
spec.tex 8481 2009-08-11 05:41:59Z kohlhase

Michael Kohlhase

Computer Science

International University Bremen

m.kohlhase@iu-bremen.de

An Open Markup Format

for Mathematical Documents

OMDoc [Version 1.2]

August 11, 2009

This Document is an online version of the OMDoc 1.2 Specification published by
Springer Verlag as number 4180 in the “Lecture Notes in Artificial Intelligence”
(LNAI) series. It corrects all known errata; the corrections are marked up in the
text and tabulated in the appendix F.

Source Information revision 8723, last change August 11, 2009 by kohlhase

https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/doc/spec/spec.tex

This work is licensed by the Creative Commons Share-Alike license

http://creativecommons.org/licenses/by-sa/2.5/: the contents of this

specification or fragments thereof may be copied and distributed freely, as long

as they are attributed to the original author and source, derivative works (i.e.

modified versions of the material) may be published as long as they are also

licenced under the Creative Commons Share-Alike license.

m.kohlhase@iu-bremen.de
http://creativecommons.org/licenses/by-sa/2.5/

spec.tex 8481 2009-08-11 05:41:59Z kohlhase

VI

Springer

dedication.tex 6154 2006-10-03 11:31:31Z

To Andrea

— my wife, collaborator, and best friend —

for all her support

abstract.tex 6154 2006-10-03 11:31:31Z

VIII

Abstract

The OMDoc (Open Mathematical Documents) format is a content markup
scheme for (collections of) mathematical documents including articles, text-
books, interactive books, and courses. OMDoc also serves as the content
language for agent communication of mathematical services on a mathemati-
cal software bus.

This document describes version 1.2 of the OMDoc format, the final and
mature release of OMDoc1. The format features a modularized language
design, OpenMath and MathML for representing mathematical objects,
and has been employed and validated in various applications.

This book contains the rigorous specification of the OMDoc document
format, an OMDoc primer with paradigmatic examples for many kinds of
mathematical documents. Furthermore we discuss applications, projects and
tool support for OMDoc.

foreword.tex 6154 2006-10-03 11:31:31Z

IX

Foreword

Computers are changing the way we think. Of course, nearly all desk-workers
have access to computers and use them to email their colleagues, search the
web for information and prepare documents. But I’m not referring to that. I
mean that people have begun to think about what they do in computational
terms and to exploit the power of computers to do things that would previously
have been unimaginable.

This observation is especially true of mathematicians. Arithmetic com-
putation is one of the roots of mathematics. Since Euclid’s algorithm for
finding greatest common divisors, many seminal mathematical contributions
have consisted of new procedures. But powerful computer graphics have now
enabled mathematicians to envisage the behaviour of these procedures and,
thereby, gain new insights, make new conjectures and explore new avenues
of research. Think of the explosive interest in fractals, for instance. This has
been driven primarily by our new-found ability rapidly to visualise fractal
shapes, such as the Mandelbrot set. Taking advantage of these new opportu-
nities has required the learning of new skills, such as using computer algebra
and graphics packages.

The argument is even stronger. It is not just that computational skills are
a useful adjunct to a mathematician’s arsenal, but that they are becoming
essential. Mathematical knowledge is growing exponentially: following its own
version of Moore’s Law. Without computer-based information retrieval tech-
niques it will be impossible to locate relevant theories and theorems, lead-
ing to a fragmentation and slowing down of the field as each research area
rediscovers knowledge that is already well-known in other areas. Moreover,
without the use of computers, there are potentially interesting theorems that
will remain unproved. It is an immediate corollary of Gödel’s Incompleteness
Theorem that, however huge a proof you think of, there is a short theorem
whose smallest proof is that huge. Without a computer to automate the dis-
covery of the bulk of these huge proofs, then we have no hope of proving
these simple-stated theorems. We have already seen early examples of this
phenomenon in the Four-Colour Theorem and Kepler’s Conjecture on sphere
packing. Perhaps computers can also help us to navigate, abstract and, hence,
understand these huge proofs.

Realising this dream of: computer access to a world repository of mathe-
matical knowledge; visualising and understanding this knowledge; reusing and
combining it to discover new knowledge, presents a major challenge to math-
ematicians and informaticians. The first part of this challenge arises because
mathematical knowledge will be distributed across multiple sources and rep-
resented in diverse ways. We need a lingua franca that will enable this babel
of mathematical languages to communicate with each other. This is why this
book — proposing just such a lingua franca — is so important. It lays the
foundations for realising the rest of the dream.

foreword.tex 6154 2006-10-03 11:31:31Z

X

OMDoc is an open markup language for mathematical documents. The
‘markup’ aspect of OMDoc means that we can take existing knowledge and
annotate it with the information required to retrieve and combine it automat-
ically. The ‘open’ aspect of OMDoc means that it is extensible, so future-
proofed against new developments in mathematics, which is essential in such
a rapidly growing and complex field of knowledge. These are both essential
features. Mathematical knowledge is growing too fast and is too distributed
for any centrally controlled solution to its management. Control must be dis-
tributed to the mathematical communities that produce it. We must provide
lightweight mechanisms under local control that will enable those communi-
ties to put the produce of their labours into the commonwealth with mini-
mal effort. Standards are required to enable interaction between these diverse
knowledge sources, but they must be flexible and simple to use. These re-
quirements have informed OMDoc’s development. This book will explain to
the international mathematics community what they need to do to contribute
to and to exploit this growing body of distributed mathematical knowledge.
It will become essentially reading for all working mathematicians and mathe-
matics students aspiring to take part in this new world of shared mathematical
knowledge.

OMDoc is one of the first fruits of the Mathematical Knowledge Manage-
ment (mkm) Network (http://www.mkm-ig.org/). This network combines
researchers in mathematics, informatics and library science. It is attempting
to realise the dream of creating a universal digital mathematics library of all
mathematical knowledge accessible to all via the world-wide-web. Of course,
this is one of those dreams that is never fully realised, but remains as a source
of inspiration. Nevertheless, even its partial realisation would transform the
way that mathematics is practised and learned. It would be a dynamic li-
brary, providing not just text, but allowing users to run computer software
that would provide visualisations, calculate solutions, reveal counter-examples
and prove theorems. It would not just be a passive source of knowledge but
a partner in mathematical discovery. One major application of this library
will be to teaching. Many of the participants in the mkm Network are build-
ing teaching aids that exploit the initial versions of the library. There will
be a seamless transition between teaching aids and research assistants — as
the library adjusts its contribution to match the mathematical user’s current
needs. The library will be freely available to all: all nations, all age groups
and all ability levels.

I’m delighted to write this foreword to one of the first steps in realising
this vision.

Alan Bundy, Edinburgh, 25. May 2006

http://www.mkm-ig.org/

preface.tex 6154 2006-10-03 11:31:31Z

XI

Preface

Mathematics is one of the oldest areas of human knowledge1. It forms the basis
most modern sciences, technology and engineering disciplines build upon it:
Mathematics provides them with modeling tools like statistical analysis or
differential equations. Inventions like public-key cryptography show that no
part of mathematics is fundamentally inapplicable. Last, but not least, we
teach mathematics to our students to develop abstract thinking and hone
their reasoning skills.

However, mathematical knowledge is far too vast to be understood by one
person, moreover, it has been estimated that the total amount of published
mathematics doubles every ten–fifteen years [Odl95]. Thus the question of
supporting the management and dissemination of mathematical knowledge
is becoming ever more pressing but remains difficult: Even though mathe-
matical knowledge can vary greatly in its presentation, level of formality and
rigor, there is a level of deep semantic structure that is common to all forms
of mathematics and that must be represented to capture the essence of the
knowledge.

At the same time it is plausible to expect that the way we do (i.e. con-
ceive, develop, communicate about, and publish) mathematics will change
considerably in the next years. The Internet plays an ever-increasing role in
our everyday life, and most of the mathematical activities will be supported
by mathematical software systems connected by a commonly accepted distri-
bution architecture, which makes the combined systems appear to the user
as one homogeneous application. They will communicate with human users
and amongst themselves by exchanging structured mathematical documents,
whose document format makes the context of the communication and the
meaning of the mathematical objects unambiguous.

Thus the inter-operation of mathematical services can be seen as a knowl-
edge management task between software systems. On the other hand, math-
ematical knowledge management will almost certainly be web-based, dis-
tributed, modular, and integrated into the emerging math services architec-
ture. So the two fields constrain and cross-fertilize each other at the same
time. A shared fundamental task that has to be solved for the vision of a “web
of mathematical knowledge” (MathWeb) to become reality is to define an
open markup language for the mathematical objects and knowledge exchanged
between mathematical services. The OMDoc format (Open Mathematical
Documents) presented here is an answer to this challenge, it attempts to pro-
vide an infrastructure for the communication and storage of mathematical
knowledge.

Mathematics – with its long tradition in the pursuit of conceptual clarity
and representational rigor – is an interesting test case for general knowledge

1 We find mathematical knowledge written down on Sumerian clay tablets, and even
Euclid’s Elements, an early rigorous development of a larger body of mathematics,
is over 2000 years old.

preface.tex 6154 2006-10-03 11:31:31Z

XII

management, since it abstracts from vagueness of other knowledge without
limiting its inherent complexity. The concentration on mathematics in OM-
Doc and this book does not preclude applications in other areas. On the
contrary, all the material directly extends to the STEM (science, technology,
education, and mathematics) fields, once a certain level of conceptualization
has been reached.

This book tries to be a one-stop information source about the OMDoc
format, its applications, and best practices. It is intended for authors of math-
ematical documents and for application developers. The book is divided into
four parts: an introduction to markup for mathematics (Part I), an OMDoc
primer with paradigmatic examples for many kinds of mathematical docu-
ments (Part II), the rigorous specification of the OMDoc document format
(Part III), and an XML document type definition and schema (Part IV).

The book can be read in multiple ways:

• for users that only need a casual exposure to the format, or authors that
have a specific text category in mind, it may be best to look at the examples
in the OMDoc primer (Part II of this book),

• for an in-depth account of the format and all the possibilities of modeling
mathematical documents, the rigorous specification in Part III is indis-
pensable. This is particularly true for application developers, who will
also want to study the external resources, existing OMDoc applications
and projects, in Part IV.

• Application developers will also need to familiarize themselves with the
OMDoc Schema in the Appendix.

acknowledgements.tex 6165 2006-10-07 13:21:01Z

Acknowledgments

Of course the OMDoc format has not been developed by one person alone.
The original proposal was taken up by several research groups, most no-
tably the Ωmega group at Saarland University, the Maya and ActiveMath
projects at the German Research Center of Artificial Intelligence (DFKI),
the MoWGLI EU Project, the RIACA group at the Technical University of
Eindhoven, and the CourseCapsules project at Carnegie Mellon University.
They discussed the initial proposals, represented their materials in OMDoc
and in the process refined the format with numerous suggestions and discus-
sions.

The author specifically would like to thank Serge Autexier, Bernd Krieg-
Brückner, Olga Caprotti, David Carlisle, Claudio Sacerdoti Coen, Arjeh Co-
hen, Armin Fiedler, Andreas Franke, George Goguadze, Alberto González
Palomo, Dieter Hutter, Andrea Kohlhase, Christoph Lange, Paul Libbrecht,
Erica Melis, Till Mossakowski, Normen Müller, Immanuel Normann, Martijn
Oostdijk, Martin Pollet, Julian Richardson, Manfred Riem, and Michel Volle-
bregt for their input, discussions, and feedback from implementations and
applications.

Special thanks are due to Alan Bundy and Jörg Siekmann. The first trig-
gered the work on OMDoc, has lent valuable insight over the years, and has
graciously consented to write the foreword to this book. Jörg continually sup-
ported the OMDoc idea with his abundant and unwavering enthusiasm. In
fact the very aim of the OMDoc format: openness, cooperation, and philo-
sophic adequateness came from the spirit in his Ωmega group, which the
author has had the privilege to belong to for more than 10 years.

The work presented in this book was supported by the “Deutsche For-
schungsgemeinschaft” in the special research action “Resource-adaptive cog-
nitive processes” (SFB 378), and a three-year Heisenberg Stipend to the au-
thor. Carnegie Mellon University, SRI International, and the International
University Bremen have supported the author while working on revisions for
versions 1.1 and 1.2.

acknowledgements.tex 6165 2006-10-07 13:21:01Z

acknowledgements.tex 6165 2006-10-07 13:21:01Z

Contents

Foreword . IX
Preface . XI

Part I Setting the Stage for Open Mathematical Documents

1 Document Markup for the Web . 3
1.1 Structure vs. Appearance in Markup . 3
1.2 Markup for the World Wide Web . 5
1.3 XML, the eXtensible Markup Language . 6

2 Markup for Mathematical Knowledge . 13
2.1 Mathematical Objects and Formulae . 14
2.2 Mathematical Texts and Statements . 21
2.3 Large-Scale Structure and Context in Mathematics 22

3 Open Mathematical Documents . 25
3.1 A Brief History of the OMDoc Format . 25
3.2 Three Levels of Markup . 28
3.3 Situating the OMDoc Format . 29
3.4 The Future: An Active Web of (Mathematical) Knowledge 31

Part II An OMDoc Primer

4 Textbooks and Articles . 37
4.1 Minimal OMDoc Markup . 39
4.2 Structure and Statements . 41
4.3 Marking up the Formulae . 43
4.4 Full Formalization . 48

acknowledgements.tex 6165 2006-10-07 13:21:01Z

XVI Contents

5 OpenMath Content Dictionaries . 53

6 Structured and Parametrized Theories . 59

7 A Development Graph for Elementary Algebra 65

8 Courseware and the Narrative/Content Distinction 71
8.1 A Knowledge-Centered View . 73
8.2 A Narrative-Structured View . 77
8.3 Choreographing Narrative and Content OMDoc 79
8.4 Summary . 80

9 Communication between Systems . 81

Part III The OMDoc Document Format

10 OMDoc as a Modular Format . 89
10.1 The OMDoc Namespaces . 89
10.2 Common Attributes in OMDoc . 90

11 Document Infrastructure . 95
11.1 The Document Root . 96
11.2 Metadata . 97
11.3 Document Comments . 98
11.4 Document Structure . 100
11.5 Sharing Document Parts . 100

12 Metadata . 103
12.1 The Dublin Core Elements (Module DC) 104
12.2 Roles in Dublin Core Elements . 107
12.3 Managing Rights . 108
12.4 Inheritance of Metadata . 110

13 Mathematical Objects . 113
13.1 OpenMath . 113
13.2 Content MathML. 120
13.3 Representing Types in Content-MathML and OpenMath . . . 123
13.4 Semantics of Variables . 125
13.5 Legacy Representation for Migration . 126

14 Mathematical Text . 129
14.1 Multilingual Mathematical Vernacular . 130
14.2 Formal Mathematical Properties . 131
14.3 Text Fragments and their Rhetoric/Mathematical Roles 133
14.4 Phrase-Level Markup of Mathematical Vernacular 134

acknowledgements.tex 6165 2006-10-07 13:21:01Z

Contents XVII

14.5 Technical Terms . 135
14.6 Rich Text Structure . 137

15 Mathematical Statements . 141
15.1 Types of Statements in Mathematics . 141
15.2 Theory-Constitutive Statements in OMDoc 144
15.3 The Unassuming Rest . 150
15.4 Mathematical Examples in OMDoc . 155
15.5 Inline Statements . 157
15.6 Theories as Structured Contexts . 158

16 Abstract Data Types . 165

17 Representing Proofs . 169
17.1 Proof Structure . 171
17.2 Proof Step Justifications . 173
17.3 Scoping and Context in a Proof . 177
17.4 Formal Proofs as Mathematical Objects . 180

18 Complex Theories . 183
18.1 Inheritance via Translations . 183
18.2 Postulated Theory Inclusions . 187
18.3 Local/Required Theory Inclusions . 189
18.4 Induced Assertions . 191
18.5 Development Graphs . 192

19 Notation and Presentation . 199
19.1 Styling OMDoc Elements . 200
19.2 A Restricted Style Language . 202
19.3 Notation of Symbols . 204
19.4 Presenting Bound Variables . 210

20 Auxiliary Elements . 215
20.1 Non-XML Data and Program Code in OMDoc 216
20.2 Applets and External Objects in OMDoc 219

21 Exercises . 223

22 Document Models for OMDoc . 227
22.1 XML Document Models . 227
22.2 The OMDoc Document Model . 230
22.3 OMDoc Sub-Languages . 231

Part IV OMDoc Applications, Tools, and Projects

acknowledgements.tex 6165 2006-10-07 13:21:01Z

XVIII Contents

23 OMDoc resources . 237
23.1 The OMDoc Web Site, Wiki, and Mailing List 237
23.2 The OMDoc distribution . 237
23.3 The OMDoc bug tracker . 238
23.4 An XML catalog for OMDoc . 238
23.5 External Resources . 239

24 Validating OMDoc Documents . 241
24.1 Validation with Document Type Definitions 242
24.2 Validation with RelaxNG Schemata . 245
24.3 Validation with XML Schema . 246

25 Transforming OMDoc . 249
25.1 Extracting and Linking XSLT Templates 249
25.2 Interfaces for Systems . 251
25.3 Presenting OMDoc to Humans . 254

26 Applications and Projects . 255
26.1 Introduction . 255
26.2 QMath Parser . 258
26.3 Sentido Integrated Environment . 261
26.4 MBase . 266
26.5 A Search Engine for Mathematical Formulae 268
26.6 Semantic Interrelation and Change Management 273
26.7 MathDox . 277
26.8 ActiveMath . 281
26.9 Authoring Tools for ActiveMath . 287
26.10SWiM – An OMDoc-based Semantic Wiki 289
26.11Induction Challenge Problems . 293
26.12Maya . 296
26.13Hets . 301
26.14CPoint . 305
26.15STEX: A LATEX-Based Workflow for OMDoc 310
26.16An Emacs mode for editing OMDoc Documents 314
26.17Converting Mathematica Notebooks to OMDoc 318
26.18Standardizing Context in System Interoperability 321
26.19Proof Assistants in Scientific Editors . 326
26.20VeriFun . 330

Part V Appendix

A Changes to the specification . 337
A.1 Changes from 1.1 to 1.2 . 338
A.2 Changes from 1.0 to 1.1 . 346

acknowledgements.tex 6165 2006-10-07 13:21:01Z

Contents XIX

B Quick-Reference . 353

C Table of Attributes . 361

D The RelaxNG Schema for OMDoc . 369
D.1 The Sub-Language Drivers . 369
D.2 Common Attributes . 371
D.3 Module MOBJ: Mathematical Objects and Text 372
D.4 Module MTXT: Mathematical Text . 372
D.5 Module DOC: Document Infrastructure . 373
D.6 Module DC: Dublin Core Metadata . 374
D.7 Module ST: Mathematical Statements . 375
D.8 Module ADT: Abstract Data Types . 378
D.9 Module PF: Proofs and Proof objects . 378
D.10 Module CTH: Complex Theories . 379
D.11 Module DG: Development Graphs . 380
D.12 Module RT: Rich Text Structure . 381
D.13 Module EXT: Applets and non-XML data 382
D.14 Module PRES: Adding Presentation Information 383
D.15 Module QUIZ: Infrastructure for Assessments 384

E The RelaxNG Schemata for Mathematical Objects 387
E.1 The RelaxNG Schema for OpenMath . 387
E.2 The RelaxNG Schema for MathML . 388

F The Errata . 401

References . 405

Index . 421

acknowledgements.tex 6165 2006-10-07 13:21:01Z

partintro.tex 6154 2006-10-03 11:31:31Z

Part I

Setting the Stage for Open Mathematical
Documents

In this part of the book we will look at the problem of marking up mathe-
matical knowledge and mathematical documents in general, situate the OM-
Doc format, and compare it to other formats like OpenMath and MathML.

The OMDoc format is an open markup language for mathematical doc-
uments and the knowledge encapsulated in them. The representation in OM-
Doc makes the document content unambiguous and their context transparent.

OMDoc approaches this goal by embedding control codes into mathe-
matical documents that identify the document structure, the meaning of text
fragments, and their relation to other mathematical knowledge in a process
called document markup. Document markup is a communication form that
has existed for many years. Until the computerization of the printing indus-
try, markup was primarily done by a copy editor writing instructions on a
manuscript for a typesetter to follow. Over a period of time, a standard set
of symbols was developed and used by copy editors to communicate with
typesetters on the intended appearance of documents. As computers became
widely available, authors began using word processing software to write and

partintro.tex 6154 2006-10-03 11:31:31Z

2

edit their documents. Each word processing program had its own method of
markup to store and recall documents.

Ultimately, the goal of all markup is to help the recipient of the document
better cope with the content by providing additional information e.g. by visual
cues or explicit structuring elements. Mathematical texts are usually very
carefully designed to give them a structure that supports understanding of the
complex nature of the objects discussed and the argumentations about them.
Such documents are usually structured according to the argument made and
enhanced by specialized notation (mathematical formulae) for the particular
objects.2 In contrast, the structure of texts like novels or poems normally obey
different (e.g. aesthetic) constraints.

In mathematical discourses, conventions about document form, number-
ing, typography, formula structure, choice of glyphs for concepts, etc. and
the corresponding markup codes have evolved over a long scientific history
and by now carry a lot of the information needed to understand a particular
text. But since they pre-date the computer age, they were developed for the
consumption by humans (mathematicians) and mainly with “ink-on-paper”
representations (books, journals, letters) in mind, which turns out to be too
limited in many ways.

In the age of Internet publication and mathematical software systems, the
universal accessibility of the documents breaks an assumption implicit in the
design of traditional mathematical documents: namely that the reader will
come from the same (scientific) background as the author and will directly
understand the notations and structural conventions used by the author. We
can also rely less and less on the premise that mathematical documents are
primarily for human consumption as mathematical software systems are more
and more embedded into the process of doing mathematics. This, together
with the fact that mathematical documents are primarily produced and stored
on computers, places a much heavier burden on the markup format, since it
has to make all of this implicit information explicit in the communication.

In the next two chapters we will set the stage for the OMDoc approach.
We will first discuss general issues in markup formats (see Section 1.1), existing
solutions (see Section 1.2), and the current XML-based framework for markup
languages on the web (see Section 1.3). Then we will elaborate the special
requirements for marking up the content of mathematics (see Chapter 2).

2 Of course this holds not only for texts in pure mathematics, but for any argumen-
tative text, including texts from the sciences and engineering disciplines. We will
use the adjective “mathematical” in an inclusive way to make this distinction on
text form, not strictly on the scientific labeling.

web-markup.tex 8674 2010-08-23 05:44:43Z kohlhase

1

Document Markup for the Web

Document markup is the process of adding codes to a document to identify the
structure of a document and to specify the format in which its fragments are
to appear. We will discuss two conflicting aspects — structure and appearance
— in document markup. As the Internet imposes special constraints imposed
on markup formats, we will reflect its influence.

In the past few years the XML format has established itself as a general ba-
sis for markup languages. As OMDoc and all mathematical markup schemes
discussed here are XML applications (instances of the XML framework), we
will go more into the technical details to supply the technical prerequisites for
understanding the specification. We will briefly mention XML validation and
transformation tools, if the material reviewed in this section is not enough,
we refer the reader to [Har01].

1.1 Structure vs. Appearance in Markup

Text processors and desktop publishing systems (think for example of Mi-
crosoft Word) are software systems aiming to produce “ink-on-paper” or
“pixel-on-screen” representations of documents. They are very well-suited to
execute typographic conventions for the appearance of documents. Their inter-
nal markup scheme mainly defines presentation traits like character position,
font choice and characteristics, or page breaks. We will speak of presentation
markup for such markup schemes. They are perfectly sufficient for producing
high-quality presentations on paper or on screen, but for instance it does not
support document reuse (in other contexts or across the development cycle of
a text). The problem is that these approaches concentrate on the form and
not the function of text elements. Think e.g. of the notorious section renum-
bering problems in early (WYSIWYG1) text processors. Here, the text form

1 “What you see is what you get”; in the context of markup languages this means
that the document markup codes are hidden from the user, who is presented with
a presentation form of the text even during authoring.

web-markup.tex 8674 2010-08-23 05:44:43Z kohlhase

4 1 Document Markup for the Web

of a numbered section heading was used to express the function of identifying
the position of the respective section in a sequence of sections (and maybe in
a larger structure like a chapter).

This perceived weakness has lead to markup schemes that concentrate
more on function than on form. We will call them content markup to dis-
tinguish them from presentation markup schemes, and discuss TEX/LATEX
[Knu84, Lam94] as an example.

TEX is a typesetting markup language that uses explicit markup codes
(strings beginning with a backslash) in a document, for instance, the markup
$\sqrt{\sin x}$ stands for the mathematical expression

√
sinx in TEX. To

determine from this functional specification the visual form (e.g. the charac-
ter placement and font information), we need a document formatting engine.
This program will transform the document that contains the content markup
(the “source” document) into a presentation markup scheme that specifies the
appearance (the “target” document) like DVI [Knu84], postscript [Rei87],
or PDF [?] that can directly be presented on paper or on screen. This two-
stage approach allows the author to mark up the function of a text fragment
and leave the conversion of this markup into presentation information to the
formatter. The specific form of translation is either hard-wired into the for-
matter, or given externally in style files or style sheets.

LATEX [Lam94] is a comprehensive set of style files for the TEX formatter,
the heading for a section with the title “The Joy of TEX” would be marked
up as

\section[{\TeX}]{The Joy of {\TeX}\index{tex@\TeX}}\label{sec:TeX}

This piece of markup specifies the function of the text element: The title of
the section should be “The Joy of TEX”, which (if needed e.g. in the table
of contents) can be abbreviated as “TEX”, the glyph “TEX” is inserted into
the index, where the word tex would have been, and the section number
can be referred to using the label sec:TeX. Note that renumbering is not
a problem in this approach, since the actual numbers are only inferred by
the formatter at run-time. This, together with the ability to simply change
style file for a different context, yields much more manageable and reusable
documents, and has led to a wide adoption of the function-based approach.
So that even word-processors like MS Word now include functional elements.
Pure presentation markup schemes like DVI or PostScript are normally only
used for document delivery. On the other hand, many form-oriented markup
schemes allow to “fine-tune” documents by directly controlling presentation.
For instance, LATEX allows to specify traits such as font size information, or
using

{\bf proof}:. . . \hfill\Box

to indicate the extent of a proof (the formatter only needs to “copy” them to
the target format). The general experience in such mixed markup schemes is
that presentation markup is more easily specified, but that content markup

web-markup.tex 8674 2010-08-23 05:44:43Z kohlhase

1.2 Markup for the World Wide Web 5

will enhance maintainability and reusability. This has led to a culture of style
file development (specifying typographical and structural conventions), which
now gives us a wealth of style options to choose from in LATEX.

1.2 Markup for the World Wide Web

The Internet, where screen presentation, hyperlinking, computational limita-
tions, and bandwidth considerations are much more important than in the
“ink-on-paper” world of publishing, has brought about a whole new set of
markup schemes. The problems that need to be addressed are that

• the size, resolution, and color depth of a given screen are not known at
the time the document is marked up,

• the structure of a text is no longer limited to a linear text with (e.g.
numbered) cross-references as in a traditional book or article: Internet
documents are usually hypertexts,

• the computational resources of the computer driving the screen are not
known beforehand. Therefore the distribution of work (e.g. formatting
steps) between the client and the server has to be determined at run-time.
Finally, the related problem that

• the bandwidth of the Internet is ever-growing but always limited.

These issues impose somewhat conflicting demands on markup languages
for the Web. The first two seem to favor content markup languages, since low-
level presentational traits like glyph placement and font availability cannot be
pre-meditated on the server. However, the amount of formatting that can be
delegated to the client, and the availability of style files is limited by the latter
two concerns.

In response the “Hypertext Markup Language” (HTML [RHJ98]) evolved
as the original markup format for the World Wide Web. This is a markup
scheme that addresses the problem of variable screen size and hyperlinking
by exporting the decision of character placement and page order to a browser
running on the client. It ensures a high degree of reusability of documents on
the Internet while conserving bandwidth, so that HTML carries most of the
text markup on the Internet today.

The major innovation in HTML was the use of uniform resource lo-
cators (URL) to reference documents provided by web servers. URLs are
strings in a special format that can be interpreted by browsers or other web
agents to request documents from web servers, e.g. to be displayed to the
user in the browser as a new node in the current hypertext document. Since
URLs are global references, they are the means that make the Internet into a
“world-wide” web (of references). Since uniform resource locators are closely
tied to the physical location of a document on the Internet, which can change
over time, they have since been generalized to uniform resource identifier
(URI; see [BLFM98]). These are strings of similar structure, that only identify

web-markup.tex 8674 2010-08-23 05:44:43Z kohlhase

6 1 Document Markup for the Web

resources on the Internet, see [Har01], i.e. their structure need not be directly
translatable to an Internet location (we call this act de-referencing). Indeed,
URIs need not even correspond to a physical manifestation of a resource at
all, they can identify a virtual resource, that is produced by a web service on
demand.

The concrete syntax and architecture of HTML is derived from the
“Simple Generalized Markup Language” SGML [Gol90], which is similar to
TEX/LaTeX in spirit, but tries to give the markup scheme a more declara-
tive semantics (as opposed to the purely procedural – and rather baroque –
semantics of TEX) to make it simpler to reason about (and thus reuse) doc-
uments. In particular unlike TEX, SGML separates content markup codes
from directives to the formatting engine. SGML has a separate style sheet
language DSSSL [DuC97], which was not adopted by HTML, because of re-
source limitations in the client. Instead, HTML has been augmented with
its own (limited) style sheet language CSS [Bos98] that is executed by the
browser.

1.3 XML, the eXtensible Markup Language

The need for content markup schemes for maintaining documents on the
server, as well as for specialized presentation of certain text parts (e.g. for
mathematical or chemical formulae), has led to a profusion of markup schemes
for the Internet, most of which share the basic SGML syntax with HTML.
To organize this zoo of markup languages, the World Wide Web Consortium
(W3C [?], an international interest group of universities and web industry) has
developed a language framework for Internet markup languages called XML
(eXtensible Markup Language) [BPSM97]. XML is a set of grammar rules
that allows to interpret certain sequences of Unicode [Inc03] characters as
document trees. These grammar rules are shared by all XML-based markup
languages (called XML applications) and are very well-supported by a great
variety of XML processors. The XML format is accompanied by a set of
specialized vocabularies (most of them XML applications) that standardize
various aspects of document management and web services. These are canon-
icalized by the W3C as “recommendations”. We will briefly review the ones
that are relevant for understanding the OMDoc format and make the book
self-contained. For details see one of the many XML books, e.g. [Har01].

1.3.1 XML Document Trees

Conceptually speaking, XML views a document as a tree whose nodes consist
of elements, attributes, text nodes, namespace declarations, XML comments,
etc. (see Figure 1.1 for an example2). For communication this tree is serialized

2 This tree representation glosses over namespace nodes in the tree, but the con-
ceptual tree is sufficient for the application in this book.

web-markup.tex 8674 2010-08-23 05:44:43Z kohlhase

1.3 XML, the eXtensible Markup Language 7

<omtext xml:id=”foo” xmlns=”http://www.mathweb.org/omdoc”
xmlns:om=”http://www.openmath.org/OpenMath”>

<CMP xml:lang=’en’>
The number
<om:OMOBJ><om:OMS cd=”nums1” name=”pi”/><om:OMOBJ>
is irrational .
</CMP>

</omtext>

omtext

CMP

xml:id foo

xml:lang en

text

The number

text

is irrational.

om:OMOBJ

om:OMS

cd nums1

name pi

Fig. 1.1. An XML Document as a Tree

into a balanced bracketing structure (see the listing at the top of Figure 1.1),
where an element el is represented by the brackets <el> (called the open-
ing tag) and </el> (called the closing tag). The leaves of the tree are
represented by empty elements (serialized as <el></el>, which can be ab-
breviated as <el/>), and text nodes (serialized as a sequence of Unicode
characters). An element node can be annotated by further information us-
ing attribute nodes — serialized as an attribute in its opening tag: for
instance <el visible="no"> might add the information for a formatting en-
gine to hide this element. As a document is a tree, the XML specification
mandates that there must be a unique document root.

Let us now come to a feature that we have glossed over so far: XML
namespaces [Bra99]. In many XML applications, we need to mix several
XML vocabularies or languages. In our example in Figure 1.1 we have three:
the OMDoc vocabulary with the elements omtext and CMP, the OpenMath
vocabulary with the elements om:OMOBJ and om:OMS, and the general XML
vocabulary for the attributes xml:id and xml:lang.

To allow a safe mixing of independent XML vocabularies, XML can as-
sociate elements and attributes3 with a namespace, which is simply a URI
that uniquely identifies the intended vocabulary4. In XML syntax, namespace
membership is represented by namespace declarations and qualified names.

3 Traditionally most XML applications use attributes that are not namespaced.
4 Note that it need not be a valid URL (uniform resource locator; i.e. a pointer to

a document provided by a web server).

web-markup.tex 8674 2010-08-23 05:44:43Z kohlhase

8 1 Document Markup for the Web

A namespace declaration is a pseudo-attribute with name xmlns whose
value is a namespace URI 〈〈nsURI〉〉 (see e.g. the first line in Figure 1.1). In
a nutshell, a namespace declaration specifies that this element and all its
descendants are in the namespace 〈〈nsURI〉〉, unless they have a namespace
declaration of their own or there is a namespace declaration in a closer ancestor
that overwrites it.

