 141

intuitive
knowledge, 25

inv, 168
invariant

under a document model X , 218
inverse

left, 197
right, 197

“is a” relation, 74
Isabelle, 23, 181
ISBN, 115
ISO

639, 113
norm, 115, 138

8601, 113
norm, 40, 114, 244, 245

ISSN, 115
itemize

attribute value
for type on omgroup, 77, 102

Java, 76, 208
applet, 211

JavaScript, 209
jurisdiction

attribute
on cc:license, 118

just-by

attribute

on assertion, 76, 159, 160, 229,
237

on type, 155, 236
justification, 179

K-14, 15, 18, 128
mathematics, 130

Kepler’s
Conjecture, VIII

key, 124
key

attribute value
for role on presentation, 240

kind

old attribute on ref (deprecated in
OMDoc 1.2), 240

old attribute on symbol (deprecated
in OMDoc 1.1), 235

Kindergarten, 15, 128
Knowledge

Mathematical (), IX
knowledge

base, 179
factual, 25
intuitive, 25
management, XI, 73
mathematical, VIII, X, 1
mathematical (), X, 198
presentation, 73
representation, 73

knowledge-based
proof

planning, 25
knowledge-centered

document, 72
view, 97

knowledge-structured, 97

labeled-dataset

attribute value
for type on omgroup (deprecated in

OMDoc 1.2), 102, 233
dc:lang

attribute
on xml:*, 116
on xml:contributor, 114
on xml:description, 114
on xml:subject, 114
on xml:title, 113

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

326 Index

xml:lang

attribute, 7, 138
on CMP, 41, 138
on description, 45

language
markup, 2
natural, 137
style sheet, 6

dc:language

element, 115
languages

multiple, 138
larg-group

old attribute on use (deprecated in
OMDoc 1.2), 237

LATEX, 4
Latin, 137
laymen, 137
layout

box, 92
schema, 17

left
inverse, 197
unit, 197

legacy, 134
legacy

element, 42, 121, 134, 135, 137, 138,
140, 180, 186, 212, 232, 260

lemma, 158
lemma

attribute value
for type on assertion, 159
for type on omtext, 42, 142, 234

level

attribute
on tableofcontents, 100

lexical
document

model, 218
li

element, 146, 228
license

CC, 117
Creative Commons, 41, 117

cc:license

element, 118
lightweight

mechanism, IX
line-feed, 8

lingua franca, VIII
link

global, 28
local, 28
simple, 147

link

element, 138, 147
links

attribute
on decomposition, 200
on idp,ide, 144
on idp, 144

list
bulleted, 146
description, 147
ordered, 146
semicolon-separated, 93
unordered, 146

lists of
character, 63

local, 166, 168
assumption, 179
chain, 199, 200
declaration, 184
import, 166
link, 28
name, 90
theory

inclusion, 196
local

attribute value
for original on data, 207, 231
for scope on symbol, 153, 173
for type on imports, 62, 166, 196

local

attribute
on path-just, 201

logic
first-order, 29, 48, 139
higher-order, 139
propositional, 186

logic

attribute
on FMP, 139

logical
calculus, 175
framework, 21
system, 139

logically

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 327

redundant, 222
loose, 171

definition, 152
loose

attribute value
for type on adt, 172

m:, 129
m:annotation

element, 130
m:annotation-xml

element, 17, 130
m:apply

element, 16, 18, 130, 153
m:bvar

element, 18, 130, 134, 153
m:ci

element, 16, 129, 134
m:cn

element, 16, 129
m:csymbol

element, 129–131, 134, 142
m:divide

element, 16
m:math

element, 121, 129, 135, 137, 138, 140,
180, 186, 232

m:mathml

element, 212
m:mfence

element, 15
m:mfrac

element, 15
m:mi

element, 15
m:mn

element, 15
m:mo

element, 15
m:mover

element, 15
m:mroot

element, 15
m:mrow

element, 15
m:mstyle

element, 15
m:msub

element, 15

m:msubsup

element, 15
m:msup

element, 15
m:munder

element, 15
m:munderover

element, 15
m:plus

element, 16
m:semantics

element, 17, 130, 131
machine-readable, 18, 121
magma, 49
management

change, 198, 223
content, 72
correctness, 179
document, 6, 105
knowledge, XI, 73
rights, 100, 105

Mandelbrot
set, VIII

map

element, 232, 235, 237
Maple™ , 29
markup

Content, 30
content, 4, 28, 30, 31
context, 22, 28
CSS, 209
document, 1
index, 144
language, 2
parallel, 17
presentation, 3
semantic, 30, 31
semantic (), 30

m:math

element, 121, 129, 135, 137, 138, 140,
180, 186, 232

Mathematica, 207
Mathematical

Knowledge
Management, IX

mathematical
assistant

system, 25
commented (), 20

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

328 Index

concept, 152
context, 142
document, 2, 21
error, 101
formal (), 19
formula, 14, 21
knowledge, VIII, X, 1

dissemination, X
management, X, 198

object, 14
proofs, 179
service, 81
software

system, 2, 206
software bus, 81
statement, 21, 22, 141, 142, 149, 196
text, 114
theory, 22, 149
vernacular, 29, 38, 48, 113, 137, 141,