Similarly, a namespace abbreviation can be declared on any element
by a pseudo-attribute of the form xmlns:〈〈nsa〉〉="〈〈nsUR〉〉", where 〈〈nsa〉〉 is an
XML simple name, and 〈〈nsURI〉〉 is the namespace URI. In the scope of this
declaration (in all descendants, where it is not overwritten) we can specify that
an element or attribute is in the namespace 〈〈nsURI〉〉 by using a qualified
name: a pair 〈〈nsa〉〉:〈〈el〉〉, where 〈〈nsa〉〉 is a namespace abbreviation and 〈〈el〉〉 is
a simple name (i.e. one that does not contain a colon). In Figure 1.1, we have a
namespace abbreviation in the second line, which is used for the OpenMath
objects in line five. This rule has one exception: the namespace abbreviation
xml is reserved for the XML namespace and does not have to be declared.

Since XML elements only encode trees, the distribution of whitespace (in-
cluding line-feeds) in non-text elements has no meaning in XML, and can
therefore be added and deleted without effecting the semantics. XML con-
siders anything between <!-- and --> in a document as a comment. They
should be used with care, since they are not necessarily passed on by the XML
parser, and therefore might not survive processing by XML applications.

Material that is relevant to the document, but not valid XML, e.g. binary
data or data that contains angle brackets or elements that are unbalanced or
not part of the XML application can be encoded by embedding it into CDATA

sections. A CDATA section begins with the string <[CDATA[and suspends the
XML parser until the string]]> is found. The result of parsing a CDATA section
is equivalent to escaping the five XML-specific characters <, > ", ’, and & to
the XML entities <, >, ", ', and &. For instance, we
have the following correspondence between a CDATA section and XML-escaped
content:

<[CDATA[a<b³]]> =̂ a<b<sup>3</sup>

As a consequence, an XML application is free to choose the form of its output
and the particular form should not be relied upon.

1.3.2 Validating XML Documents

XML offers various mechanisms for specifying a subset of trees (or well-
bracketed XML documents) as admissible in a given XML application: the
most commonly used ones are document type definitions (DTD [BPSM97]),
XML schemata [XML], and RelaxNG schemata [Vli03]. All of these are
context-free grammars for trees, that can be used by a validating parser to
reject XML documents that do not conform. Note that DTDs and schemata
cannot enforce all constraints that a particular XML application may want to

web-markup.tex 8674 2010-08-23 05:44:43Z kohlhase

1.3 XML, the eXtensible Markup Language 9

impose on documents. Therefore validation is only a necessary condition for
validity with respect to that application. Since the XML schema languages
can express slightly stronger sets of constraints and are namespace-aware, they
allow stronger document validation, and usually take normative precedence
over the DTD if present.

Listing 1.1 shows part of an OMDoc document. The first line identifies the
document as an XML document (version 1.0 of the XML specification). The
second and third lines constitute the document type declaration which
specifies the DTD and the document root element. In this case the omdoc

element starting in line 4 is the root element and will be validated against
the DTD identified by the public Identifier5 in line two and which can be
found at the URI in line three. See Chapter 24 for an in-depth discussion of
the OMDoc DTD and validation.

Listing 1.1. The Structure of an XML Document with DTD

<?xml version=”1.0”?>
<!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc V1.2//EN”

”http://omdoc.org/dtd/omdoc.dtd”>
4 <omdoc xml:id=”example−omdoc” xmlns=”http://www.mathweb.org/omdoc”>

. . .
</omdoc>

Note that it is not mandatory to have a document type declaration in an XML
document, or that an XML parser even read it (we call an XML parser
validating if it does). If no document type declaration is present, then a
parser will just check for XML-well-formedness, and possibly rely on some
schema for further validation6. Note that if a validating parser reads an XML
document with a document type declaration, then it must process it and
validate the document.

But a DTD not only contains information for validation, it also

declares XML entities XML entities are strings of the form &〈〈abbr〉〉;,
which abbreviate sequences of Unicode characters and are expanded by
the parser as it reads the document.

supplies default values for attributes which are added to the represen-
tation of the parsed document by the parser as it reads the document.

declares types of attributes This is is relevant for attribute types ID and
IDREF. The former are required to be document-unique (as well as being
XML simple names [BPSM97, section 2.3]) and the latter must point to
an existing ID-type attribute in the same document.

5 A string that allows to identify an XML resource, it can be mapped to a concrete
URI via the XML catalog; see Section 23.4 for details.

6 Note that RelaxNG schemata do not have a specified in-document means for
associating a schema with elements. For the way to associate an XML schema
with a document we refer to XML schema recommendation [XML] or the XML
literature.

web-markup.tex 8674 2010-08-23 05:44:43Z kohlhase

10 1 Document Markup for the Web

ID-type attributes are commonly used to identify elements in XML documents
(see the discussion in Subsection 1.3.3), which raises a subtle point with re-
spect to DTDs. If an XML document is processed without a document type
declaration or by a non-validating parser, the information which attributes
are ID-type ones is lost, and referencing does not work as as expected. Fortu-
nately, there is a recent W3C-solution to this problem: Following the XML
ID recommendation [MVW05] XML parsers must recognize attributes of the
form xml:id as ID-type attributes, even if no DTD is present.

However DTDs may still serve an important role, even if they are su-
perseded by schema-based approaches for pure validation. For instance a
format like Presentation-MathML (see Subsection 2.1.1) seems dependent
on a DTD, since it needs to define a rich set of mnemonic entities for
mathematical symbols in Unicode and uses ID-type attributes for cross-
referencing. Formats like Content-MathML (Subsection 2.1.1), OpenMath
(Subsection 2.1.2) or OMDoc proper can live without DTDs, since they do
not.

1.3.3 XML Fragments and URI References

As documents are construed as trees in XML, the notion of a document
fragment becomes definable simply as a sets of well-formed sub-trees. Building
on this, URLs and URIs can be extended to references of document fragments.
These URI references are traditionally considered to consist of two parts:
A proper URI and a specific fragment identifier separated by the hash
character #. The URI identifies an XML document on the web, whereas the
fragment identifier identifies a specific fragment of that document.

XML provides the XPointer framework [GMMW03] for fragment iden-
tifiers. It specifies multiple schemes for fragment identifiers. Fragment identi-
fiers of the form xpointer(〈〈path〉〉) use an XPath [CD99] expression 〈〈path〉〉
to specify a path through the document tree leading to the desired element
(see [?]). Fragment identifiers in the element() scheme [?] use expressions of
the form element(〈〈cpath〉〉), where 〈〈cpath〉〉 is an ID-type identifier together
with a simple child-path; e.g. element(foo/3/7) identifies the 7th child of the
3rd child of the (unique) element that has ID-type attribute with value foo.

URI references of the form 〈〈uri〉〉#〈〈id〉〉 as they are used in HTML to refer to
named anchors () are regained as a special case (the short-
hand xpointer): If 〈〈uri〉〉 is a URI of an XML document D then 〈〈uri〉〉#〈〈id〉〉
refers to the unique element in D, that has an attribute of type ID with value
〈〈id〉〉.

1.3.4 Summary

In summary, XML provides a widely standardized infrastructure for defining
Internet markup languages based on tree structures rather than on sequences
of characters. XML processors like parsers, serializers, XML databases, and

web-markup.tex 8674 2010-08-23 05:44:43Z kohlhase

1.3 XML, the eXtensible Markup Language 11

XSLT transformation engines are widely deployed and incorporated into
many programming languages. Building XML applications on top of this
infrastructure frees the implementers from dealing with low-level details of
parsing, validation, and mass storage. It is no surprise that XML has become
one of the most successful interoperability formats in information technology.

Note that the use of XML does not give any support for mathematics in
itself, since the tree models are completely general. It is the role of specific
XML applications like the ones we will present in the next two chapters to
specialize the XML tree structures to representations that can be interpreted
as mathematical objects and documents.

math-markup.tex 6154 2006-10-03 11:31:31Z

math-markup.tex 6154 2006-10-03 11:31:31Z

2

Markup for Mathematical Knowledge

Mathematicians make use of various kinds of documents (e.g. e-mails, letters,
pre-prints, journal articles, and textbooks) for communicating mathematical
knowledge. Such documents employ specialized notational conventions and
visual representations to convey the mathematical knowledge reliably and
efficiently. The respective representations are supported by pertinent markup
systems like TEX/LATEX.

Even though mathematical documents can vary greatly in their level of
presentation, formality and rigor, there is a level of deep semantic structure
that is common to all forms of mathematics and that must be represented
to capture the essence of the knowledge. As John R. Pierce has written in
his book on communication theory [Pie80], mathematics and its notations
should not be viewed as one and the same thing. Mathematical ideas exist
independently of the notations that represent them. However, the relation
between meaning and notation is subtle, and part of the power of mathematics
to describe and analyze derives from its ability to represent and manipulate
ideas in symbolic form. The challenge in putting mathematics on the World
Wide Web is to capture both notation and content (that is, meaning) in such a
way that documents can utilize the highly-evolved notational forms of written
and printed mathematics, and the potential for interconnectivity in electronic
media.

In this chapter, we present the state of the art for representing math-
ematical documents on the web and analyze what is missing to mark up
mathematical knowledge. We posit that there are three levels of informa-
tion in mathematical knowledge: formulae, mathematical statements, and the
large-scale theory structure (constructing the context of mathematical knowl-
edge). The first two are immediately visible in marked up mathematics, e.g.
textbooks, the third is largely left to an implicit meta-level of mathematical
communication, or the organization of mathematical libraries. We will discuss
these three levels in the next sections.

math-markup.tex 6154 2006-10-03 11:31:31Z

14 2 Markup for Mathematical Knowledge

2.1 Mathematical Objects and Formulae

A distinguishing feature of mathematical documents is the use of a complex
and highly evolved system of two-dimensional symbolic notations, commonly
called (mathematical) formulae. Formulae serve as representations of math-
ematical objects, such as functions, groups, or differential equations, and also
of statements about them, like the “Fundamental Theorem of Algebra”.

The two best-known open markup formats for representing mathematical
formulae for the Web are MathML [ABC+03a] and OpenMath [BCC+04].
There are various other formats that are proprietary or based on specific math-
ematical software packages like Wolfram Research’s Mathematica® [Wol02].
We will not concern ourselves with them, since we are only interested in open
formats. Furthermore, we will only give a general overview for the open for-
mats here to survey the state of the art, since content MathML and Open-
Math are used for formula representation in the OMDoc format and thus
the technical details of the two markup schemes are covered in more detail in
the OMDoc specification in Chapter 13. Figure 2.1 gives an overview over
the current state of the standardization activities.

language MathML OpenMath

by W3C Math WG OpenMath society

origin math for HTML integration of CAS

coverage content + presentation; K-
14

content; extensible

status Version 2.2e (VI 2003) Version 2 (VI 2004)

activity maintenance maintenance

Info http://w3c.org/Math/ http://www.openmath.org/

Fig. 2.1. The Status of Markup Standardization for Mathematical Formulae

OpenMath was originally a development driven mainly by the Computer
Algebra community in Europe trying to standardize the communication of
mathematical objects between Computer Algebra Systems. The format has
been discussed in a series of workshops and has been funded by a series of
grants by the European Union. This process led to the OpenMath 1 standard
in June 1999 and eventually to the incorporation of the OpenMath society
as the institutional guardian of the OpenMath standard. MathML has de-
veloped out of the effort to include presentation primitives for mathematical
notation (in TEX quality) into HTML, and was the first XML application to
reach recommendation status1 at the W3C [BDD+99].

1 As such, MathML played a great role as technology driver in the development
of XML. This role gives MathML a somewhat peculiar status at the W3C; it is
the only “vertical” (application/domain-driven) XML application standardized

http://w3c.org/Math/
http://www.openmath.org/

math-markup.tex 6154 2006-10-03 11:31:31Z

2.1 Mathematical Objects and Formulae 15

The competition and collaboration between these two approaches to rep-
resentation of mathematical formulae and objects has led to a large overlap
between the two developer communities. MathML deals principally with the
presentation of mathematical objects, while OpenMath is solely concerned
with their semantic meaning or content . While MathML does have some
limited facilities for dealing with content, it also allows semantic information
encoded in OpenMath to be embedded inside a MathML structure. Thus
the two technologies may be seen as highly compatible2 and complementary
(in aim).

2.1.1 MathML

MathML is an XML application for describing mathe-
matical notation and capturing both its structure and con-
tent . The goal of MathML is to enable mathematics to be
served, received, and processed on the World Wide Web,
just as HTML has enabled this functionality for text.

from the MathML2 Recommendation [ABC+03a]

To reach this goal, MathML offers two sub-languages: Presentation-
MathML for marking up the two-dimensional, visual appearance of mathe-
matical formulae, and Content-MathML as a markup infrastructure for the
functional structure of mathematical formulae.

To mark up the visual appearance of formulae Presentation-MathML
represents mathematical formulae as a tree of layout primitives. For instance
the expression 3

x+2 would be represented as the layout tree in Figure 2.2.
The layout primitives arrange “inner boxes” (given in black) and provide an
outer box (given in gray here) for the next level of layout. In Figure 2.2 we
see the general layout schemata for numbers (m:mn), identifiers (m:mi), op-
erators (m:mo), bracketed groups (m:mfence), and fractions (m:mfrac); oth-
ers include horizontal grouping (m:mrow), roots (m:mroot), scripts (m:msup,
m:msub, m:msubsup), bars and arrows (m:munder, m:mover, m:munderover),
and scoped CSS styling (m:mstyle). Mathematical symbols are taken from
Unicode and provided with special mnemonic entities by the MathML DTD,
e.g. ∑ for Σ.

Since the aim of MathML is to do most of the formatting inside the
browser, where resource considerations play a large role, it restricts itself to a
fixed set of mathematical concepts – the K-14 fragment (Kindergarten to 14th

grade; i.e. undergraduate college level) of mathematics. K-14 contains a large
set of commonly used glyphs for mathematical symbols and very general and

by the W3C, which otherwise concentrates on “horizontal” (technology-driven)
standards.

2 e.g. MathML is the preferred presentation format for OpenMath objects
and OpenMath content dictionaries are the primary specification language for
MathML semantics.

math-markup.tex 6154 2006-10-03 11:31:31Z

16 2 Markup for Mathematical Knowledge

<m:mfrac>
<m:mn>3</m:mn>
<m:mfenced>
<m:mi>x</m:mi>
<m:mo>+</m:mo>
<m:mn>2</m:mn>

</m:mfenced>
</m:mfrac>

3

(x+2)

3 (x+2)

x + 2

<mfrac>...</mfrac>

<mn>3</mn>

<mfenced>...</mfenced>

<mi>x</mi><mo>+</mo><mn>2</mn>

Fig. 2.2. The Layout Tree for the Formula 3
x+2

powerful presentation primitives, similar to those that make up the lower level
of TEX. However, it does not offer the programming language features of TEX3

for the obvious computing resource considerations. Presentation-MathML is
supported by current versions of the browsers Amaya [Vat], MS Internet
Explorer [Cor] (via the MathPlayer plug-in [Sci]), and Mozilla [Org].

MathML also offers content markup for mathematical formulae, a sub-
language called Content-MathML to contrast it from the Presentation-
MathML described above. Here, a mathematical formula is represented as a
tree as well, but instead of marking up the visual appearance, we mark up the
functional structure. For our example 3

x+2 we obtain the tree in Figure 2.3,
where we use @ as the function application operator (it interprets the first
child as a function and applies it to the rest of the children as arguments).

<m:apply>
<m:divides/>
<m:cn>3</m:cn>
<m:apply>
<m:plus/>
<m:ci>x</m:ci>
<m:cn>2</m:cn>

</m:apply>
</m:apply>

@(·, ·)

division 3 @(·, ·)

addition x 2

Fig. 2.3. The functional Structure of 3
x+2

Content-MathML offers around 80 specialized elements for the most com-
mon K-14 functions and individuals. In Figure 2.3 we see function application
(m:apply), content identifiers (m:ci), content numbers (m:cn) and the func-
tions for division (m:divide) and addition (m:plus).

3 TEX contains a full, Turing-complete – if somewhat awkward – programming
language that is mainly used to write style files. This is separated out by MathML
to the CSS and XSLT style languages it inherits from XML.

math-markup.tex 6154 2006-10-03 11:31:31Z

2.1 Mathematical Objects and Formulae 17

Finally, MathML offers a specialized m:semantics element that allows
to annotate MathML formulae with alternative representations. This feature
can be used to provide combined content- and presentation-MathML repre-
sentations. Figure 2.4 shows an example of this for our expression 3

x+2 . The
outermost m:semantics element is used for mixing presentation and content
markup. The first child of the m:semantics element contains Presentation-
MathML (this is used by the MathML-aware browser), the subsequent
m:annotation-xml element contains Content-MathML markup for the same
formula. Corresponding sub-expressions are co-referenced by cross-references:
The presentation element carries an id attribute, which serves as the tar-
get for an xlink:href attribute in the content markup. This technique is
called parallel markup, it allows to select logical sub-expressions by select-
ing layout sub-schemata in the browser, e.g. for copy and paste. Note that a
m:semantics element can have more than one m:annotation-xml child, so
that other content formats such as OpenMath can also be incorporated.

<semantics>...</semantics>

<annotation-xml>...</annotation-xml>

<mfrac id="M">...</mfrac>

<mn id="3">3</mn>

<mfenced id="f">...</mfenced>

<mi id="x">x</mi>

<mo id="p">+</mo>

<mn id="2">2</mn>

<apply href="M">...</apply>

<divides/> <ci href="3">3<ci/>

<apply href="f">...</apply>

<plus href="tp"/>

<ci href="x">x</ci>

<cn href="2">2</cn>

Fig. 2.4. Mixing Presentation and Content-MathML

math-markup.tex 6154 2006-10-03 11:31:31Z

18 2 Markup for Mathematical Knowledge

2.1.2 OpenMath

[. . .] OpenMath: a standard for the representation and
communication of mathematical objects. [. . .]
OpenMath allows the meaning of an object to be encoded
rather than just a visual representation. It is designed to
allow the free exchange of mathematical objects between
software systems and human beings. On the worldwide web
it is designed to allow mathematical expressions embedded
in web pages to be manipulated and computed with in a
meaningful and correct way. It is designed to be machine-
generatable and machine-readable, rather than written by
hand.

from the OpenMath2 Standard [BCC+04]

Driven by the intention of representing the meaning of mathematical ob-
jects expressed in the quote above, the OpenMath format is not primarily
an XML application. Rather, OpenMath defines an abstract (mathematical)
object model for mathematical objects and specifies an XML encoding (and
a binary4 encoding) for that5.

The central construct of OpenMath is that of an OpenMath ob-
ject (realized by the element om:OMOBJ in the XML encoding), which has
a tree-like representation made up of applications (om:OMA), binding struc-
tures (om:OMBIND using om:OMBVAR to specify the bound variables6), variables
(om:OMV), and symbols (om:OMS).

The handling of symbols — which are used to represent the multitude of
mathematical domain constants — is maybe the largest difference between
OpenMath and Content-MathML. Instead of providing elements for all K-
14 concepts, the OpenMath standard adds an extension mechanism for math-
ematical concepts, the content dictionaries. These are machine-readable
documents that define the meaning of mathematical concepts expressed by
OpenMath symbols. Just like the library mechanism of the C programming
language, they allow OpenMath to externalize the definition of extended lan-
guage concepts. As a consequence, K-14 need not be part of the OpenMath
language, but can be defined in a set of content dictionaries (see [OMC08]).

The om:OMS element carries the attributes cd and name. The name attribute
gives the name of the symbol, the cd attribute specifies the content dictionary.

4 The binary encoding allows to optimize encoding size and (more importantly)
parsing time for large OpenMath objects. The binary encoding for OpenMath
objects will not play a role for the OMDoc format, so we will not pursue this
here.

5 The MathML specification is very vague on what the meaning of Content-
MathML fragments might be; we have to assume that its XML document object
model [DOM] or the or its infoset [Cow04] must be.

6 Binding structures are somewhat awkwardly realized via the m:apply element
with an m:bvar child in Content-MathML.

math-markup.tex 6154 2006-10-03 11:31:31Z

2.1 Mathematical Objects and Formulae 19

As variables do not carry a meaning independent of their local content, om:OMV
only carries a name attribute. See Listing 2.1 for an example that uses most
of the elements.

Listing 2.1. OpenMath Representation of ∀a, b.a+ b = b+ a

1 <OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
<OMBIND cdbase=”http://www.openmath.org/cd”>
<OMS cd=”quant1” name=”forall”/>
<OMBVAR><OMV name=”a”/><OMV name=”b”/></OMBVAR>
<OMA><OMS cd=”relation” name=”eq”/>

6 <OMA><OMS cd=”arith1” name=”plus”/>
<OMV name=”a”/>
<OMV name=”b”/>

</OMA>
<OMA><OMS cd=”arith1” name=”plus”/>

11 <OMV name=”b”/>
<OMV name=”a”/>

</OMA>
</OMA>

</OMBIND>
16 </OMOBJ>

Listing 2.1 shows the XML encoding of the law of commutativity for addition
(the formula ∀a, b.a+ b = b+ a) in OpenMath. Note that as we have dis-
cussed above, this representation is not self-contained but relies on the avail-
ability of content dictionaries quant1, relation1, and arith1. Note that in
this example they can be accessed via the URL specified in the cdbase at-
tribute, but in general, the content dictionaries are only used for identification
of symbols. In particular, in the classical OpenMath model, content dictio-
naries are only viewed as a resource for system developers, who use them as a
reference decide which symbol to use in an export/import facility for a com-
puter algebra system. In the communication between mathematical software
systems, they are no longer needed: If two systems agree on a set of con-
tent dictionaries, then they agree on the meaning of all OpenMath objects
that can be constructed using their symbols (the meaning of applications and
bindings is known from the folklore).

The content dictionary architecture is the greatest strength of the Open-
Math format. It establishes an object model and XML encoding based on
what we call “semantics by pointing”. Two OpenMath objects have the same
meaning in this model, iff they have the same structure and all symbols point
to the same content dictionaries7.

In the standard encoding of OpenMath content dictionary, the meaning
of a symbol is specified by a set of

“formal mathematical properties” The omcd:FMP element contains an
OpenMath object that expresses the desired property.

7 Note that we can interpret the Content-MathML model as a “semantics by point-
ing” model as well. Only that here the K-14 elements do not point to machine-
readable content dictionaries, but at the (human-readable) MathML specifica-
tion, which specifies their meaning.

math-markup.tex 6154 2006-10-03 11:31:31Z

20 2 Markup for Mathematical Knowledge

“commented mathematical properties” The omcd:CMP element contains
a natural language description of a desired property.

For instance, the specification in Listing 2.2 is part of the standard Open-
Math content dictionary arith1.ocd [OMC08] for the elementary arithmetic
operations.8

Listing 2.2. Part of the OpenMath Content Dictionary arith1.

<CDDefinition>
<Name>plus</Name>
<CDDescription>

4 The symbol representing an n−ary commutative function plus.
</CDDescription>
<CMP> for all a,b | a + b = b + a </CMP>
<FMP>∀a, b.a+ b = b+ a</FMP>

</CDDefinition>

On the other hand, the content dictionary encoding defined in the Open-
Math standard (and the particular content dictionaries blessed by the Open-
Math society) are the greatest weakness of OpenMath. The represent the
knowledge in a very unstructured way — to name just a few problems:

• in the omcd:CMP, we can only make use of ASCII representation of formu-
lae.

• The relation between a particular omcd:CMP and omcd:FMP elements is
unclear.

• For properties like the distributivity of addition over multiplication it is
unclear, whether we should express this in the definition of the symbol
plus or the symbol times.

• Are all properties constitutive for the meaning of the symbol? Should they
be verified for an implementation of a content dictionary?

• What is the relationship between content dictionaries? Are they translation-
equivalent? Does one entail the other?

The OpenMath2 standards acknowledges these problems and explicitly
opens up the content dictionary format allowing other representations that
meet certain minimal criteria relegating the standard encoding above to a
reference implementation of the minimal model.

We will analyze the questions raised above from a general standpoint when
discussing the remaining two levels of mathematical knowledge. This analysis
constitutes the basic intuitions for the OMDoc format.

8 The content of the omcd:FMP element is actually the OpenMath object in the
representation in Listing 2.1, we have abbreviated it here in the usual mathemat-
ical notation, and we will keep doing this in the remaining document: wherever
an XML element in a figure contains mathematical notation, it stands for the
corresponding OpenMath element.

math-markup.tex 6154 2006-10-03 11:31:31Z

2.2 Mathematical Texts and Statements 21

2.2 Mathematical Texts and Statements

The mathematical markup languages OpenMath and MathML we have
discussed in the last section have dealt with mathematical objects and for-
mulae. The formats either specify the semantics of the mathematical object
involved in the standards document itself (MathML) or in a fixed set of
generally agreed-upon documents (OpenMath content dictionaries). In both
cases, the mathematical knowledge involved is relatively fixed. Even in the
case of OpenMath, which has an extensible library mechanism, the content
dictionaries are not in themselves objects of communication (they are mainly
background reference for the implementation of OpenMath interfaces).

For the communication among mathematicians (rather than computation
systems) this level of support is insufficient, because the mathematical knowl-
edge expressed in definitions, theorems (stating properties of defined objects),
their proofs, and even whole mathematical theories is the primary focus of
mathematical communication. For content markup of mathematical knowl-
edge, we have to turn implicit or presentational structuring devices in math-
ematical documents into explicit ones. For instance, mathematical state-
ments like the ones in the document fragment in Figure 2.5 are delimited by
keywords (e.g. Definition, Lemma and) or by changes in text font.

Definition 3.2.5 (Monoid)
A monoid is a semigroup S = (G, ◦) with an element e ∈ G, such that
e ◦ x = x for all x ∈ G. e is called a left unit of S.

Lemma 3.2.6
A monoid has at most one left unit.
Proof: We assume that there is another left unit f . . .
This contradicts our assumption, so we have proven the claim.

Fig. 2.5. A Fragment of a Traditional Mathematical Document

Of course, the content of a mathematical statement, e.g. the statement of
an assertion that “addition is commutative” can be expressed by a Content-
MathML or OpenMath formula like the one in Listing 2.1, but the infor-
mation that this formula is a theorem that has a proof, cannot be directly
expressed without extending the formalism. Even formalizations of mathe-
matics like Russell and Whitehead’s famous “Principia Mathematica” [WR10]
treat this information on the meta-level. If we are willing to extend the math-
ematical formalism to include primitives for such information, we arrive at
formalisms called logical frameworks (see [Pfe01] for an overview), where
they are treated as the primary objects of study. The most prevalent approach
here uses the “formulae as types” idea that delegates mathematical formulae

math-markup.tex 6154 2006-10-03 11:31:31Z

22 2 Markup for Mathematical Knowledge

to the status of types. Logical frameworks capture mathematical statements
in formulae and as such can be expressed in Content-MathML or Open-
Math. However, this approach relies on full formalization of the mathemati-
cal content, and cannot be directly used to capture mathematical practice. In
particular, the gap between formal mathematics and informal (but rigorous)
treatments of mathematics that rely on natural language as we find them in
textbooks and journal articles is wide. The formalization process is so tedious,
that it is seldom executed in practice (the “Principia Mathematica” and the
Mizar mathematical library [Miz08] are solitary examples).

2.3 Large-Scale Structure and Context in Mathematics

The large-scale structure of mathematical knowledge is much less apparent
than that for formulae and even statements. Experienced mathematicians are
nonetheless aware of it, and use it for navigating the vast space of mathemat-
ical knowledge and to anchor their communication.

Much of this structure can be found in networks of mathematical the-
ories: groups of mathematical statements, e.g. those in a monograph “In-
troduction to Group Theory” or a chapter or section in a textbook. The
relations among such theories are described in the text, sometimes supported
by mathematical statements called representation theorems. We can observe
that mathematical texts can only be understood with respect to a particular
mathematical context given by a theory which the reader can usually infer
from the document. The context can be stated explicitly (e.g. by the title of a
book) or implicitly (e.g. by the fact that the e-mail comes from a person that
we know works on finite groups, and that she is talking about math).

If we make the structure of the context as explicit as the structure of
the mathematical objects (we will speak of context markup), then math-
ematical software systems will be able to provide novel services that rely on
this structure. We contend that without an explicit representation of context
structure, tasks like semantics-based searching and navigation or object classi-
fication can only be performed by human mathematicians that can understand
the implicitly given structure.

Mathematical theories have been studied by mathematicians and logi-
cians in the search of a rigorous foundation for mathematical practice. They
have been formalized as collections of symbol declarations — giving names to
mathematical objects that are particular to the theory — and logical formu-
lae, which state the laws governing the properties of the theory. A key research
question was to determine conditions for the consistency of mathematical the-
ories. In inconsistent theories all statements are vacuously valid9, and there-
fore only consistent theories make interesting statements about mathematical
objects.

9 A statement is valid in a theory, iff it is true for all models of the theory. If there
are none, it is vacuously valid.

math-markup.tex 6154 2006-10-03 11:31:31Z

2.3 Large-Scale Structure and Context in Mathematics 23

It is one of the critical observations of meta-mathematics that theories
can be extended without endangering consistency, if the added formulae can
be proven from the formulae already in the theory (such formulae are called
theorems). As a consequence, consistency of a theory can be determined by
examining the axioms (formulae without a proof) alone. Thus the role of
proofs is twofold, they allow to push back the assumptions about the world
to simpler and simpler axioms, and they allow to test the model by deriving
consequences of these basic assumptions that can be tested against the data.

A second important observation is that new symbols together with axioms
defining their properties can be added to a theory without endangering consis-
tency, if they are of a certain restricted syntactical form. These definitional
forms mirror the various types of mathematical definitions (e.g. equational,
recursive, implicit definitions). This leads to the “principle of conservative ex-
tension”, which states that conservative extensions to theories (by theorems
and definitions) are safe for mathematical theories, and that possible sources
for inconsistencies can be narrowed down to small sets of axioms.

Even though all of this has theoretically been known to (meta)-mathema-
ticians for almost a century, it has only been an explicit object of formal study
and exploited by mathematical software systems in the last decades. Much of
the meta-mathematics has been formally studied in the context of proof de-
velopment systems like AutoMath [dB80] NuPrL [CAB+86], Hol [GM93],
Mizar [Rud92] and Ωmega [BCF+97] which utilize strong logical systems
that allow to express both mathematical statements and proofs as mathe-
matical objects. Some systems like Isabelle [PN90] and Twelf [Pfe91] even
allow the specification of the logic language itself, in which the reasoning
takes place. Such semi-automated theorem proving systems have been used
to formalize substantial parts of mathematics and mechanically verify many
theorems in the respective areas. These systems usually come with a library
system that manages and structures the body of mathematical knowledge
formalized in the system so far.

In software engineering, mathematical theories have been studied under
the label of “(algebraic) specifications”. Theories are used to specify the be-
havior of programs and software components. Under the pressure of industrial
applications, the concept of a theory (specification) has been elaborated from
a practical point of view to support the structured development of specifi-
cations, theory reuse, and modularization. Without this additional structure,
real world specifications become unwieldy and unmanageable in practice. Just
as in the case of the theorem proving systems, there is a whole zoo of specifica-
tion languages, most of them tied to particular software systems. They differ
in language primitives, theoretical expressivity, and the level of tool support.

Even though there have been standardization efforts, the most recent
one being the Casl standard (Common Algebraic Specification Language;
see [CoF04]) there have been no efforts of developing this into a general
markup language for mathematics with attention to web communication
and standards. The OMDoc format attempts to provide a content-oriented

math-markup.tex 6154 2006-10-03 11:31:31Z

24 2 Markup for Mathematical Knowledge

markup scheme that supports all the aspects and structure of mathematical
knowledge we have discussed in this section. Before we define the language
in the next chapter, we will briefly go over the consequences of adopting a
markup language like OMDoc as a standard for web-based mathematics.

omdoc-markup.tex 8481 2009-08-11 05:41:59Z kohlhase

3

OMDoc: Open Mathematical Documents

Based on the analysis of the structure inherent in mathematical knowledge
and existing content markup systems for mathematics we will now briefly in-
troduce basic design assumptions and the development history of the OMDoc
format, situate it, and discuss possible applications.

3.1 A Brief History of the OMDoc Format

OMDoc initially developed from the quest for a solution of the problem of
representing knowledge on the one hand and integrating external mathemat-
ical reasoning systems in the Ωmega project at Saarland University on the
other. Ωmega [SBB+02] is a large-scale proof development environment that
integrates various reasoning engines (automated theorem provers, decision
procedures, computer algebra systems) via knowledge-based proof planning
with the aim of creating a mathematical assistant system.

3.1.1 The Design Problem

One of the hard practical problems of building such systems is to represent,
provision, and manage the relevant (factual, tactic, and intuitive) knowledge
human mathematicians use in developing mathematical theories and proofs:
Knowledge-based reasoning systems use explicit representations of this knowl-
edge to automate the search for a proof, and before a system can be applied
to a mathematical domain it must be formalized, the proof tactics of this do-
main must be identified, and the intuitions of when to use which tactic must
be coaxed from practitioners. Ideally, as a valuable and expensive resource,
this knowledge would be shared between mathematical assistant systems to be
able to compare the relative strength of the systems and to enhance practical
coverage. This poses the problem that the knowledge must be represented at
a level that would accommodate the different systems’ representational quirks
and bridge between them.

omdoc-markup.tex 8481 2009-08-11 05:41:59Z kohlhase

26 3 Open Mathematical Documents

Developing an agent-oriented framework for distributed reasoning via re-
mote procedure calls to achieve system scalability (MathWeb-SB [FK99,
ZK02]; see Chapter 9 for an OMDoc-based reformulation) revealed that the
underlying problem in integrating mathematical systems is a semantic one:
all the reasoning systems make differing ontological assumptions that have
to be reconciled to achieve a correct (i.e. meaning-preserving) integration.
This integration problem is quite similar to the one at the knowledge level:
if the knowledge ingrained in the system design could be explicitly described,
then it would be possible to find applicable systems and deploy the necessary
(syntactic) and (semantic) bridges automatically.

The approaches and solutions offered by the automated reasoning com-
munities at that time were insular at best: They standardized character-level
syntax standardizing on first-order logic [SSY94, HKW96], or explored bilat-
eral system integrations overcoming deep ontological discrepancies between
the systems [FH97].

At the same time, (ca 1998) the Computer Algebra Community was grap-
pling with similar integration problems. The OpenMath standard that was
emerging shad solved the web-scalability problem in representing mathemat-
ical formulae by adopting the emerging XML framework as a syntactical
basis and providing structural markup with explicit context references as a
syntax-independent representation approach. First attempts by the author to
influence OpenMath standardization so that the format would allow mathe-
matical knowledge representation (i.e. the statements and context level) were
unsuccessful. The OpenMath community had intensively discussed similar
issues under the heading of “content dictionary inheritance” and “confor-
mance specification”, and had decided that they were too controversial for
standardization.

3.1.2 Design Principles

The start of the development of OMDoc as a content-based representation
format for mathematical knowledge was triggered by an e-mail by Alan Bundy
to the author in 1998, where he lamented the fact that one of the great hin-
drances of knowledge-based reasoning is the fact that formalizing mathemat-
ical knowledge is very time-consuming and that it is very hard for young
researchers to gain recognition for formalization work. This led to the idea of
developing a global repository of formalized mathematics, which would even-
tually allow peer-reviewed publication of formalized mathematical knowledge,
thus generating academic recognition for formalization work and eventually
lead to the much enlarged corpus of formalized mathematics that is necessary
for knowledge-based formal mathematical reasoning. Young researchers would
contribute formalizations of mathematical knowledge in the form of mathe-

omdoc-markup.tex 8481 2009-08-11 05:41:59Z kohlhase

3.1 A Brief History of the OMDoc Format 27

matical documents that would be both formal and thus machine-readable, as
well as human-readable, so that humans could find and understand them1.

This idea brought the final ingredient to the design principles: in a nutshell,
the OMDoc format was to

1. be Ontologically uncommitted (like the OpenMath format), so that it
could serve as a integration format for mathematical software systems.

2. provide a representation format for mathematical documents that com-
bined formal and informal views of all the mathematical knowledge con-
tained in them.

3. be based on sound logic/representational principles (as not to embarrass
the author in front of his colleagues from automated reasoning)

4. be based on structural/content markup to guarantee both 1.) and 2.).

3.1.3 Development History

Version 1.0 of the OMDoc format was released on November 1st 2000 to
give users a stable interface to base their documents and systems on. It was
adopted by various projects in automated deduction, algebraic specification,
and computer-supported education. The experience from these projects un-
covered a multitude of small deficiencies and extension possibilities of the
format, that have been subsequently discussed in the OMDoc community.

OMDoc1.1 was released on December 29th 2001 as an attempt to roll
the uncontroversial and non-disruptive part of the extensions and corrections
into a consistent language format. The changes to version 1.0 were largely
conservative, adding optional attributes or child elements. Nevertheless, some
non-conservative changes were introduced, but only to less used parts of the
format or in order to remedy design flaws and inconsistencies of version 1.0.

OMDoc1.2 is the mature version in the OMDoc1 series of specifications.
It contains almost no large-scale changes to the document format, except that
Content-MathML is now allowed as a representation for mathematical ob-
jects. But many of the representational features have been fine-tuned and
brought up to date with the maturing XML technology (e.g. ID attributes
now follow the XML ID specification [MVW05], and the Dublin Core ele-
ments follow the official syntax [DUB03a]). The main development is that the
OMDoc specification, the DTD, and schema are split into a system of interde-
pendent modules that support independent development of certain language
aspects and simpler specification and deployment of sub-languages. Version

1 Here the strong influence of the Mizar project under Andrzej Trybulec must be
acknowledged, at that time, the project had already realized these two goals. They
had even established the “Journal of Formalized Mathematics”, where LATEX ar-
ticles were generated from the automatically verified Mizar source. However,
the Mizar mathematical language [Miz06] used a human-oriented syntax that
defied outside parsing and web-integration, had a tightly integrated largely un-
documented sort system, and made very strong ontological commitments.

omdoc-markup.tex 8481 2009-08-11 05:41:59Z kohlhase

28 3 Open Mathematical Documents

1.2 of OMDoc freezes the development so that version 2 can be started off
on the modules.

3.2 Three Levels of Markup

To achieve content and context markup for mathematical knowledge, OMDoc
uses three levels of modeling corresponding to the concerns raised previously.
We have visualized this architecture in Figure 3.1.

Level of Representation OMDoc Example

Theory Level : Development Graph

• Inheritance via symbol-mapping
• Theory inclusion via proof-

obligations
• Local (one-step) vs. global links

NatOrdList
cons, nil,
0, s, N, <

NatOrd
0, s, N, <

TOSet
Elem,<

OrdList
cons, nil,
Elem,<

imports imports

theory-inclusion

Actualization

imports

induces

Statement Level :

• Axiom, definition, theorem,
proof, example,. . .

• Structure explicit in statement
forms and references

<definition for=”plus” type=”recursive”>
<CMP>Addition is defined by

recursion on the second argument
</CMP>
<FMP>X + 0 = 0</FMP>
<FMP>X + s(Y) = s(X + Y)</FMP>
</definition>

Object Level : OpenMath/MathML

• Objects as logical formulae
• Semantics by pointing to theory

level

<OMA>
<OMS cd=”arith1” name=”plus”/>
<OMV name=”X”/>
<OMS cd=”nat” name=”zero”/>
</OMA>

Fig. 3.1. OMDoc in a Nutshell (the Three Levels of Modeling)

Building on the discussion in Chapter 2 we distinguish three levels of
representation in OMDoc

Mathematical Theories (see Section 2.1) At this level, OMDoc supplies orig-
inal markup for clustering sets of statements into theories, and for spec-
ifying relations between theories by morphisms. By using this scheme,
mathematical knowledge can be structured into reusable chunks. Theo-
ries also serve as the primary notion of context in OMDoc, they are the
natural target for the context aspect of formula and statement markup.

Mathematical Statements (see Section 2.2) OMDoc provides original mark-
up infrastructure for making the structure of mathematical statements
explicit. Again, we have content and context markup aspects. For instance
the definition in the right hand side of the second row of Figure 3.1 con-
tains an informal description of the definition as a first child and a formal

omdoc-markup.tex 8481 2009-08-11 05:41:59Z kohlhase

3.3 Situating the OMDoc Format 29

description in the two recursive equations in the second and third children
supported by the type attribute, which states that this is a recursive def-
inition. The context markup in this example is simple: it states that this
piece of markup pertains to a symbol declaration for the symbol plus in
the current theory (presumably the theory arith1).

Mathematical Formulae (see Section 2.3) At the level of mathematical for-
mulae, OMDoc uses the established standards OpenMath [BCC+04]
and Content-MathML [ABC+03a]. These provide content markup for
the structure of mathematical formulae and context markup in the form
of URI references in the symbol representations (see Chapter 13 for an
introduction).

All levels are augmented by markup for various auxiliary information that
is present in mathematical documents, e.g. notation declarations, exercises,
experimental data, program code, etc.

3.3 Situating the OMDoc Format

The space of representation languages for mathematical knowledge reaches
from the input languages of computer algebra systems (CAS) to presentation
markup languages for mathematical vernacular like TEX/LATEX. We have or-
ganized some of the paradigmatic examples in a diagram mapping coverage
(which kinds of mathematical knowledge can be expressed) against machine
support (which services the respective software system can offer) in Figure 3.2.

On the left hand side we see CAS like Mathematica®[Wol02] or Maple™
[CGG+92] that are relatively restricted in the mathematical objects — they
can deal with polynomials, group representations, differential equations only,
but in this domain they can offer sophisticated services like equation solving,
factorization, etc. More to the right we see systems like automated theorem
provers, whose language — usually first-order logic — covers much more of
mathematics, but that cannot perform computational services2 like the CAS
do.

In the lower right hand corner, we find languages like “mathematical ver-
nacular”, which is just the everyday mathematical language. Here coverage is
essentially universal: we can use this language to write international treaties,
math books, and love letters; but machine support is minimal, except for type-
setting systems for mathematical formulae like TEX, or keyword search in the
natural language part.

The distribution of the systems clusters around the diagonal stretching
from low-coverage, high-support systems like CAS to wide-coverage, low-
support natural language systems. This suggests that there is a trade-off

2 Of course in principle, the systems could, since computation and theorem proving
are inter-reducible, but in practice theorem provers get lost in the search spaces
induced by computational tasks.

omdoc-markup.tex 8481 2009-08-11 05:41:59Z kohlhase

30 3 Open Mathematical Documents

Math
Vernacular

human
interaction

Logical Frameworks

OMDoc

F.O. Logic
Logics
Description

wants this

Holy
Grail

Nobody

CAS

solving

model
comp.

Proof
search

Coverage

M
ac

hi
ne

 S
up

po
rt

MKM
(semantics)

(content/context)

checking
proof

Fig. 3.2. Situating Content Markup: Math. Knowledge Management

between coverage and machine support. All of the representation languages
occupy legitimate places in the space of representation languages, trying to
find sweet-spots along this coverage/support trade-off. OMDoc tries to oc-
cupy the “content markup” position. To understand this position better, let us
contrast it to the “semantic markup” position immediately to the left of and
above it. This is an important distinction, since it marks the border between
formal and informal mathematics.

We define a semantic markup format (aka formal system) as a rep-
resentation system that has a way of specifying when a formula is a conse-
quence of another. Many semantic markup formats express the consequence
relation by means of a formal calculus, which allows the mechanization of
proof checking or proof verification. It is a widely held belief in mathematics,
that all mathematical knowledge can in principle be expressed in a formal
system, and various systems have been proposed and applied to specific areas
of mathematics. The advantage of having a well-defined consequence relation
(and proof-checking) has to be paid for by committing to a particular logical
system.

Content markup does not commit to a particular consequence relation,
and concentrates on providing services based on the marked up structure
of the content and the context. Consider for instance the logical formula in
Listing 2.1, where the OpenMath representation does not specify the full
consequence relation (or the formal system) for the formula. It does some-

omdoc-markup.tex 8481 2009-08-11 05:41:59Z kohlhase

3.4 The Future: An Active Web of (Mathematical) Knowledge 31

thing less but still useful, which is what we could call semantics by pointing :
The symbols used in the representation are identified by a pointer (the URI
jointly specified in the cd and name attributes) to a defining document (in
this case an OpenMath content dictionary). Note that URI equality is a suf-
ficient condition for two symbols to be equal, but not a necessary condition:
Two symbols can be semantically equal without pointing to the same docu-
ment, e.g. if the two defining documents are semantically marked up and the
definitions are semantic consequences of each other.

In this sense, content markup offers a more generic markup service (for all
formal systems; we do not have to commit ourselves) at the cost of being less
precise (we for instance miss out on some symbol equalities). Thus, content
markup is placed to the lower right of semantic markup in Figure 3.2. Note
however, that content markup can easily be turned into semantic markup by
adding a consequence relation, e.g. by pointing to defining documents that
are marked up semantically. Unlike OpenMath and Content-MathML, the
OMDoc format straddles the content/semantics border by closing the loop
and providing a content markup format for both formulae and the defining
documents. In particular, an OMDoc document is semantic if all the docu-
ments it references are.

As a consequence, OMDoc can serve as a migration format from for-
mal to informal mathematics (and thus from representations that for human
consumption to such that can be supported by machines). A document collec-
tion can be marked for content and context structure, making the structures
and context references explicit in a first pass. Note that this pass may in-
volve creating additional documents or identifying existing documents that
serve as targets for the context references so that the document collection is
self-contained. In a second (and possible semi-automatic) step, we can turn
this self-contained document collection into a formal representation (semantic
markup) by committing on consequence relations and adding the necessary
detail to the referenced documents.

3.4 The Future: An Active Web of (Mathematical)
Knowledge

It is a crucial – if relatively obvious – insight that true cooperation of mathe-
matical services is only feasible if they have access to a joint corpus of math-
ematical knowledge. Moreover, having such a corpus would allow to develop
added-value services like

• Cut and paste on the level of computation (take the output from a web
search engine and paste it into a computer algebra system),

• Automatically proof checking published proofs,
• Math explanation (e.g. specializing a proof to an example that simplifies

the proof in this special case),

omdoc-markup.tex 8481 2009-08-11 05:41:59Z kohlhase

32 3 Open Mathematical Documents

• Semantic search for mathematical concepts (rather than keywords),
• Data mining for representation theorems (are there unnoticed groups out

there?),
• Classification: Given a concrete mathematical structure, is there a general

theory for it?

As the online mathematical knowledge is presently only machine-readable,
but not machine-understandable, all of these services can currently only be
performed by humans, limiting the accessibility and thus the potential value of
the information. Services like this will transform the now passive and human-
centered fragment of the Internet that deals with mathematical content, into
an active (supported by semantic services) web of mathematical knowledge.

This promise of activating a web of knowledge is not limited to mathe-
matics: the task of transforming the current presentation-oriented world-wide
web into a “Semantic Web” [BL98] has been identified as one of the main
challenges by the world W3C. With the OMDoc format we pursue an alter-
native vision of a ‘Semantic Web’ for Mathematics. Like Tim Berners-Lee’s
vision we aim to make the Web (here mathematical knowledge) machine-
understandable instead of merely machine-readable. However, instead of a
top-down metadata-driven approach, which tries to approximate the content
of documents by linking them to web ontologies (expressed in terminologic
logics), we explore a bottom-up approach and focus on making explicit the
intrinsic structure of the underlying scientific knowledge. A connection of doc-
uments to web ontologies is still possible, but a secondary effect.

The direct applications of OMDoc (apart from the general effect towards a
Semantic Web) are not confined to mathematics proper either. The MathML
working group in the W3C has led the way in many web technologies (present-
ing mathematics on the web taxes the current web technology to its limits);
the endorsement of the MathML standard by the W3 Committee is an ex-
plicit testimony to this. We expect that the effort of creating an infrastructure
for digital mathematical libraries will play a similar role, since mathematical
knowledge is the most rigorous and condensed form of knowledge and will
therefore pinpoint the problems and possibilities of the semantic web.

All modern sciences have a strongly mathematicised core and will benefit.
The real market and application area for the techniques developed in this
project lies with high-tech and engineering corporations that rely on huge
formula databases. Currently, both the content markup as well as the added-
value services alluded to above are very underdeveloped, limiting the useful-
ness of vital knowledge. The content-markup aspect needed for mining this
information treasure is exactly what we are developing in OMDoc.

partprimer.tex 8011 2008-09-07 19:43:48Z kohlhase

Part II

An OMDoc Primer

This part of the book provides an easily approachable description of the
OMDoc format by way of paradigmatic examples of OMDoc documents.
The primer should be used alongside the formal descriptions of the language
contained in Part III.

The intended audience for the primer are users who only need a casual
exposure to the format, or authors that have a specific text category in mind.
The examples presented here also serve as specifications of “best practice”, to
give the readers an intuition for how to encode various kinds of mathematical
knowledge.

Each chapter of the OMDoc primer deals with a different category of
mathematical document and introduces new features of the OMDoc format
in the context of concrete examples.

Chapter 4: Mathematical Textbooks and Articles

discusses the markup process for an informal but rigorous mathematical texts.
We will use a fragment of Bourbaki’s “Algebra” as an example. The devel-
opment marks up the content in four steps, from the document structure to
a full formalization of the content that could be used by automated theorem
provers. The first page of Bourbaki’s “Algebra” serves as an example of the

partprimer.tex 8011 2008-09-07 19:43:48Z kohlhase

34

treatment of a rigorous presentation of pure mathematics, as it can be found
in textbooks and articles.

Chapter 5 OpenMath Content Dictionaries

transforms an OpenMath content dictionary into an OMDoc document.
OpenMath content dictionaries are semi-formal documents that serve as ref-
erences for mathematical symbols in OpenMath encoded formulae. As of
OpenMath2, OMDoc is an admissible OpenMath content dictionary for-
mat. They are a good example for mathematical glossaries, and background
references, both formal and informal.

Chapter 6 Structured and Parametrized Theories

shows the power of theory markup in OMDoc for theory reuse and modular
specification. The example builds a theory of ordered lists of natural numbers
from a generic theory of ordered lists and the theory of natural numbers which
acts as a parameter in the actualization process.

Chapter 7 A Development Graph for Elementary Algebra

extends the range of theory-level structure by specifying the elementary al-
gebraic hierarchy. The rich fabric of relations between these theories is made
explicit in the form of theory morphisms, and put to use for proof reuse.

Chapter 8 Courseware and the Narrative/Content Distinction

covers markup for a fragment of a computer science course in the OMDoc
format, dwelling on the difference between the narrative structure of the course
and the background knowledge. Course materials like slides or writings on
blackboards are usually much more informal than textbook presentations of
mathematics. They also openly structure materials by didactic criteria and
leave out important parts of the rigorous development, which the student is
required to pick up from background materials like textbooks or the teacher’s
recitation.

Chapter 9 Communication with and between Mathematical Software Systems

uses an OMDoc fragment as content for communication protocols between
mathematical software systems on the Internet. Since the communicating par-
ties in this situation are machines, OMDoc fragments are embedded into
other XML markup that serves as a protocol for the distribution layer.

Together these examples cover many of the mathematical documents in-
volved in communicating mathematics. As the first two chapters build upon
each other and introduce features of the OMDoc format, they should be read
in succession. The remaining three chapters build on these, but are largely in-
dependent.

partprimer.tex 8011 2008-09-07 19:43:48Z kohlhase

35

To keep the presentation of the examples readable, we will only present
salient parts of the OMDoc representations in the discussion. The full text
of the examples can be accessed at https://svn.omdoc/repos/omdoc/doc/

spec/examples/spec.

https://svn.omdoc/repos/omdoc/doc/spec/examples/spec
https://svn.omdoc/repos/omdoc/doc/spec/examples/spec

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

4

Mathematical Textbooks and Articles

In this chapter we will work an example of a stepwise formalization of math-
ematical knowledge. This is the task of e.g. an editor of a mathematical text-
book preparing it for web-based publication. We will use an informal, but
rigorous text: a fragment of Bourbaki’s Algebra [Bou74], which we show in
Figure 4.1. We will mark it up in four stages, discussing the relevant OMDoc
elements and the design decisions in the OMDoc format as we go along.
Even though the text was actually written prior to the availability of the
TEX/LATEX system, we will take a LATEX representation as the starting point
of our markup experiment, since this is the prevalent source markup format
in mathematics nowadays.

Section 4.1 discusses the minimal markup that is needed to turn an ar-
bitrary document into a valid OMDoc document — albeit one, where the
markup is worthless of course. It discusses the necessary XML infrastructure
and adds some meta-data to be used e.g. for document retrieval or archiving
purposes.

In Section 4.2 we mark up the top-level structure of the text and classify
the paragraphs by their category as mathematical statements. This level of
markup already allows us to annotate and extract some meta-data and would
allow applications to slice the text into individual units, store it in databases
like MBase (see Section 26.4), or the In2Math knowledge base [Dah01, BB01],
or assemble the text slices into individualized books e.g. covering only a sub-
topic of the original work. However, all of the text itself, still contains the
LATEX markup for formulae, which is readable only by experienced humans,
and is fixed in notation. Based on the segmentation and meta-data, suit-
able systems like the ActiveMath system described in Section 26.8 can re-
assemble the text in different orders.

In Section 4.3, we will map all mathematical objects in the text into Open-
Math or Content-MathML objects. To do this, we have to decide which
symbols we want to use for marking up the formulae, and how to structure
the theories involved. This will not only give us the ability to generate special-
ized and user-adaptive notation for them (see Chapter 25), but also to copy

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

38 4 Textbooks and Articles

1. LAWS OF COMPOSITION

Definition 1. Let E be a set. A mapping of E×E is called a law of composition
on E. The value f(x, y) of f for an ordered pair (x, y) ∈ E × E is called the
composition of x and y under this law. A set with a law of composition is called
a magma.

The composition of x and y is usually denoted by writing x and y in a definite
order and separating them by a characteristic symbol of the law in question (a
symbol which it may be agreed to omit). Among the symbols most often used
are + and ·, the usual convention being to omit the latter if desired; with these
symbols the composition of x and y is written respectively as x+ y, x.y or xy.
A law denoted by the symbol + is usually called addition (the composition
x+ y being called the sum of x and y) and we say that it is written additively ;
a law denoted by the symbol . is usually called multiplication (the composition
x.y = xy being called the product for x and y) and we say that it is written
multiplicatively .
In the general arguments of paragraphs 1 to 3 of this chapter we shall generally
use the symbols > and ⊥ to denote arbitrary laws of composition.
By an abuse of language, a mapping of a subset of E ×E into E is sometimes
called a law of composition not everywhere defined on E.

Examples. (1) The mappings (X,Y) 7→ X ∪ Y and (X,Y) 7→ X ∩ Y are
laws of composition on the set of subsets of a set E.

(2) On the set N of natural numbers addition, multiplication, and expo-
nentiation are laws of composition (the compositions of x ∈ N and y ∈ N
under these laws being denoted respectively by x+ y, xy, or x.y and xy) (Set
Theory, III, §3, no. 4).

(3) Let E be a set; the mapping (X,Y) 7→ X ◦ Y is a law of composition
on the set of subsets of E × E (Set Theory , II, §3, no. 3, Definition 6); the
mapping (f, g) 7→ f ◦ g is a law of composition on the set of mappings from E
into E (Set Theory , II, §5, no. 2).

Fig. 4.1. A fragment from Bourbaki’s algebra [Bou74]

and paste them to symbolic math software systems. Furthermore, an assembly
into texts can now be guided by the semantic theory structure, not only by
the mathematical text categories or meta-data.

Finally, in Section 4.4 we will fully formalize the mathematical knowl-
edge. This involves a transformation of the mathematical vernacular in the
statements into some logical formalism. The main benefit of this is that we
can verify the mathematical contents in theorem proving environments like
NuPrL [CAB+86], Hol [GM93], Mizar [Rud92] and OMEGA [BCF+97].

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

4.1 Minimal OMDoc Markup 39

4.1 Minimal OMDoc Markup

It actually takes very little change to an existing document to make it a valid
OMDoc document. We only need to wrap the text into the appropriate XML
document tags. In Listing 4.1, we have done this and also added meta-data.
Actually, since the metadata and the document type declaration are optional
in OMDoc, just wrapping the original text with lines 1, 4, 7, 31, 32, and 36
to 38 is the simplest way to create an OMDoc document.

Listing 4.1. The outer part of the document

<?xml version=”1.0” encoding=”utf−8”?>
<!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc Basic V1.2//EN”

”http://omdoc.org/dtd/omdoc−basic.dtd” []>

5 <omdoc xml:id=”algebra1.omdoc” version=”1.2” modules=”@basic”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:cc=”http://creativecommons.org/ns”
xmlns=”http://www.mathweb.org/omdoc”>

<metadata>
10 <dc:title>Laws of Composition</dc:title>

<dc:creator role=”trl”>Michael Kohlhase</dc:creator>
<dc:date action=”created”>2002−01−03T07:03:00</dc:date>
<dc:date action=”updated”>2002−11−23T18:17:00</dc:date>
<dc:description>

15 A first migration step for a fragment of Bourbaki’s Algebra
</dc:description>
<dc:source>

Nicolas Bourbaki, Algebra, Springer Verlag 1989, ISBN 0−387−19373−1
</dc:source>

20 <dc:type>Text</dc:type>
<dc:format>application/omdoc+xml</dc:format>
<dc:rights>Copyright (c) 2005 Michael Kohlhase</dc:rights>
<cc:license>
<cc:permissions reproduction=”permitted” distribution=”permitted”

25 derivative works=”permitted”/>
<cc:prohibitions commercial use=”permitted”/>
<cc:requirements notice=”required” copyleft=”required” attribution=”required”/>

</cc:license>
</metadata>

30

<omtext xml:id=”all”>
<CMP xml:lang=”en”>
{\sc Definition 1.} Let E be a set. A mapping E × E is called a law of
. . .

35 mappings from E into E ({\emph{Set Theory}}, II, §5, no. 2).
</CMP>

</omtext>
</omdoc>

We will now explain the general features of the OMDoc representation in
detail by line numbers. The references point to the relevant sections in the
OMDoc specification; details and normative rules for using the elements in
questions can be found there.

We will now explain the general features of the OMDoc representation
in detail by line numbers. The references point to the relevant sections in the
OMDoc specification; details and normative rules for using the elements in
questions can be found there.

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

40 4 Textbooks and Articles

line Description ref.

1 This document is an XML 1.0 file that is encoded in the
UTF-8 encoding.

2,3 The parser is told to use a document type definition for val-
idation. The string omdoc specifies the name of the root el-
ement, the identifier PUBLIC specifies that the DTD (we use
the “OMDoc basic” DTD; see Subsection 22.3.1), which can
be identified by the public identifier in the first string and
looked up in an XML catalog or (if that fails) can be found
at the URL specified in the second string.
A DTD declaration is not strictly needed for an OMDoc doc-
ument, but is recommended, since the DTD supplies default
values for some attributes.

24.1
p. 242

4 In general, XML files can contain as much whitespace as they
want between elements, here we have used it for structuring
the document.

5 Start tag of the root element of the document. It declares the
version (OMDoc1.2) via the version, and an identifier of the
document using the xml:id attribute. The optional modules
specifies the sub-language used in this document. This is used
when no DTD is present (see Subsection 22.3.1).

11.1
p. 96

6,7 the namespace prefix declarations for the Dublin Core, Cre-
ative Commons, and OpenMath namespaces. They declare
the prefixes dc:, cc:, and om:, and bind them to the speci-
fied URIs. We will need the OpenMath namespace only in
the third markup step described in Section 4.3, but spurious
namespace prefix declarations are not a problem in the XML
world.

10
p. 89

8 the namespace declaration for the document; if not prefixed,
all elements live in the OMDoc namespace.

10.1
p. 89

9–29 The metadata for the whole document in Dublin Core format 11.2
p. 98

10 The title of the document 12.1
p. 104

11 The document creator, here in the role of a translator 12.2
p. 107

12 The date and time of first creation of the document in ISO
8601 norm format.

12.1
p. 105

13 The date and time of the last update to the document in ISO
8601 norm format.

12.1
p. 105

14–16 A short description of the contents of the document 12.1
p. 105

17–19 Here we acknowledge that the OMDoc document is just a
translation from an earlier work.

12.1
p. 106

20 The type of the document, this can be Dataset (un-ordered
mathematical knowledge) or Text (arranged for human con-
sumption).

12.1
p. 106

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

4.2 Structure and Statements 41

21 The format/MIME type [FB96] of the document, for OM-
Doc, this is application/omdoc+xml.

12.1
p. 106

22 The copyright resides with the creator of the OMDoc docu-
ment

12.1
p. 106

23–28 The creator licenses the document to the world under cer-
tain conditions as specified in the Creative Commons license
specified in this element.

12.3
p. 108

24,25 The cc:permissions element gives the world the permission
to reproduce and distribute it freely. Furthermore the license
grants the public the right to make derivative works under
certain conditions.

12.3
p. 109

26 The cc:prohibitions can be used to prohibit certain uses of
the document, but this one is unencumbered.

12.3
p. 109

27 The cc:requirements states conditions under which the li-
cense is granted. In our case the licensee is required to keep
the copyright notice and license notices intact during distri-
bution, to give credit to the copyright holder, and that any
derivative works derived from this document must be licensed
under the same terms as this document (the copyleft clause).

12.3
p. 109

31-37 The omtext element is used to mark up text fragments. Here,
we have simply used a single omtext to classify the whole text
in the fragment as unspecific “text”.

14.3
p. 133

32-36 The CMP element holds the actual text in a multilingual group.
Its xml:lang specifies the language. If the document is used
with a DTD or an XML schema (as we are) this attribute
is redundant, since the default value given by the DTD or
schema is en. More keywords in other languages can be given
by adding more CMP elements.

14.1
p. 130

33–35 The text of the LATEX fragment we are migrating. For simplic-
ity we do not change the text, and leave that to later stages
of the migration.

38 The closing tag of the root omdoc element. There may not be
text after this in the file.

11.1
p. 96

4.2 Marking up the text structure and statements

In the next step, we analyze and mark up the structure of the text of the
further, and embed the paragraphs into markup for mathematical statements
or text segments. Instead of lines [32–36]1r in Listing 4.1, we will now have the Err(1)
representation in Listing 4.2.

Listing 4.2. The segmented text

<omtext xml:id=”magma.def” type=”definition”>
2 <CMP>Let <legacy format=”TeX”>E</legacy> be a set . . . called a magma.</CMP>

</omtext>

1 Erratum! wrong reference (original text was: “19–25”)

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

42 4 Textbooks and Articles

<omtext xml:id=”t1”>
<CMP>The composition of <legacy format=”TeX”>x</legacy> . . . multiplicatively.</CMP>

7 </omtext>
<omtext xml:id=”t2”>
<CMP>In the general . . . composition.</CMP>

</omtext>
<omtext xml:id=”t3”>

12 <CMP>By an abuse . . . on <legacy format=”TeX”>E.</legacy></CMP>
</omtext>

<omgroup xml:id=”magma−ex” type=”enumeration”>
<metadata><dc:title>Examples</dc:title></metadata>

17

<omtext type=”example” xml:id=”e1.magma”>
<CMP>

The mappings <legacy format=”TeX”>(X,Y)</legacy>
. . . subsets of a set <legacy format=”TeX”>E</legacy>.

22 </CMP>
</omtext>
<omtext type=”example” xml:id=”e2.magma”>
<CMP>

On the set <legacy format=”TeX”>N</legacy> . . . III, §3, no. 4).
27 </CMP>

</omtext>
<omtext type=”example” xml:id=”e3.magma”>
<CMP>

Let <legacy format=”TeX”>E</legacy> be a set; . . . II, §5, no. 2).
32 </CMP>

</omtext>
</omgroup>

In summary, we have sliced the text into omtext fragments and individu-
ally classified them by their mathematical role. The formulae inside have been
encapsulated into legacy elements that specify their format for further pro-
cessing. The higher-level structure has been captured in OMDoc grouping
elements and the document as well as some of the slices have been annotated
by metadata.BErr(2)

line Description ref.

1 The omtext element classifies the text fragment as a
definition, other types for mathematical statements include
axiom, example, theorem, and lemma. Note that the number-
ing of the original text is lost, but can be re-created in the text
presentation process. The optional xml:id attribute specifies
a document-unique identifier that can be used for reference
later.

14.3
p. 133

2 A multilingual group of CMP elements that hold the text (in
our case, there is only the English default). Here the TEX
formulae have been marked up with legacy elements charac-
terizing them as such. This might simplify a later automatic
transformation to OpenMath or Content-MathML.

13.5
p. 127

4–13 We have classified every paragraph in the original as a sep-
arate omtext element, which does not carry a type since it
does not fit any other mathematical category at the moment.

14.3
p. 133

2 Erratum: wrong cross-reference for “line 16”

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

4.3 Marking up the Formulae 43

15 The three examples in the original in Figure 4.1 are grouped
into an enumeration. We use the OMDoc omgroup element
for this. The optional attribute xml:id can be used for ref-
erencing later. We have chosen enumeration for the type at-
tribute to specify the numbering of the examples in the orig-
inal.

11.4
p. 100

16 We can use the metadata of the omgroup element to accom-
modate the title “Examples” in the original. We could enter
more metadata at this level.

12.1
p. 104

18 The type attribute of this omtext element classifies this text
fragment as an example.

14.3
p. 133

EErr(2)

4.3 Marking up the Formulae

After we have marked up the top-level structure of the text to expose the
content, the next step will be to mark up the formulae in the text to content
mathematical form. Up to now, the formulae were still in TEX notation, which
can be read by TEX/LATEX for presentation to the human user, but not used by
symbolic mathematics software. For this purpose, we will re-represent the for-
mulae as OpenMath objects or Content-MathML, making their functional
structure explicit.