146, 175
Mathematical Objects

RNC Module MOBJ, 260
spec Module MOBJ, 90, 98, 121, 138,

222, 224
Mathematical Statements

RNC Module ST, 265
spec Module ST, 90, 149, 165, 222,

243–248
Mathematical Text

RNC Module MTXT, 261
spec Module MTXT, 90, 137, 138,

222, 224, 243–245, 247–249
Mathematica®, 14, 29
mathematics, XI

formal, 30
informal, 30
international (), IX
K-14, 130

MathML
content, 10, 15–19, 21, 22, 27, 29, 31,

37, 42, 43, 121, 128–134, 140, 142,
145, 169, 227, 232

presentation, 10, 15–17, 129, 134
MathML, VII, 1, 10, 14–19, 21, 28,

32, 90–92, 121, 124, 128–134, 169,
218, 260, 278–280, 288, 289

m:mathml

element, 212
MathPlayer, 16

MathWeb, X, 81, 83
MathWeb OMDoc, 223
MathWeb-SB, 26, 81, 83
MathWeb-WS, 81, 83, 85
matter

back, 99
front, 99

Maya, XIII
MBase, 37, 73, 83, 84
mc

element, 213, 214, 232
measure

element, 157, 191, 232, 233, 239
measure function, 157
mechanism

lightweight, IX
membership

namespace, 7
mental

representation, 153
meta-data, 39
metadata, 40, 54, 100, 105

CC, 118
content dictionary, 169

metadata

element, 39, 43, 54, 77, 99, 100,
102, 105, 113–115, 118, 141, 154,
166, 207, 221, 228, 230, 231, 235,
238–240

method, 180
proof, 179, 180, 194

method

element, 85, 179–181, 239, 240
m:mfence

element, 15
m:mfrac

element, 15
m:mi

element, 15
Microsoft

Internet Explorer, 16, 83
Word, 3

migration
format, 31

MIME
type, 41, 115, 125, 207, 209, 210, 253

Mizar, 22, 23, 27, 38
m:mn

element, 15

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 329

mnemonic
entity, 10

m:mo

element, 15
MOBJ (Mathematical Objects)

RNC Module, 260
spec Module, 90, 98, 121, 138, 222,

224
model

document, 218
document object, 18
generator, 81

module, 89
module

attribute
on omdoc, 44

modules

attribute, 89, 98, 99, 221
on omdoc, 40, 54, 99
on omgroup, 233

monograph, 22
monoid, 66, 154
monoid, 168
monomorphism

attribute value
for conservativity, 194

Moore’s Law, VIII
morphism, 190

base, 192, 193
theory, 189, 223

morphism

element, 61, 67, 68, 191, 192, 194, 233
motivation

attribute value
for type on omtext, 141

m:mover

element, 15
MoWGLI, 176
Mozilla, 16
MP3

recording, 118
m:mroot

element, 15
m:mrow

element, 15
MS

Internet Explorer, 16, 83
m:mstyle

element, 15

m:msub

element, 15
m:msubsup

element, 15
m:msup

element, 15
MTXT (Mathematical Text)

RNC Module, 261
spec Module, 90, 137, 138, 222, 224,

243–245, 247–249
multi-format

collection, 212
multi-logic

group, 139, 154, 213
multi-system

group, 153
multilingual, 143, 155

documents, 138
group, 41, 42, 138, 139, 143, 154, 163,

179, 208, 213, 220
parallel (), 143, 148
support, 138
text, 222

multiple
languages, 138

Multiple-choice exercise, 214
m:munder

element, 15
m:munderover

element, 15

omcd:Name

element, 123
name

local, 90
qualified, 7, 8
simple, 8, 9

name

attribute
on constructor, 172
on definition, 45
on om:OMS, 31, 122
on om:OMV, om:OMS, 133
on om:OMV, 123
on OMS, 18, 45
on OMV, 19, 45
on param, 211
on recognizer, 173
on selector, 173

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

330 Index

on sortdef, 172, 241
on symbol, 45, 153, 154, 173
on term, 145, 235

named
anchor, 10

namespace, 7, 138
abbreviation, 8
Creative Commons, 40, 119
Creative Commons (), 119
declaration, 7, 8, 40, 90
default, 92
Dublin Core, 40, 113
Dublin Core (), 113
empty, 92
explicit (), 129
foreign, 92
membership, 7
OMDoc, 40, 89
OMDoc (), 89
OpenMath, 40, 122
OpenMath (), 122
prefix, 90, 113, 119, 122, 129

declaration, 40, 90, 92
prefixed, 44
URI, 98
XML, 7, 8

namespace prefix
declaration, 44

namespace-aware, 129
narrative, 141, 220

OMDoc, 72
narrative

attribute value
for type on omgroup, 239

narrative

attribute value
for type on omgroup (deprecated in

OMDoc 1.2), 102
narrative-centered, 94

view, 97
narrative-structured, 97, 220, 221

document, 72
natural

deduction, 186, 239
calculus, 85
proof, 183
style, 183

language, 137
number, 171

positive (), 172

neut, 168

new

symbol, 151

new

attribute value

for show on omlet, 210

nl, 115, 138

no

attribute value

for inductive on hypothesis, 179

for total on selector, 173, 241

no-consequence

attribute value

for status on assertion, 160

node

attribute, 7

text, 7

normal

ref (), 94

normalization

URI, 168

normative

precedence, 9

normed

attribute value

for action on dc:date, 115

notation, 2

Backus Naur form, 99

Polish, 122

prefix, 122

notation

element, 228

note

attribute value

for type on omtext, 141

note

element, 138, 143, 144

notice

attribute

on cc:requirements, 119

ns

attribute

on attribute, 230

on element, 232

number, 129

natural, 171

NuPrL, 23, 38, 181

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 331

object
OpenMath, 18, 122
binding, 153
external, 208
mathematical, 14
proof, 185, 186

object

attribute value
for role on selector, 235
for role on symbol, 153, 173
for type on constructor, 230
for type on recognizer, 235
for valuetype on param, 212

xhtml:object

element, 209, 210, 233
object model

document, 209, 217
object-oriented

programming, 72
obligation

proof, 194
obligation

attribute value
for type on assertion, 159
for type on omtext, 142, 234

obligation

element, 61, 194, 196, 198, 202, 221,
233, 236–239

obsolete

attribute value
for cdstatus on theory, 170

occurrence
bound, 134
defining, 133

official

attribute value
for cdstatus on theory, 169

ol

element, 138, 146
om:, 40, 122
om:*

element, 233
om:OMA

element, 18, 45, 122, 123, 126–128
om:OMATP

element, 124, 125
om:OMATTR

element, 124, 126, 130, 131, 133, 153
om:OMB

element, 125
om:OMBIND

element, 18, 122–124, 126, 133, 153
om:OMBVAR

element, 18, 122, 124, 133
om:OME

element, 125
om:OMF

element, 125
om:OMFOREIGN

element, 125, 233
om:OMI

element, 125
om:OMOBJ

element, 7, 18, 45, 48, 50, 121, 122,
126, 135, 137, 138, 140, 180, 186,
212, 220, 232, 239, 240

om:OMR

element, 50, 126–128, 221, 233
om:OMS

element, 7, 18, 45, 122–124, 133, 145,
166, 169, 222

om:OMSTR

element, 125, 239
om:OMV

element, 18, 19, 45, 122, 123, 133
om:OMA

element, 18, 45, 122, 123, 126–128
om:OMATP

element, 124, 125
om:OMATTR

element, 124, 126, 130, 131, 133, 153
om:OMB

element, 125
om:OMBIND

element, 18, 122–124, 126, 133, 153
om:OMBVAR

element, 18, 122, 124, 133
omcd:CDDefinition

element, 123
omcd:CDName

element, 54
omcd:CDURL

element, 54
omcd:CMP

element, 20
omcd:FMP

element, 19, 20
omcd:Name

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

332 Index

element, 123
OMDoc

content, 72
content dictionary, 44, 169, 222
namespace, 40, 89

URI, 89
narrative, 72
reference, 93

OMDoc
version 1.0, 126
version 1.1, 27, 92, 102, 126, 176, 227,

229
version 1.2, 27, 28, 93, 102, 113, 126,

148, 228, 229, 233
version 1.3, 40, 105, 203, 227, 228
version 1, VII, 27, 227
version 2, 105

OMDoc, V, VII, IX–XI, XIII, 1–3, 6,
7, 9, 10, 14, 18, 20, 23–35, 37,
39–45, 47, 50, 53, 54, 56, 60–62,
67, 71–81, 83–85, 87, 89–95,
98–103, 105–119, 121, 122, 124,
125, 128–131, 133–135, 137, 138,
140–147, 149, 150, 152–156, 158,
159, 161–169, 171–173, 176–178,
180–182, 185–187, 189, 191–198,
201, 202, 205–211, 213–215,
217–224, 227–229, 231, 233, 235,
237–241, 243, 251, 255, 257–260,
262, 265, 267, 268, 273, 277

omdoc

element, 9, 41, 54, 90, 98–100, 103,
114, 221, 222, 233

omdoc-basic, 44
OMDOM, 217
om:OME

element, 125
om:OMF

element, 125
om:OMFOREIGN

element, 125, 233
omgroup

element, 43, 77, 95, 98, 99, 102, 103,
166, 221, 228, 233, 239

om:OMI

element, 125
omlet

element, 77, 138, 209–211, 233,
238–240, 251, 253

om:OMOBJ

element, 7, 18, 45, 48, 50, 121, 122,
126, 135, 137, 138, 140, 180, 186,
212, 220, 232, 239, 240

om:OMR

element, 50, 126–128, 221, 233
om:OMS

element, 7, 18, 45, 122–124, 133, 145,
166, 169, 222

om:OMSTR

element, 125, 239
omstyle

element, 221, 233, 239, 241, 253
omtext

element, 7, 41–43, 46, 47, 77, 92, 93,
101, 141, 142, 164, 165, 178, 220,
222, 233, 234, 239

om:OMV

element, 18, 19, 45, 122, 123, 133
onLoad

attribute value
for action on omlet, 210

onPresent

attribute value
for action on omlet, 210

onRequest

attribute value
for action on omlet, 210

op, 168, 220
Open eBook, 116
opening

tag, 7
OpenMath

namespace, 40, 122
URI, 122

OpenMath
object, 18

OpenMath, VII, 1, 7, 8, 10, 14, 15,
17–22, 26–31, 34, 37, 40, 42–46,
50, 53, 54, 56, 59, 90–92, 97, 100,
101, 121–134, 138–140, 145, 153,
169, 170, 218, 222, 223, 232, 233,
235, 236, 240, 251, 252, 260, 277