So let us start turning the TEX formulae in the text into OpenMath
objects. Here we use the hypothetical mbc.mathweb.org as repository for
theory collections. BErr(3)

BErr(4)

BErr(5)
Listing 4.3. The definition of a magma with OpenMath objects

1 <!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc CD V1.2//EN”
”http://omdoc.org/dtd/omdoc−cd.dtd”

[<!ENTITY % om.prefixed ”INCLUDE”>]>

<theory xml:id=”magmas”>
6 <imports from=”background.omdoc#products”/>

<imports from=”http://mbc.mathweb.org/omstd/relation1.omdoc#relation1”/>

<symbol name=”magma”>
<metadata><dc:description>Magma</dc:description></metadata>

11 </symbol>
<symbol name=”law of composition”/>

<definition xml:id=”magma.def” for=”magma law of composition”>
<CMP>

16 Let <om:OMOBJ><om:OMV name=”E”/></om:OMOBJ> be a set. A mapping of
<om:OMOBJ>
<om:OMA><om:OMS cd=”products” name=”Cartesian−product”/>
<om:OMV name=”E”/><om:OMV name=”E”/>

</om:OMA>

3 Erratum: for attribute on definition should be of type NCNames
4 Erratum: should be ”definiendum” not ”definiens”
5 Erratum: should be definiendum-applied not definiens-applied

mbc.mathweb.org

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

44 4 Textbooks and Articles

21 </om:OMOBJ> is called a
<term cd=”magmas” name=”magma” role=”definiendum”>law of composition</term>
on <om:OMOBJ><om:OMV name=”E”/></om:OMOBJ>. The value
<om:OMOBJ>
<om:OMA><om:OMV name=”f”/>

26 <om:OMV name=”x”/><om:OMV name=”y”/>
</om:OMA>

</om:OMOBJ>
of <om:OMOBJ><om:OMV name=”f”/></om:OMOBJ> for an ordered pair
<om:OMOBJ>

31 <om:OMA><om:OMS cd=”sets” name=”in”/>
<om:OMA><om:OMS cd=”products” name=”pair”/>
<om:OMV name=”x”/><om:OMV name=”y”/>

</om:OMA>
<om:OMA><om:OMS cd=”products” name=”Cartesian−product”/>

36 <om:OMV name=”E”/><om:OMV name=”E”/>
</om:OMA>

</om:OMA>
</om:OMOBJ> is called the
<term cd=”magmas” name=”law of composition”

41 role=”definiendum−applied”>composition</term>
of <om:OMOBJ><om:OMV name=”x”/></om:OMOBJ> and
<om:OMOBJ><om:OMV name=”y”/></om:OMOBJ> under this law.
A set with a law of composition is called a
<term cd=”magmas” name=”magma” role=”definiendum”>magma</term>.

46 </CMP>
</definition>

. . .
</theory>
. . .

EErr(5)

EErr(4)

EErr(3)

Of course all the other mathematical statements in the documents have to be
treated in the same way.

line Description ref.

1–4 The omdoc-basic document type definition is no longer suf-
ficient for our purposes, since we introduce new symbols that
can be used in other documents. The DTD for OMDoc con-
tent dictionaries (see Chapter 5), which allows this. Corre-
spondingly, we would specify the value cd for the attribute
module.
The part in line 4 is the internal subset of the DTD, which
sets a parameter entity for the modularized DTD to instruct
it to accept OpenMath elements in their namespace prefixed
form. Of course a suitable namespace prefix declaration is
needed as well.

22.3.2
p. 232

5 The start tag of a theory. We need this, since symbols and
definitions can only appear inside theory elements.

15.6
p. 158

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

4.3 Marking up the Formulae 45

6,7 We need to import the theory products to be able to use sym-
bols from it in the definition below. The value of the from is
a relative URI reference to a theory element much like the
one in line 5. The other imports element imports the theory
relation1 from the OpenMath standard content dictionar-
ies1. Note that we do not need to import the theory sets

here, since this is already imported by the theory products.

15.6.1
p. 159

9–11 A symbol declaration: For every definition, OMDoc requires
the declaration of one or more symbol elements for the con-
cept that is to be defined. The name attribute is used to iden-
tify it. The dc:description element allows to supply a mul-
tilingual (via the xml:lang attribute) group of keywords for
the declared symbol

15.2.1
p. 144

12 Upon closer inspection it turns out that the definition in List-
ing 4.3 actually defines three concepts: “law of composition”,
“composition”, and “magma”. Note that “composition” is
just another name for the value under the law of composi-
tion, therefore we do not need to declare a symbol for this.
Thus we only declare one for “law of composition”.

15.2.1
p. 144

14 A definition: the definition element carries a name attribute
for reference within the theory. We need to reference the two
symbols defined here in the for attribute of the definition

element; it takes a whitespace-separated list of name at-
tributes of symbol elements in the same theory as values.

15.2.4
p.148

16 We use an OpenMath object for the set E. It is an om:OMOBJ

element with an om:OMV daughter, whose name attribute spec-
ifies the object to be a variable with name E. We have chosen
to represent the set E as a variable instead of a constant (via
an om:OMS element) in the theory, since it seems to be local to
the definition. We will discuss this further in the next section,
where we talk about formalization.

13.1.1
p. 114

17–21 This om:OMOBJ represents the Cartesian product E×E of the
set E with itself. It is an application (via an om:OMA element)
of the symbol for the binary Cartesian product relation to E.

13.1.1
p. 114

18 The symbol for the Cartesian product constructor is repre-
sented as an om:OMS element. The cd attribute specifies the
theory that defines the symbol, and the name points to the
symbol element in it that declares this symbol. The value of
the cd attribute is a theory identifier. Note that this theory
has to be imported into the current theory, to be legally used.

13.1.1
p. 114

22 We use the term element to characterize the defined terms in
the text of the definition. Its role attribute can used to mark
the text fragment as a definiens, i.e. a concept that is under
definition.

14.5
p. 136

1 The originals are available at http://www.openmath.org/cd; see Chapter 5 for a
discussion of the differences of the original OpenMath format and the OMDoc
format used here.

http://www.openmath.org/cd

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

46 4 Textbooks and Articles

24–28 This object stands for f(x, y)

30–39 This object represents (x, y) ∈ E×E. Note that we make use
of the symbol for the elementhood relation from the Open-
Math core content dictionary set1 and of the pairconstructor
from the theory of products from the Bourbaki collection
there.

The rest of the representation in Listing 4.3 is analogous. Thus we have treated
the first definition in Figure 4.1. The next two paragraphs contain notation
conventions that help the human reader to understand the text. They are
annotated as omtext elements. The third paragraph is really a definition (even
if the wording is a bit bashful), so we mark it up as one in the style of
Listing 4.3 above.

Finally, we come to the examples at the end of our fragment. In the markup
shown in Listing 4.4 we have decided to construct a new theory for these
examples since the examples use concepts and symbols that are independent of
the theory of magmas. Otherwise, we would have to add the imports element
to the theory in Listing 4.3, which would have mis-represented the actual
dependencies. Note that the new theory has to import the theory magmas

together with the theories from which examples are taken, so their symbols
can be used in the examples.

Listing 4.4. Examples for magmas with OpenMath objects

<theory xml:id=”magmas−examples”>
<metadata><dc:title>Examples</dc:title></metadata>

<imports from=”http://mbc.mathweb.org/omstd/fns1.omdoc##fns1”/>
5 <imports from=”background.omdoc#nat”/>

<imports from=”background.omdoc#functions”/>
<imports from=”#magmas”/>

<omgroup xml:id=”magma−ex” type=”enumeration”>
10 <metadata><dc:title>Examples</dc:title></metadata>

<example xml:id=”e1.magma” for=”law of composition” type=”for”>
<CMP>The mappings
<om:OMOBJ>

15 <om:OMBIND><om:OMS cd=”fns1” name=”lambda”/>
<om:OMBVAR>
<om:OMV name=”X”/><om:OMV name=”Y”/>

</om:OMBVAR>
<om:OMA><om:OMS cd=”functions” name=”pattern−defined”/>

20 <om:OMA><om:OMS cd=”products” name=”pair”/>
<om:OMV name=”X”/>
<om:OMV name=”Y”/>

</om:OMA>
<om:OMA><om:OMS cd=”sets” name=”union”/>

25 <om:OMV name=”X”/>
<om:OMV name=”Y”/>

</om:OMA>
</om:OMA>

</om:OMBIND>
30 </om:OMOBJ> and

<om:OMOBJ>
<om:OMBIND><om:OMS cd=”fns1” name=”lambda”/>

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

4.3 Marking up the Formulae 47

<om:OMBVAR>
<om:OMV name=”X”/><om:OMV name=”Y”/>

35 </om:OMBVAR>
<om:OMA><om:OMS cd=”functions” name=”pattern−defined”/>
<om:OMA><om:OMS cd=”products” name=”pair”/>
<om:OMV name=”X”/>
<om:OMV name=”Y”/>

40 </om:OMA>
<om:OMA><om:OMS cd=”sets” name=”intersection”/>
<om:OMV name=”X”/>
<om:OMV name=”Y”/>

</om:OMA>
45 </om:OMA>

</om:OMBIND>
</om:OMOBJ>
are <term cd=”magmas” name=”law of composition>laws of composition</term>
on the set of subsets of a set

50 <om:OMOBJ><om:OMS cd=”magmas” name=”E”/></om:OMOBJ>.
</CMP>

</example>

<example xml:id=”e2.magma” for=”law of composition” type=”for”>
55 <CMP>

On the set <om:OMOBJ><om:OMS cd=”nat” name=”Nat”/></om:OMOBJ>
of <term cd=”nats” name=”nats”>natural numbers</term>,
<term cd=”nats” name=”plus”>addition</term>,
<term cd=”nats” name=”times”>multiplication</term>, and

60 <term cd=”nats” name=”power”>exponentiation</term> are . . .
</CMP>

</example>
</omgroup>

</theory>

The example element in line 13 is used for mathematical examples of a spe-
cial form in OMDoc: objects that have or fail to have a specific property. In
our case, the two given mappings have the property of being a law of com-
position. This structural property is made explicit by the for attribute that
points to the concept that these examples illustrate, in this case, the symbol
law of composition. The type attribute has the values for and against.
In our case for applies, against would for counterexamples. The content of
an example is a multilingual CMP group. For examples of other kinds — e.g.
usage examples, OMDoc does not supply specific markup, so we have to fall
back to using an omtext element with type example as above.

In our text fragment, where the examples are at the end of the section
that deals with magmas, creating an independent theory for the examples (or
even multiple theories, if examples from different fields are involved) seems
appropriate. In other cases, where examples are integrated into the text, we
can equivalently embed theories into other theories. Then we would have the
following structure:

Listing 4.5. Examples embedded into a theory

1 <theory xml:id=”magmas”>
<imports xml:id=”imp3” from=”background.omdoc#products”/>
<imports from=”http://mbc.mathweb.org/omstd/relation1.omdoc#relation1”/>
. . .
<theory xml:id=”magmas−examples”

6 <imports xml:id=”imp4”
from=”http://omdoc.org/examples/omstd/fns1.omdoc#fns1”/>

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

48 4 Textbooks and Articles

<imports xml:id=”imp5” from=”background.omdoc#nat”/>
<imports xml:id=”imp6” from=”background.omdoc#functions”/>
. . .

11 </theory>
. . .

</theory>

Note that the embedded theory (magmas-examples) has access to all the sym-
bols in the embedding theory (magmas), so it does not have to import it. How-
ever, the symbols imported into the embedded theory are only visible in it,
and do not get imported into the embedding theory.

4.4 Full Formalization

The final step in the migration of the text fragment involves a transformation
of the mathematical vernacular in the statements into some logical formalism.
The main benefit of this is that we can verify the mathematical contents in
theorem proving environments. We will start out by dividing the first defi-
nition into two parts. The first one defines the symbol law of composition

(see Listing 4.6), and the second one magma (see Listing 4.7).BErr(6)

Listing 4.6. The formal definition of a law of composition

<symbol name=”law of composition”>
2 <metadata><dc:description>A law of composition on a set.</dc:description></metadata>

</symbol>
<definition xml:id=”magma.def” for=”law of composition” type=”simple”>
<CMP>

Let <om:OMOBJ><om:OMV name=”E”/></om:OMOBJ> be a set. A mapping of
7 <om:OMOBJ><om:OMR href=”#comp.1”/></om:OMOBJ>

is called a <term cd=”magmas” name=”law of composition”
role=”definiens”>law of composition</term>

on <om:OMOBJ><om:OMV name=”E”/></om:OMOBJ>.
</CMP>

12 <om:OMOBJ>
<om:OMBIND>
<om:OMS cd=”fns1” name=”lambda”/>
<om:OMBVAR>
<om:OMV name=”E”/><om:OMV name=”F”/>

17 </om:OMBVAR>
<om:OMA><om:OMS cd=”pl0” name=”and”/>
<om:OMA><om:OMS cd=”sets” name=”set”/>

<om:OMV name=”E”/>
</om:OMA>

22 <om:OMA>
<om:OMS cd=”functions” name=”function”/>
<om:OMA id=”comp.1”>
<om:OMS cd=”products” name=”Cartesian−product”/>
<om:OMV name=”E”/>

27 <om:OMV name=”E”/>
</om:OMA>
<om:OMV name=”E”/>

</om:OMA>
</om:OMA>

32 </om:OMBIND>
</om:OMOBJ>
</definition>

6 Erratum: for attribute on definition should be of type NCNames

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

4.4 Full Formalization 49

EErr(6)The main difference of this definition to the one in the section above is the
om:OMOBJ element, which now accompanies the CMP element. It contains a
formal definition of the property of being a law of composition in the form
of a λ-term λE,F .set(E) ∧ F : E × E → E2. The value simple of the type

attribute in the definition element signifies that the content of the om:OMOBJ
element can be substituted for the symbol law of composition, wherever
it occurs. So if we have law of composition(A,B) somewhere this can be
reduced to (λE,F .set(E) ∧ F : E ×E → E)(A,B) which in turn reduces3 to
set(A)∧B : A×A→ A or in other words law of composition(A,B) is true,
iff A is a set and B is a function from A×A to A. This definition is directly
used in the second formal definition, which we depict in Listing 4.7. BErr(7)

BErr(8)Listing 4.7. The formal definition of a magma

1 <definition xml:id=”magma.def” for=”magma” type=”implicit”>
<CMP> A set with a law of composition is called a
<term cd=”magmas” name=”magma” role=”definiendum”>magma</term>.

</CMP>
<FMP>

6 <om:OMOBJ>
<om:OMBIND><om:OMS cd=”pl1” name=”forall”/>
<om:OMBVAR><om:OMV name=”M”/></om:OMBVAR>
<om:OMA><om:OMS cd=”pl0” name=”iff”/>
<om:OMA><om:OMS cd=”magmas” name=”magma”/>

11 <om:OMV name=”M”/>
</om:OMA>
<om:OMBIND>
<om:OMS cd=”pl1” name=”exists”/>
<om:OMBVAR>

16 <om:OMV name=”E”/><om:OMV name=”C”/>
</om:OMBVAR>
<om:OMA><om:OMS cd=”pl0” name=”and”/>
<om:OMA><om:OMS cd=”relation1” name=”eq”/>
<om:OMV name=”M”/>

21 <om:OMA><om:OMS cd=”products” name=”Cartesian−product”/>
<om:OMV name=”E”/>
<om:OMV name=”C”/>

</om:OMA>
</om:OMA>

26 <om:OMA><om:OMS cd=”magmas” name=”law of composition”/>
<om:OMV name=”E”/>
<om:OMV name=”F”/>

</om:OMA>
</om:OMA>

31 </om:OMBIND>
</om:OMA>

2 We actually need to import the theories pl1 for first-order logic (it imports the
theory pl0) to legally use the logical symbols here. Since we did not show the
theory element, we assume it to contain the relevant imports elements.

3 We use the λ-calculus as a formalization framework here: If we apply a λ-term of
the form λX.A to an argument B, then the result is obtained by binding all the
formal parameters X to the actual parameter B, i.e. the result is the value of A,
where all the occurrences of X have been replaced by B. See [Bar80, And02] for
an introduction.

7 Erratum: for attribute on definition should be of type NCNames
8 Erratum: should be ”definiendum” not ”definiens”

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

50 4 Textbooks and Articles

</om:OMBIND>
</om:OMOBJ>

</FMP>
36 </definition>

EErr(8)

EErr(7)
Here, the type attribute on the definition element has the value implicit,
which signifies that the content of the FMP element should be understood as a
logical formula that is made true by exactly one object: the property of being
a magma. This formula can be written as

∀M.magma(M)⇔ ∃E,F .M = (E,F) ∧ law of composition(E,F)

in other words: M is a magma, iff it is a pair (E,F), where F is a law of
composition over E.

Finally, the examples get a formal part as well. This mainly consists of
formally representing the object that serves as the example, and making the
way it does explicit. The first is done simply by adding the object to the
example as a sibling node to the CMP. Note that we are making use of the
OpenMath reference mechanism here that allows to copy subformulae by
linking them with an om:OMR element that stands for a copy of the object
pointed to by the href attribute (see Section 13.1), which makes this very
simple. Also note that we had to split the example into two, since OMDoc
only allows one example per example element. However, the example contains
two om:OMOBJ elements, since the property of being a law of composition is
binary.

The way this object is an example is made explicit by adding an assertion
that makes the claim of the example formal (in our case that for every set E,
the function (X,Y) 7→ X ∪ Y is a law of composition on the set of subsets
of E). The assertion is referenced by the assertion attribute in the example

element.

Listing 4.8. A formalized magma example

<example xml:id=”e11.magma” for=”law of composition”
type=”for” assertion=”e11.magma.ass”>

<CMP> The mapping <om:OMOBJ><om:OMR href=”#e11.magma.1”/></om:OMOBJ> is
4 a law of composition on the set of subsets of a set

<om:OMOBJ><om:OMS cd=”magmas” name=”E”/></om:OMOBJ>.
</CMP>
<om:OMOBJ>
<om:OMA id=”e11.magma.2”><om:OMS cd=”sets” name=”subset”/>

9 <om:OMV name=”E”/>
</om:OMA>

</om:OMOBJ>
<om:OMOBJ>
<om:OMBIND id=”e11.magma.1”>

14 <om:OMS cd=”fns1” name=”lambda”/>
<om:OMBVAR><om:OMV name=”X”/><om:OMV name=”Y”/></om:OMBVAR>
<om:OMA>
<om:OMS cd=”functions” name=”pattern−defined”/>
<om:OMA><om:OMS cd=”products” name=”pair”/>

19 <om:OMV name=”X”/>
<om:OMV name=”Y”/>

</om:OMA>
<om:OMA><om:OMS cd=”sets” name=”union”/>

algebra.tex 8483 2009-08-11 08:16:04Z kohlhase

4.4 Full Formalization 51

<om:OMV name=”X”/>
24 <om:OMV name=”Y”/>

</om:OMA>
</om:OMA>

</om:OMBIND>
</om:OMOBJ>

29 </example>

<assertion xml:id=”e11.magma.ass”>
<FMP>
<om:OMOBJ>

34 <om:OMBIND>
<om:OMS cd=”pl1” name=”forall”/>
<om:OMBVAR><om:OMV name=”E”/></om:OMBVAR>
<om:OMA>
<om:OMS cd=”magmas” name=”law of composition”/>

39 <om:OMR href=”#e11.magma.2”/>
<om:OMR href=”#e11.magma.1”/>

</om:OMA>
</om:OMBIND>

</om:OMOBJ>
44 </FMP>

</assertion>

n

cd.tex 8481 2009-08-11 05:41:59Z kohlhase

cd.tex 8481 2009-08-11 05:41:59Z kohlhase

5

OpenMath Content Dictionaries

Content Dictionaries are structured documents used by the OpenMath stan-
dard [BCC+04] to codify knowledge about mathematical symbols and con-
cepts used in the representation of mathematical formulae. They differ from
the mathematical documents discussed in the last chapter in that they are less
geared towards introduction of a particular domain, but act as a reference/-
glossary document for implementing and specifying mathematical software
systems. Content Dictionaries are important for the OMDoc format, since
the OMDoc architecture, and in particular the integration of OpenMath
builds on the equivalence of OpenMath content dictionaries and OMDoc
theories.

Concretely, we will look at the content dictionary arith1.ocd which de-
fines the OpenMath symbols abs, divide, gcd, lcm, minus, plus, power,
product, root, sum, times, unary minus (see [OMC08] for the original). We
will discuss the transformation of the parts listed below into OMDoc and see
from this process that the OpenMath content dictionary format is (isomor-
phic to) a subset of the OMDoc format. In fact, the OpenMath2 standard
only presents the content dictionary format used here as one of many encod-
ings and specifies abstract conditions on content dictionaries that the OM-
Doc encoding below also meets. Thus OMDoc is a valid content dictionary
encoding.

Listing 5.1. Part of the OpenMath content dictionary arith1.ocd

<CD>
<CDName> arith1 </CDName>
<CDURL> http://www.openmath.org/cd/arith1.ocd </CDURL>
<CDReviewDate> 2003−04−01 </CDReviewDate>

5 <CDStatus> official </CDStatus>
<CDDate> 2001−03−12 </CDDate>
<CDVersion> 2 </CDVersion>
<CDRevision> 0 </CDRevision>
<dc:description>

10 This CD defines symbols for common arithmetic functions.
</dc:description>

<CDDefinition>

cd.tex 8481 2009-08-11 05:41:59Z kohlhase

54 5 OpenMath Content Dictionaries

<Name> lcm </Name>
15 <Description>

The symbol to represent the n−ary function to return the least common
multiple of its arguments.

</Description>

20 <CMP> lcm(a,b) = a∗b/gcd(a,b) </CMP>
<FMP>. . . </FMP>

<CMP>
for all integers a,b |

25 There does not exist a c>0 such that c/a is an Integer and c/b is an
Integer and lcm(a,b) > c.

</CMP>
<FMP>. . .</FMP>
. . .

30 </CD>

Generally, OpenMath content dictionaries are represented as mathematical
theories in OMDoc. These act as containers for sets of symbol declarations
and knowledge about them, and are marked by theory elements. The result
of the transformation of the content dictionary in Listing 5.1 is the OMDoc
document in Listing 5.2.

The first 25 lines in Listing 5.1 contain administrative information and
metadata of the content dictionary, which is mostly incorporated into the
metadata of the theory element. The translation adds further metadata to
the omdoc element that were left implicit in the original, or are external to
the document itself. These data comprise information about the translation
process, the creator, and the terms of usage, and the source, from which this
document is derived (the content of the omcd:CDURL element is recycled in
Dublin Core metadata element dc:source in line 12.

The remaining administrative data is specific to the content dictionary
per se, and therefore belongs to the theory element. In particular, the
omcd:CDName goes to the xml:id attribute on the theory element in line
36. The dc:description element is directly used in the metadata in line 38.
The remaining information is encapsulated into the cd* attributes.

Note that we have used the OMDoc sub-language “OMDoc Content
Dictionaries” described in Subsection 22.3.2 since it suffices in this case, this
is indicated by the modules attribute on the omdoc element.BErr(9)

Listing 5.2. The OpenMath content dictionary arith1 in OMDoc form

<?xml version=”1.0” encoding=”utf−8”?>
<omdoc xml:id=”arith1.omdoc” modules=”@cd”

xmlns:dc=”http://purl.org/dc/elements/1.1/”>

5 <metadata>
<dc:title>The OpenMath Content Dictionary arith1.ocd in OMDoc Form</dc:title>
<dc:creator role=”trl”>Michael Kohlhase</dc:creator>
<dc:creator role=”ant”>The OpenMath Society</dc:creator>
<dc:date action=”updated”> 2004−01−17T09:04:03Z </dc:date>

10 <dc:source>
Derived from the OpenMath CD http://www.openmath.org/cd/arith1.ocd.

</dc:source>

9 Erratum: for attribute on definition should be of type NCNames

cd.tex 8481 2009-08-11 05:41:59Z kohlhase

5 OpenMath Content Dictionaries 55

<dc:type>Text</dc:type>
<dc:format>application/omdoc+xml</dc:format>

15 <dc:rights>Copyright (c) 2000 Michael Kohlhase;
This OMDoc content dictionary is released under the OpenMath license:
http://www.openmath.org/cdfiles/license.html

</dc:rights>
</metadata>

20

<theory xml:id=”arith1”
cdstatus=” official ” cdreviewdate=”2003−04−01” cdversion=”2” cdrevision=”0”>

<metadata>
<dc:title>Common Arithmetic Functions</dc:title>

25 <dc:description>This CD defines symbols for common arithmetic functions.</dc:description>
<dc:date action=”updated”> 2001−03−12 </dc:date>

</metadata>
<imports from=”#sts”/>

30 <symbol name=”lcm”>
<metadata>
<dc:description>The symbol to represent the n−ary function to return the least common

multiple of its arguments.
</dc:description>

35 <dc:description xml:lang=”de”>
Das Symbol für das kleinste gemeinsame Vielfache (als n-äre Funktion).

</dc:description>
<dc:subject>lcm, least common mean</dc:subject>
<dc:subject xml:lang=”de”>kgV, kleinstes gemeinsames Vielfaches</dc:subject>

40 </metadata>
<type system=”sts”>
<OMOBJ>
<OMA><OMS name=”mapsto” cd=”sts”/>
<OMA><OMS name=”nassoc” cd=”sts”/><OMV name=”SemiGroup”/></OMA>

45 <OMV name=”SemiGroup”/>
</OMA>

</OMOBJ>
</type>

</symbol>
50

<presentation xml:id=”pr lcm” for=”#lcm”>
<use format=”default”>lcm</use>
<use format=”default” xml:lang=”de”>kgV</use>
<use format=”cmml” element=”lcm”/>

55 </presentation>

<definition xml:id=”lcm−def” for=”lcm” type=”pattern”>
<CMP>We define <OMOBJ><OMR href=”#lcm−def.O”/></OMOBJ>

as <OMOBJ><OMR href=”#lcm−def.1”/></OMOBJ></CMP>
60 <CMP xml:lang=”de”>

Wir definieren <OMOBJ><OMR href=”#lcm−def.O”/></OMOBJ>
als <OMOBJ><OMR href=”#lcm−def.1”/></OMOBJ></CMP>

<requation>
<OMOBJ>

65 <OMA id=”lcm−def.O”>
<OMS cd=”arith1” name=”lcm”/>
<OMV name=”a”/><OMV name=”b”/>

</OMA>
</OMOBJ>

70 <OMOBJ>
<OMA id=”lcm−def.1”>
<OMS cd=”arith1” name=”divide”/>
<OMA><OMS cd=”arith1” name=”times”/>
<OMV name=”a”/>

75 <OMV name=”b”/>
</OMA>
<OMA><OMS cd=”arith1” name=”gcd”/>
<OMV name=”a”/>
<OMV name=”b”/>

cd.tex 8481 2009-08-11 05:41:59Z kohlhase

56 5 OpenMath Content Dictionaries

80 </OMA>
</OMA>

</OMOBJ>
</requation>

</definition>
85

<theory>
<imports from=”#relation1”/>
<imports from=”#quant1”/>
<imports from=”#logic1”/>

90

<assertion xml:id=”lcm−prop−3” type=”lemma”>
<CMP>For all integers <OMOBJ><OMV name=”a”/></OMOBJ>,
<OMOBJ><OMV name=”b”/></OMOBJ> there is no
<OMOBJ><OMR href=”#lcm−prop−3.1”/></OMOBJ> such that

95 <OMOBJ><OMR href=”#lcm−prop−3.2”/></OMOBJ> and
<OMOBJ><OMR href=”#lcm−prop−3.3”/></OMOBJ> and
<OMOBJ><OMR href=”#lcm−prop−3.4”/></OMOBJ>.

</CMP>
<CMP xml:lang=”de”>Für alle ganzen Zahlen

100 <OMOBJ><OMV name=”a”/></OMOBJ>,
<OMOBJ><OMV name=”b”/></OMOBJ>
gibt es kein <OMOBJ><OMR href=”#lcm−prop−3.1”/></OMOBJ> mit
<OMOBJ><OMR href=”#lcm−prop−3.2”/></OMOBJ> und
<OMOBJ><OMR href=”#lcm−prop−3.3”/></OMOBJ> und

105 <OMOBJ><OMR href=”#lcm−prop−3.4”/></OMOBJ>.
</CMP>
<FMP>
<OMOBJ><OMBIND><OMS cd=”quant1” name=”forall”/>

<OMBVAR><OMV name=”a”/><OMV name=”b”/></OMBVAR>
110 <OMA><OMS cd=”logic1” name=”implies”/>

<OMA>. . .</OMA>
<OMA><OMS cd=”logic1” name=”not”/>
<OMBIND><OMS cd=”quant1” name=”exists”/>
<OMBVAR><OMV name=”c”/></OMBVAR>

115 <OMA><OMS cd=”logic1” name=”and”/>
<OMA id=”lcm−prop−3.1”>. . .</OMA>
<OMA id=”lcm−prop−3.2”>. . .</OMA>
<OMA id=”lcm−prop−3.3”>. . .</OMA>
<OMA id=”lcm−prop−3.4”>. . .</OMA>

120 </OMA>
</OMBIND>

</OMA>
</OMA>

</OMBIND>
125 </OMOBJ>

</FMP>
</assertion>
. . .

</theory>
130 . . .

</theory>

EErr(9)
One important difference between the original and the OMDoc version of
the OpenMath content dictionary is that the latter is intended for machine
manipulation, and we can transform it into other formats. For instance, the
human-oriented presentation of the OMDoc version might look something
like the following1:

1 These presentation was produced by the style sheets discussed in Section 25.3.

cd.tex 8481 2009-08-11 05:41:59Z kohlhase

5 OpenMath Content Dictionaries 57

The OpenMath Content Dictionary arith1.ocd in OMDoc Form
Michael Kohlhase, The OpenMath Society

January 17. 2004
This CD defines symbols for common arithmetic functions.

Concept 1. lcm (lcm, least common mean)
Type (sts): SemiGroup∗ → SemiGroup
The symbol to represent the n-ary function to return the least common mul-
tiple of its arguments.

Definition 2.(lcm-def)
We define lcm(a, b) as a·b

gcd(a,b)

Lemma 3. For all integers a, b there is no c > 0 such that (a|c) and (b|c) and
c < lcm(a, b).

Fig. 5.1. A human-oriented presentation of the OMDoc CD

The OpenMath Content Dictionary arith1.ocd in OMDoc form
Michael Kohlhase, The OpenMath Society

17. Januar 2004
This CD defines symbols for common arithmetic functions.

Konzept 1. lcm (kgV, kleinstes gemeinsames Vielfaches)
Typ (sts): SemiGroup∗ → SemiGroup
Das Symbol für das kleinste gemeinsame Vielfache (als n-äre Funktion).

Definition 2.(lcm-def)
Wir definieren kgV (a, b) als a·b

ggT (a,b)

Lemma 3. Für alle ganzen Zahlen a, b gibt es kein c > 0 mit (a|c) und (b|c)
und c < kgV (a, b).

Fig. 5.2. A human-oriented presentation in German

natlist.tex 8481 2009-08-11 05:41:59Z kohlhase

natlist.tex 8481 2009-08-11 05:41:59Z kohlhase

6

Structured and Parametrized Theories

In Chapter 5 we have seen a simple use of theories in OpenMath content
dictionaries. There, theories have been used to reference OpenMath sym-
bols and to govern their visibility. In this chapter we will cover an extended
example showing the structured definition of multiple mathematical theories,
modularizing and re-using parts of specifications and theories. Concretely, we
will consider a structured specification of lists of natural numbers. This exam-
ple has been used as a paradigmatic example for many specification formats
ranging from Casl (Common Abstract Specification Language [CoF04]) stan-
dard to the Pvs theorem prover [ORS92], since it uses most language elements
without becoming too unwieldy to present.

NatOrdList

cons, nil,
0, s,N, <

NatOrd

0, s,N, <
TOSet

Elem,<

OrdList

cons, nil,
Elem,<

imports imports

theory-inclusion

Actualization

imports

induces

Fig. 6.1. A Structured Specification of Lists (of Natural Numbers)

In this example, we specify a theory OrdList of lists that is generic in the
elements (which is assumed to be a totally ordered set, since we want to talk
about ordered lists). Then we will instantiate OrdList by applying it to the
theory NatOrd of natural numbers to obtain the intended theory NatOrdList

of lists of natural numbers. The advantage of this approach is that we can
re-use the generic theory OrdList to apply it to other element theories like

natlist.tex 8481 2009-08-11 05:41:59Z kohlhase

60 6 Structured and Parametrized Theories

that of “characters” to obtain a theory of lists of characters. In algebraic
specification languages, we speak of parametric theories. Here, the theory
OrdList has a formal parameter (the theory TOSet) that can be instantiated
later with concrete values to get a theory instance (in our example the
theory NatOrdList). We call this process theory actualization.

We begin the extended example with the theories in the lower half of
Figure 6.1. The first is a (mock up of a) theory of totally ordered sets. Then
we build up the theory of natural numbers as an abstract data type (see
Chapter 16 for an introduction to abstract data types in OMDoc and a
more elaborate definition of N). The sortdef element posits that the set of
natural numbers is given as the sort NatOrd, with the constructors zero and
succ. Intuitively, a sort represents an inductively defined set, i.e. it contains
exactly those objects that can be represented by the constructors only, for
instance the number three is represented as s(s(s(0))), where s stands for the
successor function (given as the constructor succ) and 0 for the number zero
(represented by the constructor zero). Note that the theory nat does not have
any explicitly represented axioms. They are implicitly given by the abstract
data type structure, in our case, they correspond to the five Peano Axioms
(see Figure 15.1). Finally, the argument elements also introduce one partial
inverse to the constructor functions per argument; in our case the predecessor
function.BErr(10)

<theory xml:id=”TOSet”>
<symbol name=”set”/>
<symbol name=”ord”/>

4 <axiom xml:id=”toset”><CMP>ord is a total order on set.</CMP></axiom>
</theory>

<theory xml:id=”nat”>
<adt>

9 <sortdef name=”Nat”>
<constructor name=”zero”/>
<constructor name=”succ”>
<argument>
<type><OMOBJ><OMS name=”Nat” cd=”nat”/></OMOBJ></type>

14 <selector name=”pred”/>
</argument>

</constructor>
</sortdef>

</adt>
19 </theory>

<theory xml:id=”NatOrd”>
<imports from=”#nat”/>
<imports from=”#TOSet”/>

24 <symbol name=”leq”/>
<definition xml:id=”leq.def” for=”leq” type=”implicit”

existence=”#leq.ex” uniqueness=”#leq.uniq”>
<FMP>∀x.0 ≤ x ∧ ∀x, y.x ≤ y ⇒ s(x) ≤ s(y)</FMP>

</definition>
29 <assertion xml:id=”leq.ex”><CMP>≤ exists.</CMP></assertion>

<assertion xml:id=”leq.unique”><CMP>≤ is unique</CMP></assertion>
<assertion xml:id=”leq.TO”><CMP>≤ is a total order on Nat.</CMP></assertion>

</theory>

EErr(10)
10 Erratum: for attribute on definition should be of type NCNames

natlist.tex 8481 2009-08-11 05:41:59Z kohlhase

6 Structured and Parametrized Theories 61

Finally we have extended the natural numbers by an ordering function
≤ (symbol leq) which we show to be a total ordering function in assertion
leq.TO. Note that to state the assertion, we had to import the notion of a
total ordering from theory TOSet. We can directly use this result to establish
a theory inclusion between TOSet as the source theory and NatOrd as the
target theory. A theory inclusion is a formula mapping between two theories,
such that the translations of all axioms in the source theory are provable in
the target theory. In our case, the mapping is given by the recursive function
given in the morphism element in Listing 6 that maps the respective base
sets and the ordering relations to each other. The obligation element just
states that translation of the only theory-constitutive (see Subsection 15.2.4)
element of the source theory (the axiom toset) has been proven in the target
theory, as witnessed by the assertion leq.TO1.