OpenMath elements
extra attributes id and xref, 126

operator
binding, 123, 125
error, 125

ordered

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 333

list, 146
ordering, 152, 157
ordering

element, 157, 191, 233, 234, 239
oref

element, 147, 148
original

attribute
on data, 207, 231

other

attribute value
for action on omlet, 210
for show on omlet, 210

output, 77
output

element, 77, 208, 234
Owl, 108, 112

p

element, 138
packing

sphere, VIII
padding, 92
pair, 45
paragraph, 102, 138
parallel

markup, 17
multilingual

markup, 143, 148
param

element, 209, 211, 212
parameter, 60, 180

actual (), 62
entity, 44
formal (), 62

parameter

element, 239
parameters

attribute
on adt, 172, 229

parametric
theory, 60

parent

old attribute on presentation

(deprecated in OMDoc 1.2), 240
parsed

character data, 99
parser, 77

validating, 8

XML, 8, 101
partial

function, 173
partial

attribute value, 241
path-just

element, 200, 201, 230, 234
pattern, 157
pattern

attribute value
for type on definition, 157, 231
for type on morphism, 191

pattern

element, 240
PDF, 4
Peano

axioms, 150, 151, 171
permission, 41
permissions, 118
cc:permissions

element, 41, 119
permitted

attribute value, 119
persistent

comment, 101
PF (Proofs and Arguments)

RNC Module, 268
spec Module, 90, 175, 176, 222,

244–247
phrase, 142, 144

index, 144
phrase

element, 93, 137, 138, 140, 142, 143,
165, 229, 230, 234, 237

physical
representation, 153

picture, 118
pixel-on-screen, 3
plug-in, 209, 210
plus, 29
m:plus

element, 16
pmml

attribute value
for format on legacy, 135

pointer, 133, 134
pointing

semantics by, 31
Polish

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

334 Index

notation, 122
polynomial, 29
positioning, 92
positive

natural
number, 172

PostScript, 4
postulate

attribute value
for type on assertion, 159
for type on omtext, 142, 234

postulated
theory

inclusion, 194
precedence

normative, 9
predecessor

function, 60, 171, 172
predicate, 173

recognizer, 173
prefix

namespace, 90, 113, 119, 122, 129
namespace (), 40, 90, 92
notation, 122

prefixed
namespace, 44

premise

element, 76, 85, 180–182, 240
PRES (Presentation)

RNC Module, 273
spec Module, 90, 134, 203, 222, 223,

243, 245, 247–249
Presentation

RNC Module PRES, 273
spec Module PRES, 90, 134, 203, 222,

223, 243, 245, 247–249
presentation, 97

knowledge, 73
markup, 3
proof, 179
proof (), 185, 206
slides, 72

presentation

element, 221, 234, 240, 241, 257
Presentation MathML, 10, 15–17, 129,

134
primitive

symbol, 73, 74, 155
principal

type, 155
principle of

conservative
extension, 23

private

attribute value
for cdstatus on theory, 169

private

element, 73, 180, 206–210, 212, 221,
231, 234, 237–240, 253, 256

problem, 158
procedure

decision, 25
process

reasoning, 130, 155
processing instruction

style sheet, 93
processor

Xml, 6
product

Cartesian, 45
program, 206
programming

C (), 18
object-oriented, 72

prohibited

attribute value, 119
prohibitions, 118
cc:prohibitions

element, 41, 119
proof, 149, 175, 194

automated (), 81
bottom-up (), 184
checking, 30
development

environment, 25
incomplete, 178
inductive, 184
knowledge-based (), 25
method, 179, 180, 194
object, 185, 186
obligation, 194
presentation, 179

system, 185, 206
sequent, 182
top-down (), 184
verification, 30

proof

attribute value

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 335

for type on omtext, 141
proof

element, 76, 84, 177, 179, 180, 182,
183, 185, 187, 200, 232, 234, 240

proofobject

element, 180, 185–187, 235, 240
proofs

mathematical, 179
Proofs and Arguments

RNC Module PF, 268
spec Module PF, 90, 175, 176, 222,

244–247
property

constitutive, 20
CSS, 95
intellectual, 117

property

attribute
on ,, 109
on , 107

proposition

attribute value
for type on assertion, 159
for type on omtext, 142, 234

propositional
logic, 186

ws:prove

element, 83
prover

theorem, 206, 207
pto

attribute
on data, 207, 230, 231, 234

pto-version

attribute
on data, 207, 230, 231, 234

public
Identifier, 9
identifier, 40

publication
Internet, 2

dc:publisher

element, 114, 231
Pvs, 59

qmath

attribute value
for format on legacy, 135

qualified

name, 7, 8
QUIZ (Exercises)