<theory−inclusion xml:id=”elem−nat−incl” to=”#NatOrd” from=”#TOSet”>
<morphism xml:id=”elem−nat” type=”pattern”>

3 <requation>
<OMOBJ><OMS cd=”TOSet” name=”set”/></OMOBJ>
<OMOBJ><OMS cd=”NatOrd” name=”Nat”/></OMOBJ>

</requation>
<requation>

8 <OMOBJ><OMS cd=”TOSet” name=”ord”/></OMOBJ>
<OMOBJ><OMS cd=”NatOrd” name=”leq”/></OMOBJ>

</requation>
</morphism>
<obligation induced−by=”#toset” assertion=”#leq.TO”/>

13 </theory−inclusion>

We continue our example by building a generic theory OrdList of ordered
lists. This is given as the abstract data type generated by the symbols cons

(construct a list from an element and a rest list) and nil (the empty list)
together with a defined symbol ordered: a predicate for ordered lists. Note
that this symbol cannot be given in the abstract data type, since it is not a
constructor symbol. Note that OrdList imports theory TOSet for the base set
of the lists and the ordering relation ≤. BErr(11)

<theory xml:id=”OrdList”>
2 <imports from=”#TOSet”/>

<adt xml:id=”list−adt”>
<sortdef name=”lists”>
<constructor name=”cons”>
<argument>

7 <type><OMOBJ><OMS name=”set” cd=”TOSet”/></OMOBJ></type>
<selector name=”head”/>

</argument>
<argument>
<type><OMOBJ><OMS name=”lists” cd=”OrdList”/></OMOBJ></type>

12 <selector name=”rest”/>
</argument>

</constructor>

1 Note that as always, OMDoc only cares about the structural aspects of this: The
OMDoc model only insists that there is the statement of an assertion, whether
the author chooses to prove it or indeed whether the statement is true at all is
left to other levels of modeling.

11 Erratum: for attribute on definition should be of type NCNames

natlist.tex 8481 2009-08-11 05:41:59Z kohlhase

62 6 Structured and Parametrized Theories

<constructor name=”nil”/>
</sortdef>

17 </adt>

<symbol name=”ordered”/>
<definition xml:id=”ordered−def” for=”ordered” type=”informal”>
<CMP>A list l is called ordered, iff head(l) ≤ z for all elements z ∈ rest(l) and

22 rest(l) is ordered.</CMP>
</definition>

</theory>

EErr(11)
The theory NatOrdList of lists of natural numbers is built up by import-

ing from the theories NatOrd and OrdList. Note that the attribute type of
the imports element nat-list.im-elt is set to local, since we only want
to import the local axioms of the theory OrdList and not the whole the-
ory OrdList (which would include the axioms from TOSet; see Section 18.3
for a discussion). In particular the symbols set and ord are not imported
into theory NatOrdList: the theory TOSet is considered as a formal param-
eter theory, which is actualized to the actual parameter theory with
this construction. The effect of the actualization comes from the morphism
elem-nat in the import of OrdList that renames the symbol set (from the-
ory TOSet) with Nat (from theory NatOrd). The actualization from OrdList

to NatOrdList only makes sense, if the parameter theory NatOrd also has a
suitable ordering function. This can be ensured using the OMDoc inclusion

element.

1 <theory xml:id=”NatOrdList”>
<imports xml:id=”natordlist.im−natord” from=”#NatOrd”/>
<imports xml:id=”natordlist.im−elt” from=”#OrdList” type=”local”>
<morphism base=”#elem−nat”/>

</imports>
6 <inclusion via=”elem−nat−incl”/>

</theory>

The benefit of this inclusion requirement is twofold: If the theory inclu-
sion from TOSet to NatOrd cannot be verified, then the theory NatOrdList

is considered to be undefined, and we can use the development graph tech-
niques presented in Section 18.5 to obtain a theory inclusion from OrdList

to NatOrdList: We first establish an axiom inclusion from theory TOSet to
NatOrdList by observing that this is induced by composing the theory inclu-
sion from TOSet to NatOrd with the theory inclusion given by the imports

from NatOrd to NatOrdList. This gives us a decomposition situation: every
theory that the source theory OrdList inherits from has an axiom inclusion
to the target theory NatOrdList, so the local axioms of those theories are
provable in the target theory. Since we have covered all of the inherited ones,
we actually have a theory inclusion from the source- to the target theory.

<axiom−inclusion xml:id=”toset−natordlist−incl” from=”#TOSet” to=”#NatOrdList”>
<morphism base=”#elem−nat”/>

3 <path−just local=”#elem−nat−incl” globals=”#natordlist.im−natord”/>
</axiom−inclusion>

<theory−inclusion from=”#OrdList” to=”#NatOrdList”>
<morphism base=”#elem−nat”/>

natlist.tex 8481 2009-08-11 05:41:59Z kohlhase

6 Structured and Parametrized Theories 63

8 <decomposition links=”#toset−natordlist−incl #elem−nat−incl”/>
</theory−inclusion>

This concludes our example, since we have seen that the theory OrdList

is indeed included in NatOrdList via renaming.
Note that with this construction we could simply extend the graph by

actualizations for other theories, e.g. to get lists of characters, as long as we
can prove theory inclusions from TOSet to them.

elalg.tex 8481 2009-08-11 05:41:59Z kohlhase

elalg.tex 8481 2009-08-11 05:41:59Z kohlhase

7

A Development Graph for Elementary Algebra

We will now use the technique presented in the last chapter for the elementary
algebraic hierarchy. Figure 7.1 gives an overview of the situation. We will
build up theories for semigroups, monoids, groups, and rings and a set of
theory inclusions from these theories to themselves given by the converse of
the operation.

semigroup

(M, ◦)

monoid

(M, ◦, e)

group

(M, ◦, e, ·−1)

ring

(R,+, 0,−, ∗, 1)

σ: =

M 7→ R∗

◦ 7→ ∗
e 7→ 1

τ : =

M 7→ R
◦ 7→ +
e 7→ 0
·−1 7→ −

ρ: = {x ◦ y 7→ y ◦ x}

σ ◦ ρ = {x ∗ y 7→ y ∗ x}

τ ◦ ρ = {x+ y 7→ y + x}

σ

τ

σ ◦ ρ

τ ◦ ρ

ρ

ρ

ρ

ρ

ρ

{x+ y 7→ y + x, x ∗ y 7→ y ∗ x}

Fig. 7.1. A Development Graph for Elementary Algebra

elalg.tex 8481 2009-08-11 05:41:59Z kohlhase

66 7 A Development Graph for Elementary Algebra

We start off with the theory for semigroups. It introduces two symbols,
the base set M and the operation ◦ on M together with two axioms that
state that M is closed under ◦ and that ◦ is associative on M . We have a
structural theory inclusion from this theory to itself that uses the fact that
M together with the converse σ(◦) of ◦ is also a semigroup: the obligation
for the axioms can be justified by themselves (for the closure axiom we have
σ(∀x, y ∈M.x ◦ y ∈M) = ∀y, x ∈M.x ◦ y ∈M , which is logically equivalent
to the axiom.)

1 <theory xml:id=”semigroup”>
<symbol name=”base−set”/>
<presentation for=”#base−set”><use format=”default”>M</use></presentation>
<symbol name=”op”/>
<presentation for=”#op”><use format=”default”>◦</use></presentation>

6 <axiom xml:id=”closed.ax”><FMP>∀x, y ∈M.x ◦ y ∈M</FMP></axiom>
<axiom xml:id=”assoc.ax”>
<FMP>∀x, y, z ∈M.(x ◦ y) ◦ z = x ◦ (y ◦ z)</FMP>

</axiom>
</theory>

11

<theory−inclusion xml:id=”sg−conv−sg” from=”#semigroup” to=”#semigroup”>
<morphism xml:id=”sg−conv−sg.morphism”>
<requation>X ◦ Y ; Y ◦X</requation>

</morphism>
16 <obligation assertion=”conv.closed” induced−by=”#closed.ax”/>

<obligation assertion=”#assoc.ax” induced−by=”#assoc.ax”/>
</theory−inclusion>

The theory of monoids is constructed as an extension of the theory of semi-
groups with the additional unit axiom, which states that there is an element
that acts as a (right) unit for ◦. As always, we state that there is a unique such
unit, which allows us to define a new symbol e using the definite description
operator τx.: If there is a unique x, such that A is true, then the construction
τx.A evaluates to x, and is undefined otherwise. We also prove that this e
also acts as a left unit for ◦.BErr(12)

<theory xml:id=”monoid”>
2 <imports xml:id=”sg2mon” from=”#semigroup”/>

<axiom xml:id=”unit.ax”><FMP>∃x ∈M.∀y ∈M.y ◦ x = y</FMP></axiom>
<assertion xml:id=”unit.unique”><FMP>∃1x ∈M.∀y ∈M.y ◦ x = y</FMP></assertion>
<symbol name=”unit” xml:id=’’unit’’/>
<presentation for=”#unit”><use format=”default”>e</use></presentation>

7 <definition xml:id=”unit.def” for=”unit” type=”simple” existence=”#unit.unique”>
τx ∈M.∀y ∈M.y ◦ x = y

</definition>
<assertion xml:id=”left.unit”><FMP>∀x ∈M.e ◦ x = x</FMP></assertion>
<symbol name=”setstar” xml:id=’’setstar’’/>

12 <presentation for=”#setstar” fixity=”postfix”>
<use format=”default”>∗</use>

</presentation>
<definition xml:id=”ss.def” for=”setstar” type=”implicit”>
∀S ⊆M.S∗ = S\{e}

17 </definition>
</theory>

EErr(12)
Building on this, we first establish an axiom-selfinclusion from the theory of
monoids to itself. We can make this into a theory selfinclusion using the theory-

12 Erratum: for attribute on definition should be of type NCNames

elalg.tex 8481 2009-08-11 05:41:59Z kohlhase

7 A Development Graph for Elementary Algebra 67

selfinclusion for semigroups as the local part of a path justification (recall that
theory inclusions are axiom inclusions by construction) and the definitional
theory inclusion induced by the import from semigroups to monoids as the
global path.

<axiom−inclusion xml:id=”mon−conv−mon.local” from=”#monoid” to=”#monoid”>
2 <morphism base=”#sg−conv−sg.morphism”/>

<obligation assertion=”#left.unit” induced−by=”#unit.ax”/>
</axiom−inclusion>

<axiom−inclusion xml:id=”sg−conv−mon” from=”#semigroup” to=”#monoid”>
7 <morphism base=”#sg−conv−sg.morphism”/>

<path−just local=”#sg−conv−sg” globals=”#sg2mon”/>
</axiom−inclusion>
<theory−inclusion xml:id=”mon−conv−mon.global” from=”#monoid” to=”#monoid”>
<morphism base=”#sg−conv−sg.morphism”/>

12 <decomposition links=”#sg−conv−sg #sg−conv−mon”/>
</theory−inclusion>

Note that all of these axiom inclusions have the same morphism (denoted by
ρ in Figure 7.1), in OMDoc we can share this structure using the base on
the morphism element. This normally points to a morphism that is the base
for extension, but if the morphism element is empty, then this just means that
the morphisms are identical.

For groups, the situation is very similar: We first build a theory of groups
by adding an axiom claiming the existence of inverses and constructing a new
function ·−1 from that via a definite description. BErr(13)

<theory xml:id=”group”>
2 <imports xml:id=”mon2grp” from=”#monoid”/>

<axiom xml:id=”inv.ax”><FMP>∀x ∈M.∃y ∈M.x ◦ y = e</FMP></axiom>
<symbol name=”inv” xml:id=’’inv’’/>
<presentation for=”#inv” role=”applied”>

<use format=”default” lbrack=”” rbrack=”” fixity=”postfix”>−1</use>
7 </presentation>

<definition xml:id=”inv.def” for=”inv” type=”pattern”>

<requation>x−1 ; τy.x ◦ y = e</value></requation>
</definition>
<assertion xml:id=”conv.inv”><FMP>∀x ∈M.∃y ∈M.y ◦ x = e</FMP></assertion>

12 </theory>

EErr(13)
Again, we have to establish a couple of axiom inclusions to justify the theory
inclusion of interest. Note that we have one more than in the case for monoids,
since we are one level higher in the inheritance structure, also, the local chains
are one element longer.

<axiom−inclusion xml:id=”grp−conv−grp.local” from=”#group” to=”#group”>
<morphism base=”#sg−conv−sg.morphism”/>

3 <obligation assertion=”conv.inv” induced−by=”#inv.ax”/>
</axiom−inclusion>
<axiom−inclusion xml:id=”sg−conv−grp” from=”#semigroup” to=”#group”>
<morphism base=”#sg−conv−sg.morphism”/>
<path−just local=”#sg−conv−sg” globals=”#mon2grp #sg2mon”/>

8 </axiom−inclusion>
<axiom−inclusion xml:id=”mon−conv−grp” from=”#monoid” to=”#group”>
<morphism base=”#sg−conv−sg.morphism”/>
<path−just local=”#mon−conv−mon.local” globals=”#mon2grp”/>

13 Erratum: for attribute on definition should be of type NCNames

elalg.tex 8481 2009-08-11 05:41:59Z kohlhase

68 7 A Development Graph for Elementary Algebra

</axiom−inclusion>
13 <theory−inclusion xml:id=”grp−conv−grp” from=”#group” to=”#group”>

<morphism base=”#sg−conv−sg.morphism”/>
<decomposition links=”#sg−conv−grp #mon−conv−grp #grp−conv−grp.local”/>

</theory−inclusion>

Finally, we extend the whole setup to a theory of rings. Note that we have
a dual import from group and monoid with different morphisms (they are
represented by σ and τ in Figure 7.1). These rename all of the imported
symbols apart (interpreting them as additive and multiplicative) except of
the punctuated set constructor ·∗, which is imported from the additive group
structure only. We avoid a name clash with the operator that would have
been imported from the multiplicative structure by specifying that this is
not imported using the hiding on the morphism in the respective imports

element1.BErr(14)

<theory xml:id=”ring”>
<symbol name=”R” xml:id=’’R’’/>
<presentation for=”#R”><use format=”default”>R</use></presentation>

4 <symbol name=”zero”/>
<presentation for=”#zero”><use format=”default”>0</use></presentation>
<symbol name=”plus”/>
<presentation for=”#plus” role=”applied”>

<use format=”default”>+</use>
9 </presentation>

<symbol name=”negative”/>
<presentation for=”#negative” role=”applied”>

<use format=”default”>−</use>
</presentation>

14 <symbol name=”times”/>
<presentation for=”#times” role=”applied”>
<use format=”default”>∗</use>

</presentation>
<symbol name=”one”/>

19 <presentation for=”#one”><use format=”default”>1</use></presentation>
<imports xml:id=”add.import” from=”#group”>

<morphism>M 7→ R, x ◦ y 7→ x ∗ y, e 7→ 1, ·−1 7→ −</morphism>
</imports>
<imports xml:id=”mult.import” from=”#monoid”>

24 <morphism hiding=”setstar”>M 7→M∗, x ◦ y 7→ x ∗ y, e 7→ 1</morphism>
</imports>
<axiom xml:id=”dist.ax”><FMP>x ∗ (y + z) = (x ∗ y) + (x ∗ z)</FMP></axiom>
<assertion xml:id=”dist.conv”><FMP>(z + y) ∗ x = (z ∗ x) + (y ∗ x)</FMP></assertion>

</theory>

EErr(14)
Again, we have to establish some axiom inclusions to justify the theory self-
inclusion we are after in the example. Note that in the rings case, things are
more complicated, since we have a dual import in the theory of rings. Let us
first establish the additive part.

<axiom−inclusion xml:id=”sg−conv−rg.add” from=”#semigroup” to=”#ring”>

1 An alternative (probably better) to this would have been to explicitly include
the operators in the morphisms, creating new operators for them in the theory
of rings. But the present construction allows us to exemplify the hiding, which
has not been covered in an example otherwise.

14 Erratum: for attribute on definition should be of type NCNames, to-
tally reworked example

elalg.tex 8481 2009-08-11 05:41:59Z kohlhase

7 A Development Graph for Elementary Algebra 69

2 <morphism base=”#sg−conv−sg.morphism #add.import”/>
<path−just local=”#sg−conv−sg” globals=”#sg2mon #mon2grp #add.import ”/>

</axiom−inclusion>
<axiom−inclusion xml:id=”mon−conv−rg.add” from=”#monoid” to=”#group”>
<morphism base=”#sg−conv−sg.morphism #add.import”/>

7 <path−just local=”#mon−conv−mon.local” globals=”#mon2grp #add.import”/>
</axiom−inclusion>
<axiom−inclusion xml:id=”grp−conv−rg.add” from=”#group” to=”#group”>
<morphism base=”#sg−conv−sg.morphism #add.import”/>
<path−just local=”#grp−conv−grp.local” globals=”#add.import”/>

12 </axiom−inclusion>

The multiplicative part is totally analogous, we will elide it to conserve space.
Using both parts, we can finally get to the local axiom self-inclusion and
extend it to the intended theory inclusion justified by the axiom inclusions
established above.

<axiom−inclusion xml:id=”rg−conv−rg.local” from=”#ring” to=”#ring”>
<morphism xml:id=”rg−conv−rg.morphism”>x+ y 7→ y + x, x ∗ y 7→ y ∗ x</morphism>

3 <obligation assertion=”#dist.conv” induced−by=”#dist.ax”/>
</axiom−inclusion>
<theory−inclusion xml:id=”rg−conv−rg” from=”#ring” to=”#ring”>
<morphism base=”#rg−conv−rg.morphism”/>
<decomposition links=”#rg−conv−rg.local

8 #sg−conv−rg.add #mon−conv−rg.add #grp−conv−rg.add
#sg−conv−rg.mult #mon−conv−rg.mult #grp−conv−rg.mult”/>

</theory−inclusion>

This concludes our example. It could be extended to higher constructs in
algebra like fields, magmas, or vector spaces easily enough using the same
methods, but we have seen the key features already.

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

8

Courseware and the Narrative/Content
Distinction

In this chapter we will look at another type of mathematical document: course-
ware; in this particular case a piece from an introductory course “Fundamen-
tals of Computer Science” (Course 15-211 at Carnegie Mellon University).
The OMDoc documents produced from such courseware can be used as in-
put documents for ActiveMath (see Section 26.8) and can be produced e.g.
by CPoint (see Section 26.14).

Fig. 8.1. Three slides from 15-211

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

72 8 Courseware and the Narrative/Content Distinction

We have chosen a fragment that is relatively far from conventional math-
ematical texts to present the possibility of semantic markup in OMDoc even
under such circumstances. We will highlight the use of OMDoc theories for
such an application. Furthermore, we will take seriously the difference between
marking up the knowledge (implicitly) contained in the slides and the slide
presentation as a structured document. As a consequence, we will capture the
slides in two documents:

• a knowledge-centered document , which contains the knowledge conveyed
in the course organized by its inherent logical structure

• a narrative-structured document references the knowledge items and adds
rhetorical and didactic structure of a slide presentation.

This separation of concerns into two documents is good practice in marking
up mathematical texts: It allows to make explicit the structure inherent in the
respective domain and at the same time the structure of the presentation that
is driven by didactic needs. We call knowledge-structured documents content
OMDocs and narrative-structured ones narrative OMDocs. The separa-
tion also simplifies management of academic content: The content OMDoc of
course will usually be shared between individual installments of the course, it
will be added to, corrected, cross-referenced, and kept up to date by different
authors. It will eventually embody the institutional memory of an organi-
zation like a university or a group of teachers. The accompanying narrative
OMDocs will capture the different didactic tastes and approaches by indi-
vidual teachers and can be adapted for the installments of the course. Since
the narrative OMDocs are relatively light-weight structures (they are largely
void of original content, which is referenced from the content OMDoc) con-
structing or tailoring a course to the needs of the particular audience becomes
a simpler endeavor of choosing a path through a large repository of marked
up knowledge embodied in the content OMDoc rather than re-authoring1

the content with a new slant.
Let us look at the four slides in Figure 8.1. The first slide shows a graphic

of a simple taxonomy of animals, the second one introduces first concepts
from object-oriented programming, the third one gives examples for these
interpreting the class hierarchy introduced in the first slide, finally the fourth
slide gives code concrete snippets as examples for the concepts introduced in
the first three ones.

We will first discuss content OMDoc and then the narrative OMDoc in
Section 8.2.

1 Since much of the re-authoring is done by copy and paste in the current model,
it propagates errors in the course materials rather than corrections.

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

8.1 A Knowledge-Centered View 73

8.1 A Knowledge-Centered View

In this section, we will take a look at how we can make the knowledge that
is contained in the slides in Figure 8.1 and its structure explicit so that a
knowledge management system like MBase (see Section 26.4) or knowledge
presentation system like ActiveMath (see Section 26.8) can take advantage
of it. We will restrict ourselves to knowledge that is explicitly represented in
the slides in some form, even though the knowledge document would probably
acquire more and more knowledge in the form of examples, graphics, variant
definitions, and explanatory text as it is re-used in many courses.

The first slide introduces a theory, which we call animals-tax; see List-
ing 8.1. It declares primitive symbols for all the concepts2 (the ovals), and for
all the links introduced in the graphic it has axiom elements stating that the
parent node in the tree extends the child node. The axiom uses the symbol
for concept extension from a theory kr for knowledge representation which
we import in the theory and which we assume in the background materials
for the course.

Listing 8.1. The OMDoc Representation for Slide 1 from Figure 8.1

<theory xml:id=”animals−tax”>
<imports xml:id=”tax imports taxonomy” from=”#taxonomies”/>
<imports xml:id=”tax imports kr” from=”#kr”/>
<symbol name=”human”>

5 <type system=”stlc”><OMOBJ><OMS cd=”kr” name=”concept”/></OMOBJ></type>
</symbol>
<symbol name=”mammal”>
<type system=”stlc”><OMOBJ><OMS cd=”kr” name=”concept”/></OMOBJ></type>

</symbol>
10 . . .

<axiom xml:id=”mammal−ext−human”>
<CMP>Humans are Animals.</CMP>
<FMP>
<OMOBJ>

15 <OMA><OMS cd=”kr” name=”extends”/>
<OMS cd=”animal−taxonomy” name=”mammal”/>
<OMS cd=”animal−taxonomy” name=”human”/>

</OMA>
</OMOBJ>

20 </FMP>
</axiom>
. . .

</theory>

25 <private xml:id=”tax−image” for=”animals−tax” reformulates=”#animals−tax”>
<data format=”image/jpeg” href=”animals−taxonomy.jpg”/>
<data format=”application/postscript” href=”animals−taxonomy.ps”/>

</private>

The private element contains the reference to the image in various formats.
Its reformulates attribute hints that the image contained in this element
can be used to illustrate the theory above (in fact, it will be the only thing
used from this theory in the narrative OMDoc in Listing 8.6.)

2 The type information in the symbols is not strictly included in the slides, but may
represent the fact that the instructor said that the ovals represent “concepts”.

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

74 8 Courseware and the Narrative/Content Distinction

The second slide introduces some basic concepts in object oriented pro-
gramming. These give rise to the five primitive symbols of the theory. Note
that this theory is basic, it does not import any other. The three text blocks are
marked up as axioms, using the attribute for to specify the symbols involved
in these axioms. The value of the for attribute is a whitespace-separated list
of URI references to symbol elements.BErr(15)

Listing 8.2. The OMDoc Representation for Slide 2 from Figure 8.1

<theory xml:id=”cvi”>
2 <symbol name=”object” xml:id=”cvi.object”/>

<symbol name=”instance” xml:id=”cvi.instance”/>
<symbol name=”class” xml:id=”cvi.class”/>
<symbol name=”inherits” xml:id=”cvi.inherits”/>
<symbol name=”superclass” xml:id=”cvi.superclass”/>

7

<axiom xml:id=”ax1” for=”object instance class”>
<CMP>Every <phrase style=”font−style:italic;color:blue”>object</phrase>

is an <phrase style=”font−style:italic ; color:red”>instance</phrase>
of a <phrase style=”font−style:italic ; color:blue”>class</phrase>.

12 </CMP>
</axiom>

<axiom xml:id=”ax2” for=”class”>
<CMP>The characteristics of an object are defined by its class.</CMP>

17 </axiom>

<axiom xml:id=”ax3” for=”inherits superclass”>
<CMP> An object <phrase style=”font−style:italic;color:blue”>inherits</phrase>

characteristics from all of its
22 <phrase style=”font−style:italic ; color:red”>superclasses</phrase>.</CMP>

</axiom>
</theory>

EErr(15)
For the third slide it is not entirely obvious which of the OMDoc elements

we want to use for markup. The intention of the slide is obviously to give
some examples for the concepts introduced in the second slide in terms of the
taxonomy presented in the first slide in Figure 8.1. However, the OMDoc
example element seems to be too specific to directly capture the contents
(see p. 155). What is immediately obvious is that the slide introduces some
new knowledge and symbols, so we have to have a separate theory for this
slide. The first item in the list headed by the word Example is a piece of new
knowledge, it is therefore not an example at all, but an axiom3. The second
item in the list is a statement that can be deduced from the knowledge we
already have at our disposal from theories animals-tax and cvi. Therefore,
the new theory cvi-examples in Listing 8.3 imports these two. Furthermore,
it introduces the new symbol danny for “Danny Sleator” which is clarified
in the axiom element with xml:id="ax1". Finally, the third item in the list
does not have the function of an example either, it introduces a new concept,

15 Erratum: for attribute on axiom should be of type NCNames
3 We could say that the function of being an example has moved up from mathe-

matical statements to mathematical theories; we will not pursue this here.

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

8.1 A Knowledge-Centered View 75

the “is a” relation4. So we arrive at the theory in Listing 8.3. Note that this
markup treats the last text block on the third slide without semantic function
in the theory – it points out that there are other relations among humans –
and leaves it for the narrative-structured OMDoc in Section 8.25. BErr(16)

Listing 8.3. The OMDoc Representation for Slide 3 from Figure 8.1

1 <theory xml:id=”cvi−examples”>
<imports from=”#animals−tax”/><imports from=”#cvi”/>

<symbol name=”danny” xml:id=”cvi−examples.danny”>
<metadata><dc:description>Danny Sleator</dc:description></metadata>

6 </symbol>

<axiom xml:id=”danny−professor” for=”class instance danny”>
<CMP><phrase style=”font−style:italic;color:blue”>Danny Sleator</phrase>

is an <phrase style=”font−style:italic ; color:red”>instance</phrase>
11 of the <phrase style=”font−style:italic ; color:blue”>Professor</phrase>

class .
</CMP>

</axiom>

16 <assertion xml:id=”dannys−classes” type=”theorem”>
<CMP>He is therefore also an instance of the
<phrase style=”font−style:italic ; color:blue”>Human</phrase>,
<phrase style=”font−style:italic ; color:blue”>Mammal</phrase>,
<phrase style=”font−style:italic ; color:blue”>Animal</phrase> classes.

21 </CMP>
</assertion>

<symbol name=”is a” scope=”global”>
<metadata><dc:subject>’is a’ relation</dc:subject></metadata>

26 </symbol>

<definition xml:id=”is a−def” for=”is a” type=”informal”>
<CMP>Sometimes we say that Danny Sleator

“<phrase style=”font−style:italic;color:red”>is a</phrase>”
31 Professor (or Human or Mammal…)

</CMP>
</definition>

</theory>

EErr(16)
An alternative, more semantic way to mark up the assertion element in

the theory above would be to split it into multiple assertion and example

elements, as in Listing 8.4, where we have also added formal content. We have
split the assertion dannys-classes into three — we have only shown one of
them in Listing 8.4 — separate assertions about class instances, and used them
to justify the explicit examples. These are given as OMDoc example elements.
The for attribute of an example element points to the concepts that are
exemplified here (in this case the symbols for the concepts “instance”, “class”
from the theory cvi and the concept “mammal” from the animal taxonomy).

4 Actually, this text block introduces a new concept “by reference to examples”,
which is not a formal definition at all. We will neglect this for the moment.

5 Of course this design decision is debatable, and depends on the intuitions of the
author. We have mainly treated the text this way to show the possibilities of
semantic markup

16 Erratum: for attribute on definition should be of type NCNames

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

76 8 Courseware and the Narrative/Content Distinction

The type specifies that this is not a counter-example, and the assertion

points to the justifying assertion. In this particular case, the reasoning behind
the example is pretty straightforward (therefore it has been omitted in the
slides), but we will make it explicit to show the mechanisms involved. The
assertion element just re-states the assertion implicit in the example, we
refrain from giving the formal statement in an FMP child here to save space.
The [just-by]17

r just-by can be used to point to set of proofs for this assertion,Err(17)
in this case only the one given in Listing 8.4. We use the OMDoc proof

element to mark up this proof. It contains a series of derive proof steps. In
our case, the argument is very simple, we can see that Danny Sleator is an
instance of the human class, using the knowledge that

1. Danny is a professor (from the axiom in the cvi-examples theory)
2. An object inherits all the characteristics from its superclasses (from the

axiom ax3 in the cvi theory)
3. The human class is a superclass of the professor class (from the axiom

human-extends-professor in the animal-taxonomy theory).

The use of this knowledge in the proof step is made explicit by the premise

children of the derive element.
The information in the proof could for instance be used to generate very

detailed explanations for students who need help understanding the content
of the original slides in Figure 8.1.BErr(18)

Listing 8.4. An Alternative Representation Using example Elements

1 . . .
<example xml:id=”danny−mammal” type=”for” assertion=”#dannys−mammal−thm”

for=”#cvi.instance #cvi.class #animal−taxonomy.mammal”>
<CMP>Danny Sleator is an instance of the
<phrase style=”font−style:italic ; color:blue”>Mammal</phrase> class.

6 </CMP>
<OMOBJ><OMS cd=”cvi−examples” name=”danny”/></OMOBJ>

</example>

<assertion xml:id=”dannys−mammal−thm” type=”theorem” proofs=”#danny−mammal−pf”>
11 <CMP>Danny Sleator is an instance of the Human class.</CMP>

</assertion>

<proof xml:id=”danny−human−pf” for=”#dannys−mammal−thm”>
<derive xml:id=”d1”>

16 <CMP>Danny Sleator is an instance of the human class.</CMP>
<method>
<premise xref=”#danny−professor”/>
<premise xref=”#cvi.ax3”/>
<premise xref=”#animal−tax.human−extends−professor”/>

21 </method>
</derive>
<derive xml:id=”concl”>
<CMP>Therefore he is an instance of the human class.</CMP>
<method>

17 Erratum! forgot to thread through attribute renaming (original text was:
“proofs”)

18 Erratum: The attribute on the assertion element should be just-by,
not proofs. We were also missing some fragment identifiers.

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

8.2 A Narrative-Structured View 77

26 <premise xref=”#d1”/>
<premise xref=”#cvi.ax3”/>
<premise xref=”#animal−tax.mammal−extends−human”/>

</method>
</derive>

31 </proof>
. . .

EErr(18)
The last slide contains a set of Java code fragments that are related to the

material before. We have marked them up in the code elements in Listing 8.5.
The actual code is encapsulated in a data element, whose format specifies the
format the data is in. The program text is encapsulated in a CDATA section to
suspend the XML parser (there might be characters like < or & in there which
offend it). The code elements allow to document the input, output, and side-
effects in input, output, effect elements as children of the code elements.
Since the code fragments in question do not have input or output, we have
only described the side-effect (class declaration and class extension). As the
code elements do not introduce any new symbols, definitions or axioms, we
do not have to place them in a theory. The second code element also carries
a requires attribute, which specifies that to execute this code snippet, we
need the previous one. An application can use this information to make sure
that one is loaded before executing this code fragment.

Listing 8.5. OMDoc Representation of Program Code

<code xml:id=”cvic−code1”>
<data format=”Java”><![CDATA[public class Animal {. . . }]]></data>

3 <effect><CMP>class declaration</CMP></effect>
</code>

<code xml:id=”cvic−code2” requires=”cvic−code1” >
<data format=”Java”><![CDATA[public class Mammal extends Animal {. . .}]]></data>

8 <effect><CMP>class extension</CMP></effect>
</code>
. . .

8.2 A Narrative-Structured View

In this section we present an OMDoc document that captures the structure
of the slide show as a document. It references the knowledge items from the
theories presented in the last section and adds rhetorical and didactic structure
of a slide presentation.

The individual slides are represented as omgroup elements with type

slide.
The representation of the first slide in Figure 8.1 is rather straightforward:

we use the dc:title element in metadata to represent the slide title. Its
class attribute references a CSS class definition in a style file. To represent
the image with the taxonomy tree we use an omtext element with an omlet

element.

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

78 8 Courseware and the Narrative/Content Distinction

The second slide marks up the list structure of the slide with the omgroup

element (the value itemize identifies it as an itemizes list). The items in the
list are given by ref elements, whose xref attribute points to the axioms in the
knowledge-structured document (see Listing 8.2). The effect of this markup
is shared between the document: the content of the axioms are copied over
from the knowledge-structured document, when the narrative-structured is
presented to the user. However, the ref element cascades its style attribute
(and the class attribute, if present) with the style and class attributes
of the target element, essentially adding style directives during the copying
process. In our example, this adds positioning information and specifies a
particular image for the list bullet type.

Listing 8.6. The Narrative OMDoc for Figure 8.1

. . .
<omgroup xml:id=”slide−847” type=”slide”>
<metadata>
<dc:title class=”15−211−title”>Inheritance: Taxonomy metaphor</dc:title>

5 </metadata>

<omtext xml:id=”the−tax”>
<CMP>
<omlet data=”#tax−image” style=”width:540;height:366”

10 action=”display” show=”embed”/>
</CMP>

</omtext>
</omgroup>

15 <omgroup xml:id=”slide−848” type=”slide”>
<metadata><dc:title class=”15−211−title”>Classes vs. instances</dc:title></metadata>
<omgroup type=”itemize” style=”list−style−type:url(square.gif)”>
<ref style=”position:30% 10%” xml:id=”obj” xref=”slide1 content.omdoc#ax1”/>
<ref style=”position:55% 10%” xml:id=”class” xref=”slide1 content.omdoc#ax2”/>

20 <ref style=”position:80% 10%” xml:id=”inh” xref=”slide1 content.omdoc#ax3”/>
</omgroup>

</omgroup>

<omgroup xml:id=”slide−849” type=”slide”>
25 <metadata><dc:title class=”15−211−title”>Classes vs. instances</dc:title></metadata>

<omgroup type=”itemize” style=”list−style−type:url(square.gif)”>
<omtext style=”position:30% 10%” xml:id=”ex”><CMP>Example:</CMP></omtext>
<omgroup type=”itemize” style=”list−style−type:url(triangle.gif)”>
<ref style=”position:400% 15%”

30 xml:id=”danny” xref=”slide1 content.omdoc#danny−professor”/>
<ref style=”position:55% 15%”

xml:id=”inst” xref=”slide1 content.omdoc#dannys−classes”/>
<ref style=”position:70% 15%” xml:id=”is a” xref=”slide1 content.omdoc#is a−def”/>

</omgroup>
35 <omtext style=”position:83% 10%” xml:id=”has a”>

<CMP>
Danny also “<phrase style=”font−style:italic;color:red”>has
a</phrase>” wife and son, who are also instances of the Human class

</CMP>
40 </omtext>

</omgroup>
</omgroup>

<omgroup xml:id=”slide−850” type=”slide”>
45 <metadata><dc:title class=”15−211−title”>In Java</dc:title></metadata>

<omgroup type=”itemize”>
<omtext xml:id=”slide−850.t1” style=”position:80% 10%;color:red”>
<CMP>Implicitly extends class object</CMP>

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

8.3 Choreographing Narrative and Content OMDoc 79

</omtext>
50 <omtext xml:id=”slide−850.t2”>

<CMP><omlet data=”#cvic−code1” action=”display” show=”embed”/></CMP>
</omtext>
<omtext xml:id=”slide−850.t3”>
<CMP><omlet data=”#cvic−code2” action=”display” show=”embed”/></CMP>

55 </omtext>
</omgroup>

</omgroup>
. . .

8.3 Choreographing Narrative and Content OMDoc

The interplay between the narrative and content OMDoc above was relatively
simple. The content OMDoc contained three theories that were linearized ac-
cording to the dependency relation. This is often sufficient, but more complex
rhetoric/didactic figures are also possible. For instance, when we introduce
a new concept, we often first introduce a naive reduced approximation N of
the real theory F , only to show an example EN of where this is insufficient.
Then we propose a first (straw-man) solution S, and show an example ES
of why this does not work. Based on the information we gleaned from this
failed attempt, we build the eventual version F of the concept or theory and
demonstrate that this works on EF .

Let us visualize the narrative- and content structure in Figure 8.2. The
structure with the solid lines and boxes at the bottom of the diagram repre-
sents the content structure, where the boxes N , EN , S, ES , F , and EF signify
theories for the content of the respective concepts and examples, much in the
way we had them in Section 8.1. The arrows represent the theory inheritance
structure, e.g. Theory F imports theory N .

N

EN FS

EFES

lecture

sl1 sl2 sl3 sl4 sl5 sl6 sl7

n1 n2 . . . n3

Fig. 8.2. An Introduction of a Concept via a Straw-Man Theory

courseware.tex 8483 2009-08-11 08:16:04Z kohlhase

80 8 Courseware and the Narrative/Content Distinction

The top part of the diagram with the dashed lines stands for the narrative
structure, where the arrows mark up the document structure. For instance,
the slides sli are grouped into a lecture. The dashed lines between the two
documents visualize ref elements with pointers into the content structure.
In the example in Figure 8.2, the second slide of “lecture” presents the first
example: the text fragment n1 links the content EN , which is referenced from
the content structure, to slide 1. The fragment n2 might say something like
“this did not work in the current situation, so we have to extend the concep-
tualization. . . ”.

Just as for content-based systems on the formula level, there are now MKM
systems that generate presentation markup from content markup, based on
general presentation principles, also on this level. For instance, the Active-
Math system [MBG+03] generates a simple narrative structure (the presenta-
tion; called a personalized book) from the underlying content structure (given
in OMDoc) and a user model.

8.4 Summary

As we have seen, the narrative and content fulfill different, but legitimate
content markup needs, that can coincide (as in the main example in this
chapter), but need not (as in the example in the last section). In the simple
case, where the dependency and narrative structure largely coincide, systems
like the ActiveMath system described in Section 26.8 can generate narrative
OMDocs from content OMDocs automatically. To generate more complex
rhetoric/didactic figures, we would have to have more explicit markup for
relations like “can act as a straw-man for”. Providing standardized markup
for such relations is beyond the scope of the OMDoc format, but could easily
be expressed as metadata, or as external, e.g. RDF-based relations.

xmlrpc.tex 6154 2006-10-03 11:31:31Z

9

Communication with and between
Mathematical Software Systems

OMDoc can be used as content language for communication protocols be-
tween mathematical software systems on the Internet. The ability to specify
the context and meaning of the mathematical objects makes the OMDoc
format ideally suited for this task.

In this chapter we will discuss a message interface in a fictitious software
system MathWeb-WS1, which connects a wide-range of reasoning systems
(mathematical services), such as automated theorem provers, automated proof
assistants, computer algebra systems, model generators, constraint solvers, hu-
man interaction units, and automated concept formation systems, by a com-
mon mathematical software bus. Reasoning systems integrated in MathWeb-
WS can therefore offer new services to the pool of services, and can in turn
use all services offered by other systems.

On the protocol level, MathWeb-WS uses Soap remote procedure calls
with the HTTP binding [GHMN03] (see [Mit03] for an introduction to Soap)
interface that allows client applications to request service objects and to use
their service methods. For instance, a client can simply request a service object
for the automated theorem prover Spass [Wei97] via the HTTP GET request
in Listing 9.1 to a MathWeb-WS broker node.

Listing 9.1. Discovering Automated Theorem Provers (Request)

GET /ws.mathweb.org/broker/getService?name=SPASS HTTP/1.1
2 Host: ws.mathweb.org

1 “MathWeb Web Services”; The examples discussed in this chapter are inspired
by the MathWeb-SB [FK99, ZK02] (“MathWeb Software Bus”) service infras-
tructure, which offers similar functionality based on the XML-RPC protocol (an
XML encoding of Remote Procedure Calls (RPC) [Com]). We use the Soap-
based formulation, since Soap (Simple Object Access Protocol) is the relevant
W3C standard and we can show the embedding of OMDoc fragments into other
XML namespaces. In XML-RPC, the XML representations of the content lan-
guage OMDoc would be transported as base-64-encoded strings, not as embedded
XML fragments.

xmlrpc.tex 6154 2006-10-03 11:31:31Z

82 9 Communication between Systems

Accept: application/soap+xml

As a result, the client receives a Soap message like the one in Listing 9.2
containing information about various instances of services embodying the
Spass prover known to the broker service.

Listing 9.2. Discovering Automated Theorem Provers (Response)

HTTP/1.1 200 OK
2 Content−Type: application/soap+xml

Content−Length: 990

<?xml version=’1.0’?>
<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap−envelope”>

7 <env:Body>
<ws:prover env:encodingStyle=”http://www.w3.org/2003/05/soap−encoding”

xmlns:ws=”http://www.mathweb.org/ws−fictional”>
<ws:name>SPASS</ws:name>
<ws:version>2.1</ws:version>

12 <ws:URL>http://spass.mpi−sb.mpg.de/webspass/soap</ws:URL>
<ws:uptime>P3D5H6M45S</ws:uptime>
<ws:sysinfo>
<ws:ostype>SunOS 5.6</ws:ostype>
<ws:mips>3825</ws:mips>

17 </ws:sysinfo>
</ws:prover>
<ws:prover env:encodingStyle=”http://www.w3.org/2003/05/soap−encoding”

xmlns:ws=”http://www.mathweb.org/ws−fictional”>
<ws:name>SPASS</ws:name>

22 <ws:version>2.0</ws:version>
<ws:URL>http://asuka.mt.cs.cmu.edu/atp/spass/soap</ws:URL>
<ws:uptime>P5M2D15H56M5S</ws:uptime>
<ws:sysinfo>
<ws:ostype>linux−2.4.20</ws:ostype>

27 <ws:mips>1468</ws:mips>
</ws:sysinfo>

<ws:prover>
</env:Body>

</end:Envelope>

The client can then select one of the provers (say the first one, because it
runs on the faster machine) and post theorem proving requests like the one
in Listing 9.32 to the URL which uniquely identifies the service object in the
Internet (this was part of the information given by the broker; see line 11 in
Listing 9.2).

Listing 9.3. A Soap RPC call to Spass

POST http://spass.mpi−sb.mpg.de/webspass/soap HTTP/1.1
Host: http://spass.mpi−sb.mpg.de/webspass/soap
Content−Type: application/soap+xml;

4 Content−Length: 1123

<?xml version=’1.0’?>
<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap−envelope”>
<env:Body>

9 <ws:prove env:encodingStyle=”http://www.w3.org/2003/05/soap−encoding”
xmlns:ws=”http://www.mathweb.org/ws−fictional”>

<omdoc:assertion xml:id=”peter−hates−somebody” type=”conjecture”

2 We have made the namespaces involved explicit with prefixes in the examples, to
show the mixing of different XML languages.

xmlrpc.tex 6154 2006-10-03 11:31:31Z

9 Communication between Systems 83

xmlns:omdoc=”http://www.mathweb.org/omdoc”
theory=”http://mbase.mathweb.org:8080/RPC2#lovelife”>

14 <omdoc:CMP>Peter hates somebody</omdoc:CMP>
<omdoc:FMP>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMBIND>
<om:OMS cd=”quant1” name=”exists”/>

19 <om:OMBVAR><om:OMV name=”X”/></om:OMBVAR>
<om:OMA>
<om:OMS cd=”lovelife” name=”hate”/>
<om:OMS cd=”lovelife” name=”peter”/>
<om:OMV name=”X”/>

24 </om:OMA>
</om:OMBIND>

</om:OMOBJ>
</omdoc:FMP>

</omdoc:assertion>
29 <ws:replyWith><ws:state>proof</ws:state></ws:replyWith>

<ws:timeout>20</ws:timeout>
</ws:prove>

</env:Body>
</env:Envelope>

This Soap remote procedure call uses a generic method “prove” that can
be understood by the first-order theorem provers on MathWeb-SB, and in
particular the Spass system. This method is encoded as a ws:prove element;
its children describe the proof problem and are interpreted by the Soap RPC
node as a parameter list for the method invocation. The first parameter is an
OMDoc representation of the assertion to be proven. The other parameters
instruct the theorem prover service to reply with the proof (instead of e.g.
just a yes/no answer) and gives it a time limit of 20 seconds to find it.

Note that OMDoc fragments can be seamlessly integrated into an XML
message format like Soap. A Soap implementation in the client’s implementa-
tion language simplifies this process drastically since it abstracts from HTTP
protocol details and offers Soap nodes using data structures of the host lan-
guage. As a consequence, developing MathWeb clients is quite simple in
such languages. Last but not least, both MS Internet Explorer and the open
source WWW browser FireFox now allow to perform Soap calls within
JavaScript. This opens new opportunities for building user interfaces based
on web browsers.

Note furthermore that the example in Listing 9.3 depends on the infor-
mation given in the theory lovelife referenced in the theory attribute in
the assertion element (see Section 15.6 for a discussion of the theory struc-
ture in OMDoc). In our instance, this theory might contain formalizations
(in first-order logic) of the information that Peter hates everybody that Mary
loves and that Mary loves Peter, which would allow Spass to prove the as-
sertion. To get the information, the MathWeb-WS service based on Spass
would first have to retrieve the relevant information from a knowledge base
like the MBase system described in Section 26.4 and pass it to the Spass the-
orem prover as background information. As MBase is also a MathWeb-WS
server, this can be done by sending the query in Listing 9.4 to the MBase
service at http://mbase.mathweb.org:8080.

http://mbase.mathweb.org:8080

xmlrpc.tex 6154 2006-10-03 11:31:31Z

84 9 Communication between Systems

Listing 9.4. Requesting a Theory from MBase

GET /mbase.mathweb.org:8080/soap/getTheory?name=lovelife HTTP/1.1
2 Host: mbase.mathweb.org:8080

Accept: application/soap+xml

The answer would be of the form given in Listing 9.5. Here, the Soap envelope
contains the OMDoc representation of the requested theory (irrespective of
what the internal representation of MBase was).

Listing 9.5. The Background Theory for Message 9.3

HTTP/1.1 200 OK
2 Content−Type: application/soap+xml

Content−Length: 602

<?xml version=’1.0’?>
<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap−envelope”>

7 <env:Body>
<theory xml:id=”lovelife” xmlns=”http://www.mathweb.org/omdoc”>
<symbol name=”peter”/><symbol name=”mary”/>
<symbol name=”love”/><symbol name=”hate”/>
<axiom xml:id=”opposite”>

12 <CMP>Peter hates everybody Mary loves</CMP>
<FMP>∀x.loves(mary, x)⇒ hates(peter, x)</FMP>

</axiom>
<axiom xml:id=”mary−loves−peter”>
<CMP>Mary loves Peter</CMP>

17 <FMP>loves(mary, peter)</FMP>
</axiom>

</theory>
</env:Body>

</env:Envelope>

This information is sufficient to prove the theorem in Listing 9.3; and the
Spass service might reply to the request with the message in Listing 9.6
which contains an OMDoc representation of a proof (see Chapter 17 for de-
tails). Note that the for attribute in the proof element points to the original
assertion from Listing 9.3.

Listing 9.6. A proof that Peter hates someone

HTTP/1.1 200 OK
Content−Type: application/soap+xml
Content−Length: 588

4

<?xml version=’1.0’?>
<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap−envelope”>
<env:Body>
<proof xml:id=”p347” for=”#peter−hates−somebody”

9 xmlns=”http://www.mathweb.org/omdoc”>
<derive xml:id=”d1”>
<FMP>hates(peter, peter)</FMP>
<method xref=”nd.omdoc#ND.chain”>
<premise xref=”#lovelife.mary−loves−peter”/>

14 <premise xref=”#lovelife.opposite”/>
</method>

</derive>
<derive xml:id=”concl”>
<method xref=”nd.omdoc#ND.ExI”><premise xref=”#d1”/></method>

19 </derive>
</proof>

xmlrpc.tex 6154 2006-10-03 11:31:31Z

9 Communication between Systems 85

</env:Body>
</env:Envelope>

The proof has two steps: The first one is represented in the derive element,
which states that “Peter hates Peter”. This fact is derived from the two axioms
in the theory lovelife in Listing 9.5 (the premise elements point to them)
by the “chaining rule” of the natural deduction calculus. This inference rule is
represented by a symbol in the theory ND and referred to by the xref attribute
in the method element. The second proof step is given in the second derive

element and concludes the proof. Since the assertion of the conclusion is the
statement of the proven assertion, we do not have a separate FMP element that
states this here. The sole premise of this proof step is the previous one. For
details on the representation of proofs in OMDoc see Chapter 17.

Note that the Spass theorem prover does not in itself give proofs in the
natural deduction calculus, so the Spass service that provided this answer pre-
sumably enlisted the help of another MathWeb-WS service like the Tramp
system [Mei00] that transforms resolution proofs (the native format of the
Spass prover) to natural deduction proofs.

partomdoc.tex 6154 2006-10-03 11:31:31Z

partomdoc.tex 6154 2006-10-03 11:31:31Z

Part III

The OMDoc Document Format

The OMDoc (Open Mathematical Documents) format is a content markup
scheme for (collections of) mathematical documents including articles, text-
books, interactive books, and courses. OMDoc also serves as the content
language for agent communication of mathematical services on a mathemati-
cal software bus.

This part of the book is the specification of version 1.2 of the OMDoc for-
mat, the final and mature release of OMDoc version 1. It defines the OMDoc
language features and their meaning. The content of this part is normative
for the OMDoc format; an OMDoc document is valid as an OMDoc docu-
ment, iff it meets all the constraints imposed here. OMDoc applications will
normally presuppose valid OMDoc documents and only exhibit the intended
behavior on such.

spec-intro.tex 6154 2006-10-03 11:31:31Z

spec-intro.tex 6154 2006-10-03 11:31:31Z

10

OMDoc as a Modular Format

A modular approach to design is generally accepted as best practice in the
development of any type of complex application. It separates the application’s
functionality into a number of ”building blocks” or ”modules”, which are sub-
sequently combined according to specific rules to form the entire application.
This approach offers numerous advantages: The increased conceptual clarity
allows developers to share ideas and code, and it encourages reuse by creating
well-defined modules that perform a particular task. Modularization also re-
duces complexity by decomposition of the application’s functionality and thus
decreases debugging time by localizing errors due to design changes. Finally,
flexibility and maintainability of the application are increased because single
modules can be upgraded or replaced independently of others.

The OMDoc vocabulary has been split by thematic role, which we will
briefly overview in Figure 10.1 before we go into the specifics of the respective
modules in Chapters 13 to 21. To avoid repetition, we will introduce some at-
tributes already in this chapter that are shared by elements from all modules.
In Chapter 22 we will discuss the OMDoc document model and possible
sub-languages of OMDoc that only make use of parts of the functionality
(Section 22.3).

The first four modules in Figure 10.1 are required (mathematical doc-
uments without them do not really make sense), the other ones are op-
tional. The document-structuring elements in module DOC have an attribute
modules that allows to specify which of the modules are used in a particular
document (see Chapter 11 and Section 22.3).

10.1 The OMDoc Namespaces

The namespace for the OMDoc format is the URI http://www.mathweb.

org/omdoc. Note that the OMDoc namespace does not reflect the versions,
this is done in the version attribute on the document root element omdoc

(see Chapter 11). As a consequence, the OMDoc vocabulary identified by

http://www.mathweb.org/omdoc
http://www.mathweb.org/omdoc

spec-intro.tex 6154 2006-10-03 11:31:31Z

90 10 OMDoc as a Modular Format

this namespace is not static, it can change with each new OMDoc version.
However, if it does, the changes will be documented in later versions of the
specification: the latest released version can be found at [Kohb].

In an OMDoc document, the OMDoc namespace must be specified either
using a namespace declaration of the form xmlns="http://www.mathweb.

org/omdoc" on the omdoc element or by prefixing the local names of the
OMDoc elements by a namespace prefix (OMDoc customarily use the pre-
fixes omdoc: or o:) that is declared by a namespace prefix declaration of
the form xmlns:o="http://www.mathweb.org/omdoc" on some element dom-
inating the OMDoc element in question (see Section 1.3 for an introduction).
OMDoc also uses the following namespaces1:

Format namespace URI see

Dublin Core http://purl.org/dc/elements/1.1/ Sections 12.1 and 12.2
Creative Commons http://creativecommons.org/ns Section 12.3
MathML http://www.w3.org/1998/Math/MathML Section 13.2
OpenMath http://www.openmath.org/OpenMath Section 13.1
XSLT http://www.w3.org/1999/XSL/Transform Chapter 19

Thus a typical document root of an OMDoc document looks as follows:

<?xml version=”1.0” encoding=”utf−8”?>
<omdoc xml:id=”test.omdoc” version=”1.2”

3 xmlns=”http://www.mathweb.org/omdoc”
xmlns:cc=”http://creativecommons.org/ns”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:om=”http://www.openmath.org/OpenMath”
xmlns:m=”http://www.w3.org/1998/Math/MathML”>

8 . . .
</omdoc>

10.2 Common Attributes in OMDoc

Generally, the OMDoc format allows any attributes from foreign (i.e. non-
OMDoc) namespaces on the OMDoc elements. This is a commonly found
feature that makes the XML encoding of the OMDoc format extensible. Note
that the attributes defined in this specification are in the default (empty)
namespace: they do not carry a namespace prefix. So any attribute of the
form na:xxx is allowed as long as it is in the scope of a suitable namespace
prefix declaration.

Many OMDoc elements have optional xml:id attributes that can be used
as identifiers to reference them. These attributes are of type ID, they must
be unique in the document which is important, since many XML applica-
tions offer functionality for referencing and retrieving elements by ID-type at-
tributes. Note that unlike other ID-attributes, in this special case it is the name
xml:id [MVW05] that defines the referencing and uniqueness functionality,

1 In this specification we will use the namespace prefixes above on all the elements
we reference in text unless they are in the OMDoc namespace.

http://www.mathweb.org/omdoc
http://www.mathweb.org/omdoc
http://www.mathweb.org/omdoc
http://purl.org/dc/elements/1.1/
http://creativecommons.org/ns
http://www.w3.org/1998/Math/MathML
http://www.openmath.org/OpenMath
http://www.w3.org/1999/XSL/Transform

spec-intro.tex 6154 2006-10-03 11:31:31Z

10.2 Common Attributes in OMDoc 91

not the type declaration in the DTD or XML schema (see Subsection 1.3.2
for a discussion).

Note that in the OMDoc format proper, all ID type attributes are of
the form xml:id. However in the older OpenMath and MathML standards,
they still have the form id. The latter are only recognized to be of type ID,
if a document type or XMLschema is present. Therefore it depends on the
application context, whether a DTD should be supplied with the OMDoc
document.

For many occasions (e.g. for printing OMDoc documents), authors want
to control a wide variety of aspects of the presentation. OMDoc is a content-
oriented format, and as such only supplies an infrastructure to mark up
content-relevant information in OMDoc elements. To address this dilemma
XML offers an interface to Cascading Style Sheets (CSS) [Bos98], which al-
low to specify presentational traits like text color, font variant, positioning,
padding, or frames of layout boxes, and even aural aspects of the text.

To make use of CSS, most OMDoc elements (all that have xml:id at-
tributes) have style attributes2 that can be used to specify CSS directives
for them. In the OMDoc fragment in Listing 10.1 we have used the style

attribute to specify that the text content of the omtext element should be for-
matted in a centered box whose width is 80% of the surrounding box (probably
the page box), and that has a 2 pixel wide solid frame of the specified RGB
color. Generally CSS directives are of the form A:V, where A is the name of
the aspect, and V is the value, several CSS directives can be combined in one
style attribute as a semicolon-separated list (see [Bos98] and the emerging
CSS 3 standard).

Listing 10.1. Basic CSS Directives in a style Attribute

1 <?xml version=”1.0” encoding=”utf−8”?>
<?xml−stylesheet type=”text/css” href=”http://example.org/style.css”?>
<omdoc xml:id=”stylish”>
. . .
<omtext xml:id=”t1” style=”width:80%;align:center;border:2px #006699 solid”>

6 <CMP>Here comes something
<phrase style=”font−weight:bold;color:green” class=”emphasize”>stylish</phrase>!

</CMP>
</omtext>
. . .

11 </omdoc>

Note that many CSS properties of parent elements are inherited by the
children, if they are not explicitly specified in the child. We could for instance
have set the font family of all the children of the omtext element by adding a
directive font-family:sans-serif there and then override it by a directive
for the property font-family in one of the children.

Frequently recurring groups of CSS directives can be given symbolic names
in CSS style sheets, which can be referenced by the class attribute. In List-

2 The treatment of the CSS attributes has changed from OMDoc1.1, see the
discussion on page 338.

spec-intro.tex 6154 2006-10-03 11:31:31Z

92 10 OMDoc as a Modular Format

ing 10.1 we have made use of this with the class emphasize, which we assume
to be defined in the style sheet style.css associated with the document in
the “style sheet processing instruction” in the prolog3 of the XML document
(see [Cla99] for details). Note that an OMDoc element can have both class

and style attributes, in this case, precedence is determined by the rules for
CSS style sheets as specified in [Bos98]. In our example in Listing 10.1 the
directives in the style attribute take precedence over the CSS directives in
the style sheet referenced by the class attribute on the phrase element. As
a consequence, the word “stylish” would appear in green, bold italics.

3 i.e. at the very beginning of the XML document before the document type dec-
laration

spec-intro.tex 6154 2006-10-03 11:31:31Z

10.2 Common Attributes in OMDoc 93

Module Title Required? Chapter

MOBJ Mathematical Objects yes Chapter 13

Formulae are a central part of mathematical documents; this module integrates
the content-oriented representation formats OpenMath and MathML into
OMDoc

MTXT Mathematical Text yes Chapter 14

Mathematical vernacular, i.e. natural language with embedded formulae

DOC Document Infrastructure yes Chapter 11

A basic infrastructure for assembling pieces of mathematical knowledge into
functional documents and referencing their parts

DC Dublin Core Metadata yes Sections 12.1 and 12.2

Contains bibliographical “data about data”, which can be used to annotate
many OMDoc elements by descriptive and administrative information that
facilitates navigation and organization

CC Creative Commons Metadata yes Section 12.3

Licenses for text use

RT Rich Text Structure no Section 14.6

Rich text structure in mathematical vernacular (lists, paragraphs, tables, . . .)

ST Mathematical Statements no Chapter 15

Markup for mathematical forms like theorems, axioms, definitions, and ex-
amples that can be used to specify or define properties of given mathematical
objects and theories to group mathematical statements and provide a notion of
context.

PF Proofs and proof objects no Chapter 17

Structure of proofs and argumentations at various levels of details and formal-
ity

ADT Abstract Data Types no Chapter 16

Definition schemata for sets that are built up inductively from constructor
symbols

CTH Complex Theories no Chapter 18

Theory morphisms; they can be used to structure mathematical theories

DG Development Graphs no Section 18.5

Infrastructure for managing theory inclusions, change management

EXT Applets, Code, and Data no Chapter 20

Markup for applets, program code, and data (e.g. images, measurements, . . .)

PRES Presentation Information no Chapter 19

Limited functionality for specifying presentation and notation information for
local typographic conventions that cannot be determined by general principles
alone

QUIZ Infrastructure for Assessments no Chapter 21

Markup for exercises integrated into the OMDoc document model

Fig. 10.1. The OMDoc Modules

document.tex 8694 2010-08-26 18:53:01Z clange

document.tex 8694 2010-08-26 18:53:01Z clange

11

Document Infrastructure (Module DOC)

Mathematical knowledge is largely communicated by way of a specialized set
of documents (e.g. e-mails, letters, pre-prints, journal articles, and textbooks).
These employ special notational conventions and visual representations to
convey the mathematical knowledge reliably and efficiently.

When marking up mathematical knowledge, one always has the choice
whether to mark up the structure of the document itself, or the structure of
the mathematical knowledge that is conveyed in the document. Even though
in most documents, the document structure is designed to help convey the
structure of the knowledge, the two structures need not be the same. To frame
the discussion we will distinguish two aspects of mathematical documents. In
the knowledge-centered view we organize the mathematical knowledge by its
function, and do not care about a way to present it to human recipients. In
the narrative-centered view we are interested in the structure of the argument
that is used to convey the mathematical knowledge to a human user.

We will call a document knowledge-structured and narrative-struc-
tured, based on which of the two aspects is prevalent in the organization of
the material. Narrative-structured documents in mathematics are generally
directed at human consumption (even without being in presentation markup).
They have a general narrative structure: text interleaving with formal elements
like assertions, proofs, . . . Generally, the order of presentation plays a role in
their effectiveness as a means of communication. Typical examples of this
class are course materials or introductory textbooks. Knowledge-structured
documents are generally directed at machine consumption or for referencing.
They do not have a linear narrative spine and can be accessed randomly
and even re-ordered without information loss. Typical examples of these are
formula collections, OpenMath content dictionaries, technical specifications,
etc.

The distinction between knowledge-structured and narrative-structured
documents is reminiscent of the presentation vs. content distinction discussed
in Section 2.1, but now it is on the level of document structure. Note that
mathematical documents are often in both categories: a mathematical text-

document.tex 8694 2010-08-26 18:53:01Z clange

96 11 Document Infrastructure

book can be read from front to end, but it can also be used as a reference,
accessing it by the index and the table of contents. The way humans work
with knowledge also involves a change of state. When we are taught or ex-
plore a mathematical domain, we have a linear/narrative path through the
material, from which we abstract more and more, finally settling for a seman-
tic representation that is relatively independent from the path we acquired it
by. Systems like ActiveMath (see Section 26.8) use the OMDoc format in
exactly that way playing on the difference between the two classes and gen-
erating narrative-structured representations from knowledge-structured ones
on the fly.

So, maybe the best way to think about this is that the question whether
a document is narrative- or knowledge-structured is not a property of the
document itself, but a property of the application processing this document.

OMDoc provides markup infrastructure for both aspects. In this chapter,
we will discuss the infrastructure for the narrative aspect — for a working
example we refer the reader to Chapter 8. We will look at markup elements
for knowledge-structured documents in Section 15.6.

Even though the infrastructure for narrative aspects of mathematical doc-
uments is somewhat presentation-oriented, we will concentrate on content-
markup for it. In particular, we will not concern ourselves with questions like
font families, sizes, alignment, or positioning of text fragments. Like in most
other XML applications, this kind of information can be specified in the CSS
style and class attributes described in Section 10.2.

11.1 The Document Root

The XML root element of the OMDoc format is the omdoc element, it con-omdoc

tains all other elements described here. We call an OMDoc element a top-
level element, if it can appear as a direct child of the omdoc element.

The omdoc element (and the omgroup element introduced below as well)
has an optional attribute xml:id that can be used to reference the whole
document. The version attribute is used to specify the version of the OMDoc
format the file conforms to. It is fixed to the string 1.2 by this specification.
This will prevent validation with a different version of the DTD or schema,
or processing with an application using a different version of the OMDoc
specification. The (optional) attribute modules allows to specify the OMDoc
modules that are used in this document. The value of this attribute is a
whitespace-separated list of module identifiers (e.g. MOBJ the left column
in Figure 10.1), OMDoc sub-language identifiers (see Figure 22.2), or URI
references for externally given OMDoc modules or sub-language identifiers.1

1 Allowing these external module references keeps the OMDoc format extensible.
Like in the case with namespace URIs OMDoc do not mandate that these URI
references reference an actual resource. They merely act as identifiers for the
modules.

document.tex 8694 2010-08-26 18:53:01Z clange

11.2 Metadata 97

The intention is that if present, the modules specifies the list of all the modules
used in the document (fragment). If a modules attribute is present, then it is
an error, if the content of this element contains elements from a module that
is not specified; spurious module declarations in the modules attributes are
allowed.

The omdoc element acts as an implicit grouping element, just as the
omgroup element to be introduced in Section 11.4. Both have an optional
type attribute; we will discuss its values and meaning in Section 11.4.

Here and in the following we will use tables as the one in Figure 11.1 to
give an overview over the respective OMDoc elements described in a chapter
or section. The first column gives the element name, the second and third
columns specify the required and optional attributes. We will use the fourth
column labeled “DC” to indicate whether an OMDoc element can have a
metadata child, which will be described in the next section. Finally the fifth
column describes the content model — i.e. the allowable children — of the
element. For this, we will use a form of [Backus]19

r Naur Form notation also Err(19)
used in the DTD: #PCDATA stands for “parsed character data”, i.e. text inter-
mixed with legal OMDoc elements.) A synopsis of all elements is provided
in Appendix B. BErr(20)

BErr(21)
Element Attributes D Content

RequiredOptional C

omdoc version,
xmlns

xml:id, type, class, style,
version, modules, theory

+ (〈〈top-level〉〉)*

omgroup xml:id, modules, type, class,
style, theory

+ (〈〈top-level〉〉)*

metadata xml:id, inherits, class, style – 〈〈MDelt〉〉*
ref xref xml:id, type, class, style –
ignore type, comment – ANY

where 〈〈top-level〉〉 stands for top-level OMDoc elements, and 〈〈MDelt〉〉 for those introduced
in Chapter 12

Fig. 11.1. OMDoc Elements for Specifying Document Structure.