RNC Module, 275
spec Module, 91, 213, 222, 224,

243–246, 248

rank

attribute
on premise, 240

rarg-group

old attribute on use (deprecated in
OMDoc 1.2), 237

RDF, 80, 100, 106–108, 110, 119
RDFa, 106–112
reasoning

backward, 184
forward, 183
process, 130, 155
system, 81

recognizer
predicate, 173

recognizer

element, 173, 235, 238, 240
recommendation, 6, 14
recording

MP3, 118
recurse

element, 237, 240
recursive

equation, 157
function, 157, 171

recursive

attribute value
for type on morphism, 191

reduction
reference, 94

redundant
logically, 222

ref
normal

form, 94
ref

attribute value
for valuetype on param, 212

ref

element, 235, 239, 240
ref-reducible, 94
ref-valid, 94
reference

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

336 Index

OMDoc, 93
reduction, 94
URI, 10, 44, 74, 98, 103, 129, 135,

147, 156, 159, 166, 193, 200, 201,
206, 207, 209, 212

referencing, 92
reformulates

attribute
on private, 73, 207, 234

rel

attribute
on ,, 109
on , 106

relation, 45
“is a”, 74
consequence, 30
inheritance, 167, 189

dc:relation

element, 115
relative

URI, 168
RelaxNG, 8, 9, 259, 260, 277, 278
renaming

variable, 124, 133
renumbering, 4
replace

attribute value
for show on omlet, 210

replaces

old attribute on private (deprecated
in OMDoc 1.2), 234, 240

representation
knowledge, 73
mental, 153
physical, 153
theorem, 22

representational
rigor, X

reproduction, 41
reproduction

attribute
on cc:permissions, 119

requation

element, 157, 191, 221, 233
requirements, 118
cc:requirements

element, 41, 119
requires

attribute

on code, 77
on private, code, 206

resource
uniform (), 5, 7

resource

attribute
on , 107
on, 109

resource description framework, 100
retrieval

document, 37
information, VIII

reuse
theory, 23

rev

attribute
on ,, 109
on , 106

review
date, 170

review-on

attribute value
for action on dc:date, 115

revision, 170
rhetoric

role, 141
rhetoric/didactic

figure, 79, 80
Rich Text Structure

RNC Module RT, 270
spec Module RT, 90, 102, 137, 138,

146–148, 222, 224, 233, 244–249,
254, 258

right
inverse, 197
unit, 197

rights
Digital (), 117
management, 100, 105

dc:rights

element, 115–118
rigor

representational, X
rigorous, 137
RNC, 268, 269
RNC Module

ADT (Abstract Data Types), 267
CTH (Complex Theories), 268
DC (Dublin Core Metadata), 264

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 337

DG (Development Graphs), 269
DOC (Document Structure), 262
EXT (Extensions), 272
MOBJ (Mathematical Objects), 260
MTXT (Mathematical Text), 261
PF (Proofs and Arguments), 268
PRES (Presentation), 273
QUIZ (Exercises), 275
RT (Rich Text Structure), 270
ST (Mathematical Statements), 265

role, 123
rhetoric, 141

role

attribute, 114, 238
on constructor, 230
on dc:*, 116
on presentation, 240
on recognizer, 235
on selector, 235
on sortdef, 235
on symbol, 124, 153, 173, 235
on term, 45, 145

root
document, 7, 9, 90, 114, 222

row
table, 147

RT (Rich Text Structure)
RNC Module, 270
spec Module, 90, 102, 137, 138,

146–148, 222, 224, 233, 244–249,
254, 258

rule
inference, 179, 180

rule

attribute value
for type on omtext, 142

satisfiable

attribute value
for status on assertion, 160

schema, 98
layout, 17
XML, 8, 41, 92, 217, 259

scheme

attribute
on dc:identifier, 115

science, XI
computer, 71

scientific

antecedent, 116
background, 2

scope, 181
scope

attribute
on symbol, 153, 173

section, 22, 102
CDATA, 8

sectioning

attribute value
for type on omgroup, 102

see

attribute
on idp,ide, 144

seealso

attribute
on idp,ide, 144

select

attribute
on attribute, 230

selector
symbol, 171–173

selector

element, 129, 173, 235, 241
selfinclusion

theory, 66, 68
semantic

error, 125
markup, 30, 31

format, 30
semantic-attribution

attribute value
for role on symbol, 153, 235

semantics
by pointing, 19

m:semantics

element, 17, 130, 131
semantics by

pointing, 31
semicolon-separated

list, 93
semigroup, 66

Abelian, 168
semigroup, 168
separator

element, 232
sequence

attribute value
for type on omgroup, 102, 239

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

338 Index

sequent, 140, 239
proof, 182
style, 182

proof, 183
service

mathematical, 81
web, 6

set
inductively defined, 60
insertion, 171
intersection, 140
Mandelbrot, VIII

set, 168
setname1, 131
SGML, 6
sharing

structure, 126
shorthand

xpointer, 10
show

attribute, 210
on omlet, 210

side-effect, 77
simple

definition, 151
link, 147
name, 8, 9

simple

attribute value
for type on definition, 48, 156,

157
Simple Generalized Markup Language,

6
size

attribute
on data, 207, 238

slicing, 42
slide, 72
slide

attribute value
for type on omgroup, 77

slide presentation, 72
Soap, 81–84
software

mathematical (), 2, 206
software bus

mathematical, 81
solution, 213
solution

element, 213, 214, 221, 235

solver

constraint, 81

sort, 60, 154, 171, 172

symbol, 172

sort

attribute value

for role on selector, 235

for role on symbol, 153, 173

sort

attribute

on argument, 237

old attribute on argument (deprecated
in OMDoc 1.2), 229

sort-by

attribute

on idp, 144

sortdef

element, 60, 172, 173, 221, 229, 235,
237, 241

source, 4

comment, 101

document, 4

theory, 61, 166, 191, 193, 196

dc:source

element, 54, 115

SparQL, 107

Spass, 81–85

spec Module

ADT (Abstract Data Types), 91, 162,
171, 172, 222, 223, 243–245, 248

CC (Creative Commons Metadata),
91, 105, 117, 245, 247, 248

CTH (Complex Theories), 91, 189,
191, 193, 196, 198, 222, 223, 243,
245, 246, 248

DC (Dublin Core Metadata), 91, 105,
113, 222, 224, 244–248

DG (Development Graphs), 91, 189,
198, 200, 222, 244, 247

DOC (Document Structure), 89, 90,
97, 138, 222, 224, 245–247

EXT (Extensions), 91, 138, 205, 222,
223, 244, 245, 247

MOBJ (Mathematical Objects), 90,
98, 121, 138, 222, 224

MTXT (Mathematical Text), 90, 137,
138, 222, 224, 243–245, 247–249

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 339

PF (Proofs and Arguments), 90, 175,
176, 222, 244–247

PRES (Presentation), 90, 134, 203,
222, 223, 243, 245, 247–249

QUIZ (Exercises), 91, 213, 222, 224,
243–246, 248

RT (Rich Text Structure), 90, 102,
137, 138, 146–148, 222, 224, 233,
244–249, 254, 258

ST (Mathematical Statements), 90,
149, 165, 222, 243–248

specification, 59, 223
algebraic, 23, 27, 60, 227

sphere
packing, VIII

ST (Mathematical Statements)
RNC Module, 265
spec Module, 90, 149, 165, 222,

243–248
start

tag, 40, 44
statement

mathematical, 21, 22, 141, 142, 149,
196

status
content dictionary, 169

status

attribute
on assertion, 159, 160, 229, 255

STEM, XI
step

inductive, 184
steps

gap, 178
strict, 171
string, 125

empty, 164
strings, 164

concatenation, 164
structural

convention, 2
theory

inclusion, 193
structurally

included, 193
structure

abstract, 43
content, 142
document, 222

higher-level, 42
sharing, 126
XML (), 218

sts, 131, 132
style

file, 4, 16
sequent, 182
sequent (), 183

style

element, 235, 240, 241
style

attribute, 92, 93, 98, 102, 144, 214,
228, 229

on definition, 165
on omlet, 209
on omtext, 92
on phrase, 142
on ref, 77, 95
on with, 241

attribute (meaning changed in 1.2),
229

attribute (new meaning 1.2), 229
Style Sheet

Cascading, 92
style sheet, 4, 6

cascading, 228
CSS, 93
language, 6
processing instruction, 93

dc:subject

element, 114, 154, 229–231, 235, 236
subset

internal, 44
successor

function, 171, 173
support

multilingual, 138
svg, 106
symbol, 18, 122, 129, 150, 152, 222

bullet, 102
constructor, 171, 172
declaration, 22, 155, 169
defined, 155
export, 153
feature, 131
new, 151
primitive, 73, 74, 155
selector, 171–173
sort, 172

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

340 Index

symbol

element, 45, 74, 124, 152–155,
161–163, 168, 174, 179, 180, 221,
230–232, 235, 241

syntax
abstract, 43
XML (), 218

system
algebra, 29
axiom, 151
computer algebra, 19, 25, 29, 81, 125,

206, 207
formal, 30
logical, 139
reasoning, 81
type, 155

system

attribute
on type, 155, 236

table, 147
data, 147
header, 147
row, 147

table

element, 138, 147
table of

contents, 99
tableofcontents

element, 99, 100, 228
tag

closing, 7, 41
opening, 7
start, 40, 44

target, 4, 94, 127
document, 4
theory, 61, 166, 191, 193, 196

tautologous-conclusion

attribute value
for status on assertion, 160

tautology

attribute value
for status on assertion, 160

taxonomy, 72, 77
td

element, 147
teaching, IX
technical

term, 144

technology, XI
term

constructor, 171
declaration, 155, 236
technical, 144

term

element, 45, 137, 138, 142, 145, 235
terminating

attribute
on measure, 157
on ordering, 234

termination, 152
TeX

attribute value
for format on legacy, 135

TEX, 4, 14
Text as Dublin Core Type, 115
Text, 40, 115, 221
text

color, 92
index, 144
mathematical, 114
multilingual, 222
node, 7

text

element, 237, 241
text/plain

attribute value
for format on data, 207

textbook, 22
tgroup

element, 236
th

element, 147
Theorem

Four-Colour, VIII
theorem, 23, 90, 149, 158, 193, 194

automated (), 25, 81
first-order (), 83
prover, 206, 207
representation, 22

theorem

attribute value
for status on assertion, 160
for type on assertion, 159
for type on attribute, 164
for type on omtext, 42, 142, 234

theorem prover, 29
theory, 59, 72, 158

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 341

definitional (), 194
development

system, 206
graph, 194
home, 150
in scope of, 181
inclusion, 61, 63, 189, 193, 196, 199
inheritance, 79
instance, 60
interpretation, 189
local (), 196
mathematical, 22, 149
morphism, 189, 223
parametric, 60
postulated (), 194
reuse, 23
selfinclusion, 66, 68
source, 61, 166, 191, 193, 196
structural (), 193
target, 61, 166, 191, 193, 196

theory

element, 44, 54, 94, 150, 161, 162,
165–170, 172, 195, 236, 239, 240,
254

theory

attribute
on alternative, 162, 229
on assertion, 83, 158
on axiom-inclusion, 230
on decomposition, 231
on example, 231
on exercise, 231
on hint, 232
on mc, 232
on omdoc, 233
on omgroup, 233
on omtext, 234
on presentation, 240
on private, code, 206
on private, 230, 234
on proof, 177, 240
on solution, 235
on statement, 150, 169
on theory-inclusion, 236
on type, 161, 236