EErr(21)

EErr(20)

11.2 Metadata

The World Wide Web was originally built for human consumption, and al-
though everything on it is machine-readable, most of it is not machine-

19 Erratum! Typo: “Backus Naur form” instead of “Bachus Naur Form” (original
text was: “Bachus”)

20 Erratum: ref does permit an xml:id attribute (and this should remain,
as that is important for talking about refs from an RDF point of
view)

21 Erratum: omdoc and omgroup can have an optional theory attribute
as well

document.tex 8694 2010-08-26 18:53:01Z clange

98 11 Document Infrastructure

understandable. The accepted solution is to provide metadata (data about
data) to describe the documents on the web in a machine-understandable
format that can be processed automatically. Metadata commonly specifies as-
pects of a document like title, authorship, language usage, and administrative
aspects like modification dates, distribution rights, and identifiers.

In general, metadata can either be embedded in the respective document,
or be stated in a separate one. The first facilitates maintenance and control
(metadata is always at your fingertips, and it can only be manipulated by
the document’s authors), the second one enables inference and distribution.
OMDoc allows to embed metadata into the document, from where it can be
harvested for external metadata formats, such as the []22

d [Resource Descrip-Err(22)

Err(23) tion Framework]23
r (RDF [LS99]). We use one of the best-known metadata

schemata for documents – the Dublin Core (cf. Sections 12.1 and 12.2). The
purpose of annotating metadata in OMDoc is to facilitate the administra-
tion of documents, e.g. digital rights management, and to generate input for
metadata-based tools, e.g. RDF-based navigation and indexing of document
collections. Unlike most other document formats OMDoc allows to add meta-
data at many levels, also making use of the metadata for document-internal
markup purposes to ensure consistency.

The metadata element contains elements for various metadata formats in-metadata

cluding bibliographic data from the Dublin Core vocabulary (as mentioned
above), licensing information from the Creative Commons Initiative (see Sec-
tion 12.3), as well as information for OpenMath content dictionary manage-
ment. Application-specific metadata elements can be specified by adding cor-
responding OMDoc modules that extend the content model of the metadata

element.
The OMDoc metadata element can be used to provide information about

the document as a whole (as the first child of the omdoc element), as well as
about specific fragments of the document, and even about the top-level mathe-
matical elements in OMDoc. This reinterpretation of bibliographic metadata
as general data about knowledge items allows us to extract document frag-
ments and re-assemble them to new aggregates without losing information
about authorship, source, etc.

11.3 Document Comments

Many content markup formats rely on commenting the source for human un-
derstanding; in fact source comments are considered a vital part of document
markup. However, as XML comments (i.e. anything between “<!--” and
“-->” in a document) need not even be read by some XML parsers, we can-

22 Erratum! RDF as a general data model is independent from XML; RDF/XML
is just one of its possible serializations. (deleted “XML”)

23 Erratum! correct name (original text was: “resource description format”)

document.tex 8694 2010-08-26 18:53:01Z clange

11.3 Document Comments 99

not guarantee that they will survive any XML manipulation of the OMDoc
source.

Therefore, anything that would normally go into comments should be mod-
eled with an omtext element (type comment, if it is a text-level comment; see
Section 14.3) or with the ignore element for persistent comments, i.e. com- ignore

ments that survive processing. The content of the ignore element can be any
well-formed OMDoc, it can occur as an OMDoc top-level element or inside
mathematical texts (see Chapter 14). This element should be used if the au-
thor wants to comment the OMDoc representation, but the end user should
not see their content in a final presentation of the document, so that OMDoc
text elements are not suitable, e.g. in

<ignore type=”todo” comment=”this does not make sense yet, rework”>
<assertion xml:id=”heureka”>. . .</assertion>

</ignore>

Of course, ignore elements can be nested, e.g. if we want to mark up the
comment text (a pure string as used in the example above is not enough to
express the mathematics). This might lead to markup like

<ignore type=”todo” comment=”rework”>
<ignore type=”todo−comment”>
<CMP>This does not make sense yet, in particular, the equation
<OMOBJ>. . .</OMOBJ> cannot be true, think of <OMOBJ>. . .</OMOBJ>

</CMP>
</ignore>
<assertion xml:id=”heureka”>. . .</assertion>

</ignore>

Another good use of the ignore element is to use it as an analogon to the
in-place error markup in OpenMath objects (see Subsection 13.1.2). In this
case, we use the type attribute to specify the kind of error and the content
for the faulty OMDoc fragment. Note that since the whole object must be a
valid OMDoc object (or at least licensed by a DTD or schema), the content
itself must be a well-formed OMDoc fragment. As a consequence, the ignore
element can only be used for “mathematical errors” like sibling CMP or FMP

elements that do not have the same meaning as in Listing 11.1. XML-well-
formedness and validity errors will have to be handled by the XML tools
involved.

Listing 11.1. Marking up Mathematical Errors Using ignore

<ignore type=”CMP−lang−error”
comment=”multilingual CMPs are not translations of each other”>

<assertion xml:id=”ass1”>
<CMP>The proof is trivial</CMP>
<CMP xml:lang=”de”>Der Beweis ist extrem schwer</CMP>

</assertion>
</ignore>

For another use of the ignore element, see Figure 11.2 in Section 11.5.

document.tex 8694 2010-08-26 18:53:01Z clange

100 11 Document Infrastructure

11.4 Document Structure

Like other documents mathematical ones are often divided into units like
chapters, sections, and paragraphs by tags and nesting information. OMDoc
makes these document relations explicit by using the omgroup element withomgroup

an optional attribute type. It can take the values2

sequence for a succession of paragraphs. This is the default, and the normal
way narrative texts are built up from paragraphs, mathematical state-
ments, figures, etc. Thus, if no type is given the type sequence is as-
sumed.

itemize for unordered lists. The children of this type of omgroup will usually
be presented to the user as indented paragraphs preceded by a bullet
symbol. Since the choice of this symbol is purely presentational, OMDoc
use the CSS style or class attributes on the children to specify the
presentation of the bullet symbols (see Section 10.2).

enumeration for ordered lists. The children of this type of omgroup are usu-
ally presented like unordered lists, only that they are preceded by a run-
ning number of some kind (e.g. “1.”, “2.”. . . or “a)”, “b)”. . . ; again the
style or class attributes apply).

sectioning The children of this type of omgroup will be interpreted as sec-
tions. This means that the children will be usually numbered hierarchi-
cally, and their metadata will be interpreted as section heading informa-
tion. For instance the metadata/dc:title information (see Section 12.1
for details) will be used as the section title. Note that OMDoc does not
provide direct markup for particular hierarchical levels like “chapter”,
“section”, or “paragraph”, but assumes that these are determined by the
application that presents the content to the human or specified using the
CSS attributes.

Other values for the type attribute are also admissible, they should be URI
references to documents explaining their intension.

We consider the omdoc element as an implicit omgroup, in order to allow
plugging together the content of different OMDoc documents as omgroups
in a larger document. Therefore, all the attributes of the omdoc element also
appear on omgroup elements and behave exactly like those.

11.5 Sharing and Referring to Document Parts

As the document structure need not be a tree in hypertext documents,
omgroup elements also allow empty ref elements whose xref attribute can beref

used to reference OMDoc elements defined elsewhere. The optional xml:id

2 Version 1.1 of OMDoc also allowed values dataset and labeled-dataset for
marking up tables. These values are deprecated in Version 1.2 of OMDoc, since
we provide tables in module RT; see Section 14.6 for details. Furthermore, Ver-

document.tex 8694 2010-08-26 18:53:01Z clange

11.5 Sharing Document Parts 101

(its value must be document-unique) attribute identifies it and can be used
for building reference labels for the included parts. Even though this attribute
is optional, it is highly recommended to supply it. The type attribute can be
used to describe the reference type. Currently OMDoc supports two values:
include (the default) for in-text replacement and cite for a proper refer-
ence. The first kind of reference requires the OMDoc application to process
the document as if the ref element were replaced with the OMDoc fragment
specified in the xref. The processing of the type cite is application specific.
It is recommended to generate an appropriate label and (optionally) supply
a hyper-reference. There may be more supported values for type in time.

Let R be a ref element of type include. We call the element the URI
in the xref points to its target unless it is an omdoc element; in this case,
the target is an omgroup element which has the same children as the original
omdoc element3.

We call the process of replacing a ref element by its target in a document
ref-reduction, and the document resulting from the process of systemati-
cally and recursively reducing all the ref elements the ref-normal form of
the source document. Note that ref-normalization may not always be possi-
ble, e.g. if the ref-targets do not exist or are inaccessible — or worse yet, if
the relation given by the ref elements is cyclic. Moreover, even if it is possible
to ref-normalize, this may not lead to a valid OMDoc document, e.g. since
ID type attributes that were unique in the target documents are no longer
in the ref-reduced one. We will call a document ref-reducible, iff its ref-
normal form exists, and ref-valid, iff the ref normal form exists and is a
valid OMDoc document.

Note that it may make sense to use documents that are not ref-valid for
narrative-centered documents, such as courseware or slides for talks that only
allude to, but do not fully specify the knowledge structure of the mathematical
knowledge involved. For instance the slides discussed in Section 8.2 do not
contain the theory elements that would be needed to make the documents
ref-valid.

The ref elements also allow to “flatten” the tree structure in a document
into a list of leaves and relation declarations (see Figure 11.2 for an example).
It also makes it possible to have more than one view on a document using
omgroup structures that reference a shared set of OMDoc elements. Note
that we have embedded the ref-targets of the top-level omgroup element into
an ignore comment, so that an OMDoc transformation (e.g. to text form)
does not encounter the same content twice.

sion 1.1 of OMDoc allowed the value narrative, which was synonymous with
sequence.

3 This transformation is necessary, since OMDoc does not allow to nest omdoc

elements, which would be the case if we allowed verbatim replacement for omdoc

elements. As we have stated above, the omdoc has an implicit omgroup element,
and thus behaves like one.

document.tex 8694 2010-08-26 18:53:01Z clange

102 11 Document Infrastructure

<omgroup xml:id=”text”
type=”sequence”>

<omtext xml:id=”t1”>T1</omtext>
<omgroup xml:id=”enum”

type=”enumeration”>
<omtext xml:id=”t2”>T2</omtext>
<omtext xml:id=”t3”>T3</omtext>

</omgroup>
<omtext xml:id=”t4”>T4</omtext>

</omgroup>

↔

<omgroup xml:id=”text” type=”sequence”>
<ref xref=”#t1”/>
<ref xref=”#enum”/>
<ref xref=”#t4”/>

</omgroup>

<ignore type=”targets”
comment=”already referenced”>

<omtext xml:id=”t1”>T1</omtext>
<omtext xml:id=”t2”>T2</omtext>
<omtext xml:id=”t3”>T3</omtext>
<omtext xml:id=”t4”>T4</omtext>

<omgroup xml:id=”enum”
type=”enumeration”>

<ref xref=”#t2”/>
<ref xref=”#t3”/>

</omgroup>
</ignore>

Fig. 11.2. Flattening a Tree Structure

While the OMDoc approach to specifying document structure is a much
more flexible (database-like) approach to representing structured documents4

than the tree model, it puts a much heavier load on a system for present-
ing the text to humans. In essence the presentation system must be able to
recover the left representation from the right one in Figure 11.2. Generally,
any OMDoc element defines a fragment of the OMDoc it is contained in:
everything between the start and end tags and (recursively) those elements
that are reached from it by following the cross-references specified in ref el-
ements. In particular, the text fragment corresponding to the element with
xml:id="text" in the right OMDoc of Figure 11.2 is just the one on the
left.

In Section 10.2 we have introduced the CSS attributes style and class,
which are present on all OMDoc elements. In the case of the ref element,
there is a problem, since the content of these can be incompatible. In general,
the rule for determining the style information for an element is that we treat
the replacement element as if it were a child of the ref element, and then
determine the values of the CSS properties of the ref element by inheritance.

4 The simple tree model is sufficient for simple markup of existing mathematical
texts and to replay them verbatim in a browser, but is insufficient e.g. for gen-
erating individualized presentations at multiple levels of abstractions from the
representation. The OMDoc text model — if taken to its extreme — allows to
specify the respective role and contributions of smaller text units, even down to
the sub-sentence level, and to make the structure of mathematical texts machine-
understandable. Thus, an advanced presentation engine like the ActiveMath
system [SBC+00] can — for instance — extract document fragments based on
the preferences of the respective user.

dc.tex 8645 2010-08-09 09:22:42Z clange

12

Metadata (Modules DC and CC)

Metadata is “data about data” — in the case of OMDoc data about doc-
uments, such as titles, authorship, language usage, or administrative aspects
like modification dates, distribution rights, and identifiers. To accommodate
such data, OMDoc offers the metadata element in many places. The most
commonly used metadata standard is the Dublin Core vocabulary, which is
supported in some form by most formats. OMDoc uses this vocabulary for
compatibility with other metadata applications and extends it for document
management purposes in OMDoc. Most importantly OMDoc extends the
use of metadata from documents to other (even mathematical) elements and
document fragments to ensure a fine-grained authorship and rights manage-
ment. BErr(24)

Element Attributes Content

Req. Optional

dc:creator xml:id, class, style, role text

dc:contributor xml:id, class, style, role text
hline dc:title xml:lang 〈〈math vernacular〉〉
dc:subject xml:lang 〈〈math vernacular〉〉
dc:description xml:lang 〈〈math vernacular〉〉
dc:publisher xml:id, class, style ANY

dc:date action, who ISO 8601

dc:type fixed: "Dataset" or "Text"

dc:format fixed: "application/omdoc+xml"

dc:identifier scheme ANY

dc:source ANY

dc:language ISO 639

dc:relation ANY

dc:rights ANY

for 〈〈math vernacular〉〉 see Section 14.1

Fig. 12.1. Dublin Core Metadata in OMDoc

EErr(24)

24 Erratum: The content Model for dc:creator and cd:contributor is sim-
ple text

dc.tex 8645 2010-08-09 09:22:42Z clange

104 12 Metadata

In the following we will describe the variant of Dublin Core metadata
elements used in OMDoc1. Here, the metadata element can contain any
number of instances of any Dublin Core elements described below in any order.
In fact, multiple instances of the same element type (multiple dc:creator

elements for example) can be interspersed with other elements without change
of meaning. OMDoc extends the Dublin Core framework with a set of roles
(from the MARC relator set [MAR03]) on the authorship elements and with
a rights management system based on the Creative Commons Initiative.

12.1 The Dublin Core Elements (Module DC)

The descriptions in this section are adapted from [DUB03a], and augmented
for the application in OMDoc where necessary. All these elements live in the
Dublin Core namespace http://purl.org/dc/elements/1.1/, for which we
traditionally use the namespace prefix dc:.

dc:title The title of the element — note that OMDoc metadata can be
specified at multiple levels, not only at the document level, in particular,
the Dublin Core dc:title element can be given to assign a title to adc:title

theorem, e.g. the “Substitution Value Theorem”.
The dc:title element can contain mathematical vernacular, i.e. the same
content as the CMP defined in Section 14.1. Also like the CMP element, the
dc:title element has an dc:lang attribute that specifies the language of
the content. Multiple dc:title elements inside a metadata element are
assumed to be translations of each other.

dc:creator A primary creator or author of the publication. Additional con-
tributors whose contributions are secondary to those listed in dc:creatordc:creator

elements should be named in dc:contributor elements. Documents with
multiple co-authors should provide multiple dc:creator elements, each
containing one author. The order of dc:creator elements is presumed to
define the order in which the creators’ names should be presented.
As markup for names across cultures is still un-standardized, OMDoc
recommends that the content of a dc:creator element consists in a single
name (as it would be presented to the user). The dc:creator element has
an optional attribute dc:id so that it can be cross-referenced and a role

attribute to further classify the concrete contribution to the element. We
will discuss its values in Section 12.2.

dc:contributor A party whose contribution to the publication is secondary
to those named in dc:creator elements. Apart from the significance of
contribution, the semantics of the dc:contributor is identical to thatdc:contributor

of dc:creator, it has the same restriction content and carries the same

1 Note that OMDoc1.2 systematically changes the Dublin Core XML tags to
synchronize with the tag syntax recommended by the Dublin Core Initiative.
The tags were capitalized in OMDoc1.1

http://purl.org/dc/elements/1.1/

dc.tex 8645 2010-08-09 09:22:42Z clange

12.1 The Dublin Core Elements (Module DC) 105

attributes plus a dc:lang attribute that specifies the target language in
case the contribution is a translation.

dc:subject This element contains an arbitrary phrase or keyword, the at-
tribute dc:lang is used for the language. Multiple instances of the
dc:subject element are supported per dc:lang for multiple keywords. dc:subject

dc:description A text describing the containing element’s content; the at-
tribute dc:lang is used for the language. As description of mathematical
objects or OMDoc fragments may contain formulae, the content of this
element is of the form “mathematical text” described in Chapter 14. The
dc:description element is only recommended for omdoc elements that dc:description

do not have a CMP group (see Section 14.1), or if the description is sig-
nificantly shorter than the one in the CMPs (then it can be used as an
abstract).

dc:publisher The entity for making the document available in its present
form, such as a publishing house, a university department, or a corporate
entity. The dc:publisher element only applies if the metadata is a direct dc:publisher

child of the root element (omdoc) of a document.
dc:date The date and time a certain action was performed on the element

that contains this. The content is in the format defined by XML Schema
data type dateTime (see [BM01] for a discussion), which is based on the
ISO 8601 norm for dates and times.
Concretely, the format is 〈〈YYYY〉〉-〈〈MM〉〉-〈〈DD〉〉T〈〈hh〉〉:〈〈mm〉〉:〈〈ss〉〉 where
〈〈YYYY〉〉 represents the year, 〈〈MM〉〉 the month, and 〈〈DD〉〉 the day, pre-
ceded by an optional leading “-” sign to indicate a negative number. If the
sign is omitted, “+” is assumed. The letter “T” is the date/time separator
and 〈〈hh〉〉, 〈〈mm〉〉, 〈〈ss〉〉 represent hour, minutes, and seconds respectively.
Additional digits can be used to increase the precision of fractional sec-
onds if desired, i.e the format 〈〈ss〉〉.〈〈sss. . . 〉〉 with any number of digits
after the decimal point is supported. The dc:date element has the at- dc:date

tributes action and who to specify who did what: The value of who is a
reference to a dc:creator or dc:contributor element and [action]25

r is a Err(25)
keyword for the action undertaken. Recommended values include the short
forms updated, created, imported, frozen, review-on, normed with the
obvious meanings. Other actions may be specified by URIs pointing to
documents that explain the action.

dc:type Dublin Core defines a vocabulary for the document types in [DUB03b].
The best fit values for OMDoc are
Dataset defined as “information encoded in a defined structure (for ex-

ample lists, tables, and databases), intended to be useful for direct
machine processing .”

Text defined as “a resource whose content is primarily words for reading.
For example – books, letters, dissertations, poems, newspapers, arti-

25 Erratum! wrong attribute name (original text was: “dc”)

dc.tex 8645 2010-08-09 09:22:42Z clange

106 12 Metadata

cles, archives of mailing lists. Note that facsimiles or images of texts
are still of the genre text.”

Collection defined as “an aggregation of items. The term collection
means that the resource is described as a group; its parts may be sep-
arately described and navigated”.

The more appropriate should be selected for the element that contains
the dc:type. If it consists mainly of formal mathematical formulae, thendc:type

Dataset is better, if it is mainly given as text, then Text should be used.
More specifically, in OMDoc the value Dataset signals that the order of
children in the parent of the metadata is not relevant to the meaning. This
is the case for instance in formal developments of mathematical theories,
such as the specifications in Chapter 18.

dc:format The physical or digital manifestation of the resource. Dublin Core
suggests using MIME types [FB96]. Following [MSLK01] we fix the content
of the dc:format element to be the string application/omdoc+xml as thedc:format

MIME type for OMDoc.
dc:identifier A string or number used to uniquely identify the element.

The dc:identifier element should only be used for public identifiersdc:identifier

like ISBN or ISSN numbers. The numbering scheme can be specified in
the scheme attribute.

dc:source Information regarding a prior resource from which the publication
was derived. We recommend using either a URI or a scientific reference
including identifiers like ISBN numbers for the content of the dc:sourcedc:source

element.
dc:relation Relation of this document to others. The content model of the

dc:relation element is not specified in the OMDoc format.dc:relation

dc:language If there is a primary language of the document or element,
this can be specified here. The content of the dc:language element mustdc:language

be an ISO 639 norm two-letter language specifier, like en =̂ English,
de =̂ German, fr =̂ French, nl =̂ Dutch,

dc:rights Information about rights held in and over the document or ele-
ment content or a reference to such a statement. Typically, a dc:rightsdc:rights

element will contain a rights management statement, or reference a service
providing such information. dc:rights information often encompasses In-
tellectual Property rights (IPR), Copyright, and various other property
rights. If the dc:rights element is absent (and no dc:rights information
is inherited), no assumptions can be made about the status of these and
other rights with respect to the document or element.
OMDoc supplies specialized elements for the Creative Commons licenses
to support the sharing of mathematical content. We will discuss them in
Section 12.3.

Note that Dublin Core also defines a Coverage element that specifies the place
or time which the publication’s contents addresses. This does not seem appro-

dc.tex 8645 2010-08-09 09:22:42Z clange

12.2 Roles in Dublin Core Elements 107

priate for the mathematical content of OMDoc, which is largely independent
of time and geography.

12.2 Roles in Dublin Core Elements

Because the Dublin Core metadata fields for dc:creator and dc:contributor

do not distinguish roles of specific parties (such as author, editor, and illustra-
tor), we will follow the Open eBook specification [Gro99] and use an optional
role attribute for this purpose, which is adapted for OMDoc from the MARC
relator code list [MAR03].

aut (author) Use for a person or corporate body chiefly responsible for the
intellectual content of an element. This term may also be used when more
than one person or body bears such responsibility.

ant (scientific/bibliographic antecedent) Use for the author responsible for a
work upon which the element is based.

clb (collaborator) Use for a person or corporate body that takes a limited
part in the elaboration of a work of another author or that brings com-
plements (e.g., appendices, notes) to the work of another author.

edt (editor) Use for a person who prepares a document not primarily his/her
own for publication, such as by elucidating text, adding introductory or
other critical matter, or technically directing an editorial staff.

ths (thesis advisor) Use for the person under whose supervision a degree
candidate develops and presents a thesis, memoir, or text of a dissertation.

trc (transcriber) Use for a person who prepares a handwritten or typewritten
copy from original material, including from dictated or orally recorded
material. This is also the role (on the dc:creator element) for someone
who prepares the OMDoc version of some mathematical content.

trl (translator) Use for a person who renders a text from one language into
another, or from an older form of a language into the modern form. The
target language can be specified by dc:lang.

As OMDoc documents are often used to formalize existing mathematical
texts for use in mechanized reasoning and computation systems, it is some-
times subtle to specify authorship. We will discuss some typical examples to
give a guiding intuition. Listing 12.1 shows metadata for a situation where
editor R gives the sources (e.g. in LATEX) of an element written by author A
to secretary S for conversion into OMDoc format.

Listing 12.1. A Document with Editor (edt) and Transcriber (trc)

1 <metadata>
<dc:title>The Joy of Jordan C∗ Triples</dc:title>
<dc:creator role=”aut”>A</dc:creator>
<dc:contributor role=”edt”>R</dc:contributor>
<dc:contributor role=”trc”>S</dc:contributor>

6 </metadata>

dc.tex 8645 2010-08-09 09:22:42Z clange

108 12 Metadata

In Listing 12.2 researcher R formalizes the theory of natural numbers
following the standard textbook B (written by author A). In this case we
recommend the first declaration for the whole document and the second one
for specific math elements, e.g. a definition inspired by or adapted from one
in book B.

Listing 12.2. A Formalization with Scientific Antecedent (ant)

<omdoc xml:id=”NNat” version=”1.2” xmlns:dc=”http://purl.org/dc/elements/1.1/”>
<metadata><dc:title>Natural Numbers</dc:title></metadata>
. . .

4 <theory xml:id=”NNat.thy”>
<metadata>
<dc:title>Natural Numbers</dc:title>
<dc:creator role=”aut”>R</dc:creator>
<dc:contributor role=”ant”>A</dc:contributor>

9 <dc:source>B</dc:source>
</metadata>
. . .

</theory>
. . .

14 </omdoc>

12.3 Managing Rights by Creative Commons Licenses
(Module CC)

The Dublin Core vocabulary provides the dc:rights element for informa-
tion about rights held in and over the document or element content, but
leaves the content model unspecified. While it is legally sufficient to describe
this information in natural language, a content markup format like OMDoc
should support a machine-understandable format. As one of the purposes of
the OMDoc format is to support the sharing and re-use of mathematical
content, OMDoc provides markup for rights management via the Creative
Commons (CC) licenses. Digital rights management (DRM) and licensing of
intellectual property has become a hotly debated topic in the last years. We
feel that the Creative Commons licenses that encourage sharing of content
and enhance the (scientific) public domain while giving authors some control
over their intellectual property establish a good middle ground. Specifying
rights is important, since in the absence of an explicit or implicit (via in-
heritance) dc:rights element no assumptions can be made about the status
of the document or fragment. Therefore OMDoc adds another child to the
metadata element. This cc:license element is a symbolic representation ofcc:license

the Creative Commons legal framework, adapted to the OMDoc setting: The
Creative Commons Metadata Initiative specifies various ways of embedding
CC metadata into documents and electronic artefacts like pictures or MP3
recordings. As OMDoc is a source format, from which various presentation
formats are generated, we need a content representation of the CC metadata
from which the end-user representations for the respective formats can be
generated.

dc.tex 8645 2010-08-09 09:22:42Z clange

12.3 Managing Rights 109

Element Attributes Content

Req. Optional

cc:license jurisdiction permissions, prohibitions, requirements

cc:permissions reproduction,
distribution,
derivative works

EMPTY

cc:prohibitions commercial use EMPTY

cc:requirements notice,
copyleft,
attribution

EMPTY

Fig. 12.2. The OMDoc Elements for Creative Commons Metadata

The Creative Commons Metadata Initiative [Crea] divides the license char-
acteristics in three types: permissions, prohibitions and requirements,
which are represented by the three elements, which can occur as children of
the cc:license element. The cc:license element has two optional argu-
ment:

jurisdiction which allows to specify the country in whose jurisdiction the
license will be enforced2. It’s value is one of the top-level domain codes of
the “Internet Assigned Names Authority (IANA)” [IAN]. If this attribute
is absent, then the original US version of the license is assumed.

version which allows to specify the version of the license. If the attribute is
not present, then the newest released version is assumed (version 2.0 at
the time of writing this book)

The following three empty elements can occur as children of the cc:license
element; their attribute specify the rights bestowed on the user by the license.
All these elements have the namespace http://creativecommons.org/ns,
for which we traditionally use the namespace prefix cc:.

• cc:permissions are the rights granted by the license, to model them cc:permissions

the element has three attributes, which can have the values permitted

(the permission is granted by the license) and prohibited (the permission
isn’t):

Attribute Permission Default

reproduction the work may be reproduced permitted

distribution the work may be distributed, publicly displayed,
and publicly performed

permitted

derivative works derivative works may be created and reproduced permitted

• cc:prohibitions are the things the license prohibits. cc:prohibitions

Attribute Prohibition Default

commercial use stating that rights may be exercised for commer-
cial purposes.

permitted

• cc:requirements are restrictions imposed by the license. cc:requirements

2 The Creative Commons Initiative is currently in the process of adapting their
licenses to jurisdictions other than the USA, where the licenses originated.
See [Crec] for details and to check for progress.

http://creativecommons.org/ns

dc.tex 8645 2010-08-09 09:22:42Z clange

110 12 Metadata

Attribute Requirement Default

notice copyright and license notices must be kept intact required

attribution credit must be given to copyright holder and/or au-
thor

required

copyleft derivative works, if authorized, must be licensed un-
der the same terms as the work

required

This vocabulary is directly modeled after the Creative Commons Meta-
data [Creb] which defines the meaning, and provides an RDF [LS99] based
implementation. As we have discussed in Section 11.2, OMDoc follows an ap-
proach that specifies metadata in the document itself; thus we have provided
the elements described here. In contrast to many other situations in OMDoc,
the rights model is not extensible, since only the current model is backed by
legal licenses provided by the creative commons initiative.

Listing 12.3 specifies a license grant using the Creative Commons “share-
alike” license: The copyright is retained by the author, who licenses the content
to the world, allowing others to reproduce and distribute it without restric-
tions as long as the copyright notice is kept intact. Furthermore, it allows
others to create derivative works based on the content as long as it attributes
the original work of the author and licenses the derived work under the iden-
tical license (i.e. the Creative Commons “share-alike” as well).

Listing 12.3. A Creative Commons License

1 <metadata>
<dc:rights>Copyright (c) 2004 Michael Kohlhase</dc:rights>
<license jurisdiction =”de” xmlns=”http://creativecommons.org/ns”>
<permissions reproduction=”permitted” distribution=”permitted”

derivative works=”permitted”/>
6 <prohibitions commercial use=”permitted”/>

<requirements notice=”required” copyleft=”required” attribution=”required”/>
</license>

</metadata>

12.4 Inheritance of Metadata

The metadata elements can be added to many of the OMDoc elements, in-
cluding grouping elements that can contain others that contain metadata. To
avoid duplication, OMDoc assumes a priority-union semantics for the Dublin
Core elements dc:creator, dc:contributor, dc:date, dc:type, dc:format,
dc:source, dc:language, and dc:rights. A Dublin Core element, e.g. dc:creator
that is missing in lower metadata declaration (i.e. there is no element of the
same name) is inherited from the upper ones. So in Figure 12.3, the two boxes
are equivalent, since the metadata in theory th1 and in definition d1 is inher-
ited from the main declaration in the top-level omdoc element. If there is a
metadata element of the same name present, the closer one takes precedence.BErr(26)

EErr(26)

26 Erratum: for attribute on definition should be of type NCNames

dc.tex 8645 2010-08-09 09:22:42Z clange

12.4 Inheritance of Metadata 111

<omdoc xml:id=”o1”>
<metadata>
<dc:creator>MiKo</dc:creator>
</metadata>

<theory xml:id=”th1”>

<symbol name=”s1”/>
<definition for=”s1” xml:id=”d1”/>

</theory>

<theory xml:id=”th2”>
<metadata>
<dc:creator>Paul</dc:creator>
</metadata>
<symbol name=”s2”/>
<definition for=”s2” xml:id=”d1”>
<metadata>
<dc:creator>MiKo</dc:creator>
</metadata>
</definition>
</theory>
</omdoc>

←→

<omdoc xml:id=”o1”>
<metadata>
<dc:creator>MiKo</dc:creator>
</metadata>

<theory xml:id=”th1”>
<metadata>
<dc:creator>MiKo</dc:creator>
</metadata>

<symbol name=”s1”/>
<definition for=”s1” xml:id=”d1”>
<metadata>
<dc:creator>MiKo</dc:creator>
</metadata>
</definition>
</theory>

<theory xml:id=”th2”>
<metadata>
<dc:creator>Paul</dc:creator>
</metadata>
<symbol name=”s2”/>
<definition for=”s2” xml:id=”d1”>
<metadata>
<dc:creator>MiKo</dc:creator>
</metadata>
</definition>
</theory>
</omdoc>

Fig. 12.3. Inheritance of Metadata

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

13

Mathematical Objects (Module MOBJ)

A distinguishing feature of mathematics is its ability to represent and manip-
ulate ideas and objects in symbolic form as mathematical formulae. OMDoc
uses the OpenMath and Content-MathML formats to represent mathemat-
ical formulae and objects. Therefore, the OpenMath standard [BCC+04]
and the MathML 2.0 recommendation (second edition) [ABC+03a] are part
of this specification. We will review OpenMath objects (top-level element
om:OMOBJ) in Section 13.1 and Content-MathML (top-level element m:math)
in Section 13.2, and specify an OMDoc element for entering mathematical
formulae (element legacy) in Section 13.5.

Element Attributes Content

Required Optional

OMOBJ id class, style See Figure 13.2
m:math id, xlink:href See Figure 13.5
legacy format xml:id, formalism #PCDATA

Fig. 13.1. Mathematical Objects in OMDoc

The recapitulation in the next two sections is not normative, please consult
Section 2.1 for a general introduction and history and the OpenMath stan-
dard and the MathML 2.0 Recommendation for details and clarifications.

13.1 OpenMath

OpenMath is a markup language for mathematical formulae that concen-
trates on the meaning of formulae building on an extremely simple kernel
(markup primitive for syntactical forms of content formulae), and adds an
extension mechanism for mathematical concepts, the content dictionaries.
These are machine-readable documents that define the meaning of mathemat-
ical concepts expressed by OpenMath symbols. The current released version

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

114 13 Mathematical Objects

of the OpenMath standard is OpenMath2, which incorporates many of the
experiences of the last years, particularly with embedding OpenMath into
the OMDoc format.

We will only review the XML encoding of OpenMath objects here, since
it is most relevant to the OMDoc format. All elements of the XML encoding
live in the namespace http://www.openmath.org/OpenMath, for which we
traditionally use the namespace prefix om:.