old attribute on presentation

(deprecated in OMDoc 1.2), 234
theory element

constitutive, 150

theory-constitutive, 155, 161, 172
element, 150

theory-inclusion

element, 193, 194, 196, 200, 201, 231,
236, 238, 241, 254, 255

thesis
advisor, 116

thesis

attribute value
for type on omtext, 141

ths

attribute value
for role on dc:*, 116

Tim
Berners-Lee, 32

timestamp

old attribute on axiom-inclusion

(deprecated in OMDoc 1.2), 238
old attribute on theory-inclusion

(deprecated in OMDoc 1.1), 241
dc:title

element, 77, 102, 113, 221, 236
to

attribute
on axiom-inclusion, 196
on theory-inclusion, 194

token
element, 129

top-down
proof

step, 184
top-level, 166, 194, 200

domain, 118
element, 98

total, 174
function, 173

total

attribute
on selector, 173, 241

attribute value, 241
tr

element, 147
Tramp, 85
transcriber, 116
transition

attribute value
for type on omtext, 141

translation, 148
translation-equivalent, 20

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

342 Index

translator, 40, 116
trc

attribute value
for role on dc:*, 116

tree, 73, 175, 181
document, 6
expansion, 221

tref

attribute, 93, 94
trl

attribute value
for role on dc:*, 116

true

attribute value
for verdict on answer, 214

Trybulec
Andrzej, 27

Turing, 16
Twelf, 23
type, 130, 154, 172

assertions, 161
attribute, 9
declaration, 155
ID, 10, 27, 92, 94, 227
IDREF, 237
MIME, 41, 115, 125, 207, 209, 210,

253
principal, 155
system, 155

type, 131
attribute value

for role on symbol, 153, 173
dc:type

element, 115, 220, 221
type

element, 153, 155, 161, 162, 172, 229,
236, 241

type

attribute, 103
on adt, 172, 229
on assertion, 158, 159, 237
on attribute, 164
on axiom, 154, 230
on definition, 29, 48, 49, 156
on derive, 178
on example, 47, 75, 163
on ignore, 101
on imports, 62, 166, 196
on m:cn, 129

on morphism, 191, 233
on note, 144
on omdoc, 99
on omgroup, 43, 77, 102, 239
on omtext, 42, 43, 101, 141, 142,

234, 239
on phrase, 142
on ref, 240

attribute (on MathML objects), 131
old attribute on code (deprecated in

OMDoc 1.1), 230, 234
old attribute on omlet (deprecated in

OMDoc 1.2), 239
old attribute on ref (deprecated in

OMDoc 1.2), 93, 148
old attribute on selector (deprecated

in OMDoc 1.1), 241
old attribute on sortdef (deprecated

in OMDoc 1.2), 235
typeof

attribute
on , 107
on, 109

types
formulae as, 21

ul

element, 138, 146
Unicode, 6, 218, 219
Unicode, 7, 9, 10, 15, 218
uniform

resource
identifier, 5
locator, 5, 7

uniqueness, 92
uniqueness

attribute
on definition, 156
on morphism, 191

unit
left, 197
right, 197

universal
digital

mathematics library, IX
unordered

list, 146
unsatisfiable

attribute value

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

Index 343

for status on assertion, 160
unsatisfiable-conclusion

attribute value
for status on assertion, 160

updated

attribute value
for action on dc:date, 115

URI, 5, 9, 31, 40, 115, 122, 123, 154,
155, 163, 167, 169

base, 167
effective, 168
namespace, 98
normalization, 168
reference, 10, 44, 74, 98, 103, 129,

135, 147, 156, 159, 166, 193, 200,
201, 206, 207, 209, 212

relative, 168
URI, 106–110
URL, 5, 7
use

element, 237, 241
UTF-8

encoding, 40

validating
parser, 8
XML

parser, 9
validity, 9
value, 124, 157
value

attribute
on param, 211, 212

value-of

element, 237, 241
valuetype

attribute
on param, 212

variable, 18, 122, 129
bound, 18, 122, 124, 133
renaming, 124, 133

variant
font, 92

verbalizes

attribute
on omtext, 142, 234
on phrase, 143, 165

verdict

attribute

on answer, 214
verification

proof, 30
vernacular

chemistry, 138
computer science, 138
mathematical, 29, 38, 48, 113, 137,

141, 146, 175
version, 170
version

attribute, 90
on cc:license, 118
on omdoc, 40, 98

version number
content dictionary, 170

via

attribute
on inclusion, 195

via a morphism, 191
view

knowledge-centered, 97
narrative-centered, 97

W3C, 6, 14, 32, 81
Web

World Wide, 5, 13, 100
World Wide (), 6

web
agent, 5
service, 6

well-defined, 151
whitespace, 8
whitespace-separated list, 154, 163
who

attribute
on dc:date, 115, 231, 238

width

old attribute on omlet (deprecated in
OMDoc 1.2), 238–240

with

element, 241
Wolfram Research, 14
Word

Microsoft, 3
World Wide

Web, 5, 13, 100
Consortium, 6

ws:prove

element, 83

partappendix.tex 8685 2010-08-23 08:55:17Z kohlhase

344 Index

WYSIWYG, 3

XHTML, 106–109, 146, 147, 210, 218,
224

xhtml:object

element, 209, 210, 233
XLink, 210
xlink, 147
xlink:href

attribute, 252
XML

application, 3, 14, 92, 218, 224
catalog, 9, 40
comment, 8, 101, 219
entity, 8, 9
escaping, 8
namespace, 7, 8
parser, 8, 101
schema, 8, 41, 92, 217, 259
structure

document model, 218
syntax

document model, 218
validating (), 9

XML, XI, 2, 3, 6–11, 14–16, 18–20, 26,
27, 34, 37, 39–41, 77, 81–83, 92,
93, 98, 100, 101, 106, 107, 113,
114, 122, 123, 125–128, 130, 133,
134, 138, 150, 153, 167, 181, 205,
206, 217–220, 224, 227, 228, 233,
237, 239, 251, 253, 259, 272

XML-RPC, 81, 224
xml:id

attribute, 7, 10, 92, 140, 179, 214,
229, 253

on ,, 108
on a, 108

attribute (in module RT), 148
attribute (on Dublin Core elements),

231
xml:lang

attribute, 7, 138
xmlns, 8
XPath, 10, 230, 252, 256
XPointer, 10
xpointer

shorthand, 10
xref

attribute, 126, 254
on idx, 144
on method, 85, 180, 239
on omstyle, presentation, 233,

240
on premise, 180, 240

XSLT, 11, 16, 91, 218, 229, 237, 241,
249

xslt

element, 237, 241

yes

attribute value
for inductive on hypothesis, 179
for total on selector, 173, 241

zero, 171

	Foreword
	Preface
	Part I Setting the Stage for Open Mathematical Documents
	Document Markup for the Web
	Structure vs. Appearance in Markup
	Markup for the World Wide Web
	XML, the eXtensible Markup Language

	Markup for Mathematical Knowledge
	Mathematical Objects and Formulae
	Mathematical Texts and Statements
	Large-Scale Structure and Context in Mathematics

	Open Mathematical Documents
	A Brief History of the OMDoc Format
	Three Levels of Markup
	Situating the OMDoc Format
	The Future: An Active Web of (Mathematical) Knowledge

	Part II An OMDoc Primer
	Textbooks and Articles
	Minimal OMDoc Markup
	Structure and Statements
	Marking up the Formulae
	Full Formalization

	OpenMath Content Dictionaries
	Structured and Parametrized Theories
	A Development Graph for Elementary Algebra
	Courseware and the Narrative/Content Distinction
	A Knowledge-Centered View
	A Narrative-Structured View
	Choreographing Narrative and Content OMDoc
	Summary

	Communication between Systems

	Part III The OMDoc Document Format
	General Aspects of the OMDoc Format
	OMDoc as a Modular Format
	The OMDoc Namespaces
	Common Attributes in OMDoc
	Structure Sharing

	Document Infrastructure
	The Document Root
	Front/Backmatter
	Metadata
	Document Comments
	Document Structure

	Metadata
	General Metadata
	The Dublin Core Elements (Module DC)
	Roles in Dublin Core Elements
	Managing Rights

	Mathematical Objects
	OpenMath
	Content MathML
	Representing Types in Content-MathML and OpenMath
	Semantics of Variables
	Legacy Representation for Migration

	Mathematical Text
	Multilingual Mathematical Vernacular
	Formal Mathematical Properties
	Text Fragments and their Rhetoric/Mathematical Roles
	Phrase-Level Markup of Mathematical Vernacular
	Paragraph-Level Text Markup

	Mathematical Statements
	Types of Statements in Mathematics
	Theory-Constitutive Statements in OMDoc
	The Unassuming Rest
	Mathematical Examples in OMDoc
	Inline Statements
	Theories as Structured Contexts

	Abstract Data Types
	Representing Proofs
	Proof Structure
	Proof Step Justifications
	Scoping and Context in a Proof
	Formal Proofs as Mathematical Objects

	Complex Theories
	Inheritance via Translations
	Postulated Theory Inclusions
	Local/Required Theory Inclusions
	Induced Assertions
	Development Graphs

	Notation and Presentation
	Auxiliary Elements
	Non-XML Data and Program Code in OMDoc
	Applets and External Objects in OMDoc

	Exercises
	Document Models for OMDoc
	XML Document Models
	The OMDoc Document Model
	OMDoc Sub-Languages

	Part IV Appendix
	Changes to the specification
	Changes from 1.2 to 1.3
	Changes from 1.1 to 1.2
	Changes from 1.0 to 1.1

	Quick-Reference
	Table of Attributes
	The RelaxNG Schema for OMDoc
	Common Parts of the Schema
	Module MOBJ: Mathematical Objects and Text
	Module MTXT: Mathematical Text
	Module DOC: Document Infrastructure
	Module DC: Dublin Core Metadata
	Module ST: Mathematical Statements
	Module ADT: Abstract Data Types
	Module PF: Proofs and Proof objects
	Module CTH: Complex Theories
	Module DG: Development Graphs
	Module RT: Rich Text Structure
	Module EXT: Applets and non-XML data
	Module PRES: Adding Presentation Information
	Module QUIZ: Infrastructure for Assessments

	The RelaxNG Schemata for Mathematical Objects
	The RelaxNG Schema for OpenMath
	The RelaxNG Schema for MathML

	Index