Element Attributes Content

Required Optional

OMOBJ id, cdbase, class, style 〈〈OMel〉〉?
OMS cd, name id, cdbase, class, style EMPTY

OMV name id, class, style EMPTY

OMA id, cdbase, class, style 〈〈OMel〉〉*
OMBIND id, cdbase, class, style 〈〈OMel〉〉,OMBVAR,〈〈OMel〉〉
OMBVAR id, class, style (OMV | OMATTR)+

OMFOREIGN id, cdbase, class, style ANY

OMATTR id, cdbase, class, style 〈〈OMel〉〉
OMATP id, cdbase, class, style (OMS, (〈〈OMel〉〉|OMFOREIGN))+
OMI id, class, style [0-9]*

OMB id, class, style #PCDATA

OMF id, class, style, dec, hex #PCDATA

OME id, class, style 〈〈OMel〉〉?
OMR href 〈〈OMel〉〉?
where 〈〈OMel〉〉 is (OMS|OMV|OMI|OMB|OMSTR|OMF|OMA|OMBIND|OME|OMATTR)

Fig. 13.2. OpenMath Objects in OMDoc

13.1.1 The Representational Core of OpenMath

The central construct of the OpenMath is that of an OpenMath object
(represented by the om:OMOBJ element in the XML encoding), which has aom:OMOBJ

tree-like representation made up of applications (om:OMA), binding structures
om:OMA

(om:OMBIND using om:OMBVAR to tag bound variables), variables (om:OMV), and
om:OMV symbols (om:OMS).

om:OMS
The om:OMA element contains representations of the function and its argu-

ment in “prefix-” or “Polish notation”, i.e. the first child is the representation
of the function and all the subsequent ones are representations of the argu-
ments in order.

Objects and concepts that carry meaning independent of the local context
(they are called symbols in OpenMath) are represented as om:OMS elements,
where the value of the name attribute gives the name of the symbol. The cd

attribute specifies the relevant content dictionary, a document that defines the
meaning of a collection of symbols including the one referenced by the om:OMS.
This document can either be an original OpenMath content dictionary or an
OMDoc document that serves as one (see Subsection 15.6.2 for a discussion).

http://www.openmath.org/OpenMath

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

13.1 OpenMath 115

The optional cdbase on an om:OMS element contains a URI that can be used BErr(27)
to disambiguate the content dictionary. Alternatively, the cdbase attribute
can be given on an OpenMath element that is a parent to the om:OMS in
question: The om:OMS inherits the cdbase of the nearest ancestor (inducing
the usual XML scoping rules for declarations). EErr(27)

The OpenMath2 standard proposes the following mechanism for deter-
mining a canonical identifying URI for the symbol declaration referenced
by an OpenMath symbol of the form <OMS cd="foo" name="bar"/> with
the cdbase-value e.g. http://www.openmath.org/cd: it is the URI reference
http://www.openmath.org/cd/foo#bar, which by convention identifies an
omcd:CDDefinition element with a child omcd:Name whose value is bar in
a content dictionary resource http://www.openmath.org/cd/foo.ocd (see
Subsection 2.1.2 for a very brief introduction to OpenMath content dictio-
naries).

Variables are represented as om:OMV element. As variables do not carry
a meaning independent of their local content, om:OMV only carries a name

attribute (see Section 13.4 for further discussion).
For instance, the formula sin(x) would be modeled as an application of

the sin function (which in turn is represented as an OpenMath symbol) to
a variable:

<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
<OMA cdbase=”http://www.openmath.org/cd”>
<OMS cd=”transc1” name=”sin”/>
<OMV name=”x”/>

</OMA>
</OMOBJ>

In our case, the function sin is represented as an om:OMS element with name
sin from the content dictionary transc1. The om:OMS inherits the cdbase-
value http://www.openmath.org/cd, which shows that it comes from the
OpenMath standard collection of content dictionaries from the om:OMA ele-
ment above. The variable x is represented in an om:OMV element with name-
value x.

For the om:OMBIND element consider the following representation of the om:OMBIND

formula ∀x.sin(x) ≤ π.

<OMOBJ cdbase=”http://www.openmath.org/cd”>
<OMBIND>
<OMS cd=”quant1” name=”forall”/>
<OMBVAR><OMV name=”x”/></OMBVAR>
<OMA>
<OMS cd=”arith1” name=”leq”/>
<OMA><OMS cd=”transc1” name=”sin”/><OMV name=”x”/></OMA>
<OMS cd=”nums1” name=”pi”/>

</OMA>
</OMBIND>

</OMOBJ>

27 Erratum(clarification): It should be made clear that this inheritance
mechanism is extended by the OMDoc format. See section 3.1 of the
errata document for details

http://www.openmath.org/cd
http://www.openmath.org/cd/foo#bar
http://www.openmath.org/cd/foo.ocd
http://www.openmath.org/cd

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

116 13 Mathematical Objects

The om:OMBIND element has exactly three children, the first one is a “binding
operator”1 — in this case the universal quantifier, the second one is a list of
bound variables that must be encapsulated in an om:OMBVAR element, and theom:OMBVAR

third is the body of the binding object, in which the bound variables can be
used. OpenMath uses the om:OMBIND element to unambiguously specify the
scope of bound variables in expressions: the bound variables in the om:OMBVAR
element can be used only inside the mother om:OMBIND element, moreover they
can be systematically renamed without changing the meaning of the binding
expression. As a consequence, bound variables in the scope of an om:OMBIND

are distinct as OpenMath objects from any variables outside it, even if they
share a name.

OpenMath offers an element for annotating (parts of) formulae with ex-
ternal information (e.g. MathML or LATEX presentation): the om:OMATTRom:OMATTR

element that pairs an OpenMath object with an attribute-value list. To
annotate an OpenMath object, it is embedded as the second child in an
om:OMATTR element. The attribute-value list is specified by children of the
preceding om:OMATP (Attribute value Pair) element, which has an even num-om:OMATP

ber of children: children at odd positions must be om:OMS (specifying the
attribute, they are called keys or features)2, and children at even positions
are the values of the keys specified by their immediately preceding siblings.
In the OpenMath fragment in Listing 13.1 the expression x + π is anno-
tated with an alternative representation and a color. Listing 13.4 has a more
complex one involving types.

Listing 13.1. Associating Alternate Representations with an OpenMath Object

<OMATTR>
<OMATP>
<OMS cd=”alt−rep” name=”ascii”/>
<OMSTR>(x+1)</OMSTR>
<OMS cd=”alt−rep” name=”svg”/>
<OMFOREIGN encoding=”application/svg+xml”>
<svg xmlns=’http://www.w3.org/2000/svg’>. . .</svg>

</OMFOREIGN>
<OMS cd=”pres” name=”color”/>
<OMS cd=”pres” name=”red”/>

</OMATP>
<OMA>
<OMS cd=”arith1” name=”plus”/>
<OMV name=”x”/>
<OMS cd=”nums1” name=”pi”/>

1 The binding operator must be a symbol which either has the role binder assigned
by the OpenMath content dictionary (see [BCC+04] for details) or the symbol
declaration in the OMDoc content dictionary must have the value binder for
the attribute role (see Subsection 15.2.1).

2 There are two kinds of keys in OpenMath distinguished according to the role

value on their symbol declaration in the contentdictionary: attribution specifies
that this attribute value pair may be ignored by an application, so it should
be used for information which does not change the meaning of the attributed
OpenMath object. The role is used for keys that modify the meaning of the
attributed OpenMath object and thus cannot be ignored by an application.

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

13.1 OpenMath 117

</OMA>
</OMATTR>

A special application of the om:OMATTR element is associating non-Open-
Math objects with OpenMath objects. For this, OpenMath2 allows to use
an om:OMFOREIGN element in the even positions of an om:OMATP. This element om:OMFOREIGN

can be used to hold arbitrary XML content (in our example above SVG: Scal-
able Vector Graphics [JFF02]), its required encoding attribute specifies the
format of the content. We recommend a MIME type [FB96] (see Section 19.4
for an application).

13.1.2 Programming Extensions of OpenMath Objects

For representing objects in computer algebra systems OpenMath also pro-
vides other basic data types: om:OMI for integers, om:OMB for byte arrays, om:OMI

om:OMB
om:OMSTR for strings, and om:OMF for floating point numbers. These do not

om:OMSTR

om:OMF

play a large role in the context of OMDoc, so we refer the reader to the
OpenMath standard [BCC+04] for details.

The om:OME element is used for in-place error markup in OpenMath ob-

om:OME

jects, it can be used almost everywhere in OpenMath elements. It has two
children; the first one is an error operator3, i.e. an OpenMath symbol that
specifies the kind of error, and the second one is the faulty OpenMath ob-
ject fragment. Note that since the whole object must be a valid OpenMath
object, the second child must be a well-formed OpenMath object fragment.
As a consequence, the om:OME element can only be used for “semantic errors”
like non-existing content dictionaries, out-of-bounds errors, etc. XML-well-
formedness and DTD-validity errors will have to be handled by the XML
tools involved. In the following example, we have marked up two errors in a
faulty representation of sin(π). The outer error flags an arity violation (the
function sin only allows one argument), and the inner one flags the typo in
the representation of the constant π (we used the name po instead of pi).

<OME>
<OMS cd=”type−error” name=”arity−violation”/>
<OMA>
<OMS cd=”transc1” name=”sin”/>
<OME>
<OMS cd=”error” name=”unexpected symbol”/>
<OMS cd=”nums1” name=”po”/>

</OME>
<OMV name=”x”/>

</OMA>
</OME>

As we can see in this example, errors can be nested to encode multiple faults
found by an OpenMath application.

3 An error operator is like a binding operator in footnote 1, only the symbol has
role error.

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

118 13 Mathematical Objects

13.1.3 Structure Sharing in OpenMath

As we have seen above, OpenMath objects are essentially trees, where the
leaves are symbols or variables. In many applications mathematical objects
can grow to be very large, so that more space-efficient representations are
needed. Therefore, OpenMath2 supports structure sharing4 in OpenMath
objects. In Figure 13.3 we have contrasted the tree representation of the object
1+1+1+1+1+1+1+1 with the structure-shared one, which represents the
formula as a directed acyclic graph (DAG). As any DAG can be exploded into
a tree by recursively copying all sub-graphs that have more than one incoming
graph edge, DAGs can conserve space by structure sharing. In fact the tree
on the left in Figure 13.3 is exponentially larger than the corresponding DAG
on the right.

·

d

·

1 1 1 1 1 1 1 1

+ + + +

+ +

+

1

+

+

+

Tree DAG

2d − 1 nodes d nodes

Fig. 13.3. Structure Sharing by Directed Acyclic Graphs

To support DAG structures, OpenMath2 provides the (optional) at-
tribute id on all OpenMath objects and an element om:OMR5 for the purposeom:OMR

of cross-referencing. The om:OMR element is empty and has the required at-
tribute href; The OpenMath element represented by this om:OMR element
is a copy of the OpenMath element pointed to in the href attribute. Note

4 Structure sharing is a well-known technique in computer science that tries to gain
space efficiency in algorithms by re-using data structures that have already been
created by pointing to them rather than copying.

5 OpenMath1 and OMDoc1.0 did now know structure sharing, OMDoc1.1
added xref attributes to the OpenMath elements om:OMOBJ, om:OMA, om:OMBIND
and om:OMATTR instead of om:OMR elements. This usage is deprecated in OM-
Doc1.2, in favor of the om:OMR-based solution from the OpenMath2 standard.
Obviously, both representations are equivalent, and a transformation from xref-
based mechanism to the om:OMR-based one is immediate.

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

13.1 OpenMath 119

that the representation of the om:OMR element is structurally equal, but not
identical to the element it points to.

Using the om:OMR element, we can represent the OpenMath objects in
Figure 13.3 as the XML representations in Figure 13.4.

Shared Exploded

<OMOBJ>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMA id=”t1”>
<OMS cd=”nat” name=”plus”/>
<OMA id=”t11”>
<OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMI>1</OMI>

</OMA>
<OMR href=”#t11”/>

</OMA>
<OMR href=”#t1”/>

</OMA>
</OMOBJ>

<OMOBJ>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMI>1</OMI>

</OMA>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMI>1</OMI>

</OMA>
</OMA>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMI>1</OMI>

</OMA>
<OMA>
<OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMI>1</OMI>

</OMA>
</OMA>

</OMA>
</OMOBJ>

Fig. 13.4. The OpenMath Objects from Figure 13.3 in XML Encoding

To ensure that the XML representations actually correspond to directed
acyclic graphs, the occurrences of the om:OMR must obey the global acyclic-
ity constraint below, where we say that an OpenMath element dominates
all its children and all elements they dominate; The om:OMR also dominates
its target6, i.e. the element that carries the id attribute pointed to by the
href attribute. For instance, in the representation in Figure 13.4 the om:OMA

element with xml:id="t1" and also the second om:OMA element dominate the
om:OMA element with xml:id="t11".

OpenMath Acyclicity Constraint:
An OpenMath element may not dominate itself.

6 The target of an OpenMath element with an id attribute is defined analogously

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

120 13 Mathematical Objects

Listing 13.2. A Simple Cycle

<OMOBJ>
<OMA id=”foo”>
<OMS cd=”nat” name=”divide”/>
<OMI>1</OMI>
<OMA><OMS cd=”nat” name=”plus”/>
<OMI>1</OMI>
<OMR href=”#foo”/>

</OMA>
</OMA>

</OMOBJ>

In Listing 13.2 the om:OMA element with xml:id="foo" dominates its third
child, which dominates the om:OMR with href="foo", which dominates its
target: the om:OMA element with xml:id="foo". So by transitivity, this ele-
ment dominates itself, and by the acyclicity constraint, it is not the XML
representation of an OpenMath object. Even though it could be given the
interpretation of the continued fraction

1

1 + 1
1+···

this would correspond to an infinite tree of applications, which is not admit-
ted by the OpenMath standard. Note that the acyclicity constraint is not
restricted to such simple cases, as the example in Listing 13.3 shows. Here,
the om:OMA with xml:id="bar" dominates its third child, the om:OMR element
with href="baz", which dominates its target om:OMA with xml:id="baz",
which in turn dominates its third child, the om:OMR with href="bar", this
finally dominates its target, the original om:OMA element with xml:id="bar".
So again, this pair of OpenMath objects violates the acyclicity constraint
and is not the XML encoding of an OpenMath object.

Listing 13.3. A Cycle of Order Two

<OMOBJ> <OMOBJ>
<OMA id=”bar”> <OMA id=”baz”>
<OMS cd=”nat” name=”plus”/> <OMS cd=”nat” name=”plus”/>
<OMI>1</OMI> <OMI>1</OMI>
<OMR href=”#baz”/> <OMR href=”#bar”/>

</OMA> </OMA>
</OMOBJ> </OMOBJ>

13.2 Content MathML

Content-MathML is a content markup format that represents the abstract
structure of formulae in trees of logical sub-expressions much like OpenMath.
However, in contrast to that, Content-MathML provides a lot of primitive to-
kens and constructor elements for the K-14 fragment of mathematics (Kinder-
garten to 14th grade (i.e. undergraduate college level)).

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

13.2 Content MathML 121

The current released version of the MathML recommendation is the
second edition of MathML 2.0 [ABC+03a], a maintenance release for the
MathML 2.0 recommendation [ABC+03b] that cleans up many semantic
issues in the content MathML part. We will now review those parts of
MathML 2.0 that are relevant to OMDoc; for the full story see [ABC+03a].

Even though OMDoc allows full Content-MathML, we will advocate
the use of the Content-MathML fragment described in this section, which is
largely isomorphic to OpenMath (see Subsection 13.2.2 for a discussion).

Element Attributes Content

Required Optional

m:math id, xlink:href 〈〈CMel〉〉+
m:apply id, xlink:href m:bvar?,〈〈CMel〉〉*
m:csymbol definitionURL id, xlink:href m:EMPTY

m:ci id, xlink:href #PCDATA

m:cn id, xlink:href ([0-9]|,|.)(*|e([0-9]|,|.)*)?

m:bvar id, xlink:href m:ci|m:semantics

m:semantics id, xlink:href,
definitionURL

〈〈CMel〉〉,(m:annotation |
m:annotation-xml)*

m:annotation definitionURL,
encoding

#PCDATA

m:annotation-xml definitionURL,
encoding

ANY

where 〈〈CMel〉〉 is m:apply|m:csymbol|m:ci|m:cn|m:semantics

Fig. 13.5. Content-MathML in OMDoc

13.2.1 The Representational Core of Content-MathML

The top-level element of MathML is the m:math7 element, see Figure 13.7 for m:math

an example. Like OpenMath, Content-MathML organizes the mathematical
objects into a functional tree. The basic objects (MathML calls them token
elements) are

identifiers (element m:ci) corresponding to variables. The content of the m:ci

m:ci element is arbitrary Presentation-MathML, used as the name of
the identifier.

numbers (element m:cn) for number expressions. The attribute type can be m:cn

used to specify the mathematical type of the number, e.g. complex, real,
or integer. The content of the m:cn element is interpreted as the value
of the number expression.

symbols (element m:csymbol) for arbitrary symbols. Their meaning is de- m:csymbol

termined by a definitionURL attribute that is a URI reference that

7 For DTD validation OMDoc uses the namespace prefix “m:” for MathML el-
ements, since the OMDoc DTD needs to include the MathML DTD with an
explicit namespace prefix, as both MathML and OMDoc have a selector ele-
ment that would clash otherwise (DTDs are not namespace-aware).

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

122 13 Mathematical Objects

points to a symbol declaration in a defining document. The content of
the m:csymbol element is a Presentation-MathML representation that
used to depict the symbol.

Apart from these generic elements, Content-MathML provides a set of about
80 empty content elements that stand for objects, functions, relations, and
constructors from various basic mathematic fields.

The m:apply element does double duty in Content-MathML: it is notm:apply

only used to mark up applications, but also represents binding structures if
it has an m:bvar child; see Figure 13.7 below for a use case in a universalm:bvar

quantifier.
The m:semantics element provides a way to annotate Content-MathMLm:semantics

elements with arbitrary information. The first child of the m:semantics ele-
ment is annotated with the information in the m:annotation-xml (for XML-m:annotation-xml

based information) and m:annotation (for other information) elements that
m:annotation

follow it. These elements carry definitionURL attributes that point to a “def-
inition” of the kind of information provided by them. The optional encoding
is a string that describes the format of the content.

13.2.2 OpenMath vs. Content MathML

OpenMath and MathML are well-integrated; there are semantics-preserving
converters between the two formats. MathML supports the m:semantics el-
ement, that can be used to annotate MathML presentations of mathematical
objects with their OpenMath encoding. Analogously, OpenMath supports
the presentation symbol in the om:OMATTR element, that can be used for an-
notating with MathML presentation. OpenMath is the designated extension
mechanism for MathML beyond K-14 mathematics: Any symbol outside can
be encoded as a m:csymbol element, whose definitionURL attribute points
to the OpenMath CD that defines the meaning of the symbol. Moreover all
of the MathML content elements have counterparts in the OpenMath core
content dictionaries [OMC08]. For the purposes of OMDoc, we will consider
the various representations following four representations of a content sym-
bol in Figure 13.6 as equivalent. Note that the URI in the definitionURL

attribute does not point to a specific file, but rather uses its base name for
the reference. This allows a MathML (or OMDoc) application to select the
format most suitable for it.

In Figure 13.7 we have put the OpenMath and content MathML encod-
ing of the law of commutativity for the real numbers side by side to show the
similarities and differences. There is an obvious line-by-line similarity for the
tree constructors and token elements. The main difference is the treatment of
types and variables.

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

13.3 Representing Types in Content-MathML and OpenMath 123

<m:plus/>

Content-MathML token element

<m:plus definitionURL="http://www.openmath.org/cd/arith1#plus"/>

Content-MathML token element with explicit pointer

<m:csymbol definitionURL="http://www.openmath.org/cd/arith1#plus"/>

empty Content-MathML m:csymbol

<m:csymbol definitionURL="http://www.openmath.org/cd/arith1#plus">

<m:mo>+</m:mo>

</m:csymbol>

Content-MathML m:csymbol with presentation

<OMS cdbase="http://www.openmath.org/cd" cd="arith1" name="plus"/>

OpenMath symbol

Fig. 13.6. Four equivalent Representations of a Content Symbol

13.3 Representing Types in Content-MathML and
OpenMath

Types are representations of certain simple sets that are treated specially in
(human or mechanical) reasoning processes. In typed representations vari-
ables and constants are usually associated with types to support more guided
reasoning processes. Types are structurally like mathematical objects (i.e. ar-
bitrary complex trees). Since types are ubiquitous in representations of math-
ematics, we will briefly review the best practices for representing them in
OMDoc.

MathML supplies the type attribute to specify types that can be taken
from an open-ended list of type names. OpenMath uses the om:OMATTR ele-
ment to associate a type (in this case the set of real numbers as specified in
the setname1 content dictionary) with the variable, using the feature symbol
type from the sts content dictionary. This mechanism is much more heavy-
weight in our special case, but also more expressive: it allows to use arbitrary
content expressions for types, which is necessary if we were to assign e.g. the
type (R→ R)→ (R→ R) for functionals on the real numbers. In such cases,
the second edition of the MathML2 Recommendation advises a construc-
tion using the m:semantics element (see [KD03b] for details). Listings 13.4
and 13.5 show the realizations of a quantification over a variable of functional
type in both formats.

Listing 13.4. A Complex Type in OpenMath

<OMOBJ>
<OMBIND>
<OMS cd=”quant1” name=”forall”/>
<OMBVAR>

5 <OMATTR>
<OMATP>
<OMS cd=”sts” name=”type”/>

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

124 13 Mathematical Objects

OpenMath MathML

<OMOBJ>
<OMBIND>
<OMS cd=”quant1” name=”forall”/>
<OMBVAR>
<OMATTR>
<OMATP>
<OMS cd=”sts” name=”type”/>
<OMS cd=”setname1” name=”R”/>
</OMATP>
<OMV name=”a”/>

</OMATTR>
<OMATTR>
<OMATP>
<OMS cd=”sts” name=”type”/>
<OMS cd=”setname1” name=”R”/>
</OMATP>

<OMV name=”b”/>
</OMATTR>
</OMBVAR>
<OMA>
<OMS cd=”relation” name=”eq”/>
<OMA>
<OMS cd=”arith1” name=”plus”/>
<OMV name=”a”/>
<OMV name=”b”/>
</OMA>
<OMA>
<OMS cd=”arith1” name=”plus”/>
<OMV name=”b”/>
<OMV name=”a”/>
</OMA>

</OMA>
</OMBIND>
</OMOBJ>

<m:math>
<m:apply>
<m:forall/>
<m:bvar>

<m:ci type=”real”>a</m:ci>
</m:bvar>

<m:bvar>
<m:ci type=”real”>b</m:ci>

</m:bvar>
<m:apply>
<m:eq/>
<m:apply>
<m:plus/>
<m:ci type=”real”>a</m:ci>
<m:ci type=”real”>b</m:ci>
</m:apply>
<m:apply>
<m:plus/>
<m:ci type=”real”>b</m:ci>
<m:ci type=”real”>a</m:ci>
</m:apply>
</m:apply>
</m:apply>
</m:math>

Fig. 13.7. OpenMath vs. C-MathML for Commutativity

<OMA><OMS cd=”sts” name=”mapsto”/>
<OMA><OMS cd=”sts” name=”mapsto”/>

10 <OMS cd=”setname1” name=”R”/>
<OMS cd=”setname1” name=”R”/>

</OMA>
<OMA><OMS cd=”sts” name=”mapsto”/>
<OMS cd=”setname1” name=”R”/>

15 <OMS cd=”setname1” name=”R”/>
</OMA>

</OMA>
</OMATP>
<OMV name=”F”/>

20 </OMATTR>
</OMBVAR>
. . .

</OMBIND>
</OMOBJ>

Note that we have essentially used the same URI (to the sts content
dictionary) to identify the fact that the annotation to the variable is a type
(in a particular type system).

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

13.4 Semantics of Variables 125

Listing 13.5. A Complex Type in Content-MathML

1 <m:math>
<m:apply>
<m:forall/>
<m:bvar>
<m:semantics>

6 <m:ci>F</m:ci>
<m:annotation−xml definitionURL=”http://www.openmath.org/cd/sts#type”>
<m:apply>
<m:csymbol definitionURL=”http://www.openmath.org/cd/sts#mapsto”/>
<m:apply>

11 <m:csymbol definitionURL=”http://www.openmath.org/cd/sts#mapsto”/>
<m:csymbol definitionURL=”http://www.openmath.org/cd/setname1#real”/>
<m:csymbol definitionURL=”http://www.openmath.org/cd/setname1#real”/>

</m:apply>
<m:apply>

16 <m:csymbol definitionURL=”http://www.openmath.org/cd/sts#mapsto”/>
<m:csymbol definitionURL=”http://www.openmath.org/cd/setname1#real”/>
<m:csymbol definitionURL=”http://www.openmath.org/cd/setname1#real”/>

</m:apply>
</m:apply>

21 </m:annotation−xml>
</m:semantics>

</m:bvar>
. . .

</m:apply>
26 </m:math>

13.4 The Semantics of Variables in OpenMath and
Content-MathML

A more subtle, but nonetheless crucial difference between OpenMath and
MathML is the handling of variables, symbols, their names, and equal-
ity conditions. OpenMath uses the name attribute to identify a variable
or symbol, and delegates the presentation of its name to other methods
such as style sheets. As a consequence, the elements om:OMS and om:OMV

are empty, and we have to understand the value of the name attribute as
a pointer to a defining occurrence. In case of symbols, this is the sym-
bol declaration in the content dictionary identified in the cd attribute. A
symbol <OMS cd="〈〈cd1〉〉" name="〈〈name1〉〉"/> is equal to <OMS cd="〈〈cd2〉〉"
name="〈〈name2〉〉"/>, iff 〈〈cd1〉〉=〈〈cd2〉〉 and 〈〈name1〉〉=〈〈name2〉〉 as XML sim-
ple names. In case of variables this is more difficult: if the variable is bound by
an om:OMBIND element8, then we interpret all the variables <OMV name="x"/>

in the om:OMBIND element as equal and different from any variables <OMV

name="x"/> outside. In fact the OpenMath standard states that bound vari-
ables can be renamed without changing the object (α-conversion). If <OMV

name="x"/> is not bound, then the scope of the variable cannot be reliably

8 We say that an om:OMBIND element binds an OpenMath variable <OMV

name="x"/>, iff this om:OMBIND element is the nearest one, such that <OMV

name="x"/> occurs in (second child of the om:OMATTR element in) the om:OMBVAR

child (this is the defining occurrence of <OMV name="x"/> here).

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

126 13 Mathematical Objects

defined; so equality with other occurrences of the variable <OMV name="x"/>

becomes an ill-defined problem. We therefore discourage the use of unbound
variables in OMDoc; they are very simple to avoid by using symbols instead,
introducing suitable theories if necessary (see Section 15.6).

MathML goes a different route: the m:csymbol and m:ci elements have
content that is Presentation-MathML, which is used for the presentation of
the variable or symbol name.9 While this gives us a much better handle on pre-
sentation of objects with variables than OpenMath (where we are basically
forced to make due with the ASCII10 representation of the variable name), the
question of scope and equality becomes much more difficult: Are two variables
(semantically) the same, even if they have different colors, sizes, or font fam-
ilies? Again, for symbols the situation is simpler, since the definitionURL

attribute on the m:csymbol element establishes a global identity criterion
(two symbols are equal, iff they have the same definitionURL value (as URI
strings; see [BLFM98]).) The second edition of the MathML standard adopts
the same solution for bound variables: it recommends to annotate the m:bvar

elements that declare the bound variable with an id attribute and use the
definitionURL attribute on the bound occurrences of the m:ci element to
point to those. The following example is taken from [KD03a], which has more
details.

<m:lambda>
<m:bvar><m:ci xml:id=”the−boundvar”>complex presentation</m:ci></m:bvar>
<m:apply>

4 <m:plus/>
<m:ci definitionURL=”#the−boundvar”>complex presentation</m:ci>
<m:ci definitionURL=”#the−boundvar”>complex presentation</m:ci>

</m:apply>
</m:lambda>

For presentation in MathML, this gives us the best of both approaches,
the m:ci content can be used, and the pointer gives a simple semantic equiv-
alence criterion. For presenting OpenMath and Content-MathML in other
formats OMDoc makes use of the infrastructure introduced in module PRES;
see Section 19.4 for a discussion.

13.5 Legacy Representation for Migration

Sometimes, OMDoc is used as a migration format from legacy texts (see
Chapter 4 for an example). In such documents it can be too much effort to

9 Note that surprisingly, the empty Content-MathML elements are treated more
in the OpenMath spirit.

10 In the current OpenMath standard, variable names are restricted to alphanu-
meric characters starting with a letter. Note that unlike with symbols, we cannot
associate presentation information with variables via style sheets, since these are
not globally unique (see Section 19.4 for a discussion of the OMDoc solution to
this problem).

mobj.tex 8061 2008-09-24 11:38:54Z kohlhase

13.5 Legacy Representation for Migration 127

convert all mathematical objects and formulae into OpenMath or Content-
MathML form. For this situation OMDoc provides the legacy element, legacy

which can contain arbitrary math markup11. The legacy element can occur
wherever an om:OMOBJ or m:math can and has an optional xml:id attribute
for identification. The content is described by a pair of attributes:

• format (required) specifies the format of the content using URI reference.
OMDoc does not restrict the possible values, possible values include TeX,
pmml, html, and qmath.

• formalism is optional and describes the formalism (if applicable) the con-
tent is expressed in. Again, the value is unrestricted character data to
allow a URI reference to a definition of a formalism.

For instance in the following legacy element, the identity function is en-
coded in the untyped λ-calculus, which is characterized by a reference to the
relevant Wikipedia article.

<legacy format=”TeX” formalism=”http://en.wikipedia.org/wiki/Lambda calculus”>
2 \lambda{x}{x}

</legacy>

11 If the content is an XML-based, format like Scalable Vector Graphics [JFF02],
the DTD must be augmented accordingly for validation.

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

14

Mathematical Text (Modules MTXT and RT)

The everyday mathematical language used in textbooks, conversations, and
written onto blackboards all over the world consists of a rigorous, slightly
stylized version of natural language interspersed with mathematical formulae,
that is sometimes called mathematical vernacular1. BErr(28)

BErr(29)
Element Attributes D Content

Required Optional C

CMP xml:id, xml:lang – 〈〈math vernacular〉〉
FMP xml:id, logic – (assumption*, conclusion*) |

OMOBJ |m:math |legacy

assumption xml:id, inductive,
class, style

+ (OMOBJ |m:math |legacy)

conclusion xml:id, class, style + (OMOBJ |m:math |legacy)

phrase xml:id, class, style,
index, verbalizes,
type

– 〈〈math vernacular〉〉

term cd, name cdbase, role, xml:id,
class, style

– 〈〈math vernacular〉〉

omtext xml:id, type, for,
from, class, style,
verbalizes

+ CMP+, FMP*

Fig. 14.1. The OMDoc Elements for Specifying Mathematical Properties

EErr(29)

EErr(28)

1 The term “mathematical vernacular” was first introduced by Nicolaas Govert
de Bruijn in the 1970s (see [de 94] for a discussion). It derives from the word
“vernacular” used in the Catholic church to distinguish the language used by
laymen from the official Latin.

28 Erratum: added the attribute xml:id to the CMP element; added the
attribute from to the omtext element

29 Erratum: added the attribute cdbase to the term element

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

130 14 Mathematical Text

14.1 Multilingual Mathematical Vernacular

OMDoc models mathematical vernacular as parsed text interspersed with
content-carrying elements. Most prominently, the om:OMOBJ, m:math, and
legacy elements are used for mathematical objects, see Chapter 13. Other
elements structure the text, such as the phrase and term elements intro-
duced in this chapter, or link it to the document structure as the ref or
ignore elements introduced above. In Figure 14.2 we have given an overview
over the ones described in this book. The last two modules in Figure 14.2
are optional (see Section 22.3). Other (external or future) OMDoc modules
can introduce further elements; natural extensions come when OMDoc is ap-
plied to areas outside mathematics, for instance computer science vernacular
needs to talk about code fragments (see Section 20.1 and [Koha]), chemistry
vernacular about chemical formulae (e.g. represented in Chemical Markup
Language [ea07]).

Module Elements Comment see

MOBJ om:OMOBJ, m:math, legacy mathematical Objects p. 113

MTXT phrase, term phrase-level markup below

DOC ref, ignore document structure p. 95

RT p, ol, ul, dl, table, link,
note, idx

rich text structure p. 137

EXT omlet for applets, images, . . . p. 219

Fig. 14.2. OMDoc Modules Contributing to Mathematical Vernacular

To be able to support multilingual documents, the mathematical vernac-
ular is represented as a groups of CMP2 elements which contain the vernacularCMP

and have an optional xml:lang attribute that specifies the language they
are written in. Conforming with the XML recommendation, we use the ISO
639 two-letter country codes (de =̂ German, en =̂ English, fr =̂ French,
nl =̂ Dutch, . . .). If no xml:lang is given, then en is assumed as the default
value. It is forbidden to have two or more sibling CMP with the same value
of xml:lang, moreover, CMPs that are siblings must be translations of each
other.3 We speak of a multilingual group of CMP elements if this is the case.

BErr(30)

2 The name comes from “Commented Mathematical Property” and was originally
taken from OpenMath content dictionaries for continuity reasons. Note that
XML does note confuse the two, since they are in different namespaces.

3 The translation requirement may be alleviated in the future, when further variant
relations are encoded in CMP groups (see [KK06] for a discussion in the context
of “communities of practice”). Then a generalized uniqueness condition must be
observed in CMP groups, so that systems can choose between the supplied variants.

30 Erratum: should be ”definiendum” not ”definiens”

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

14.2 Formal Mathematical Properties 131

Listing 14.1. A Multilingual Group of CMP Elements

<CMP>
2 Let <OMOBJ id=”set”><OMV name=”V”/></OMOBJ> be a set.

A <term role=”definiendum”>unary operation</term> on
<OMOBJ><OMR href=”#set”/></OMOBJ> is a function
<OMOBJ id=”fun”><OMV name=”F”/></OMOBJ> with
<OMOBJ id=”im”>

7 <OMA>
<OMS cd=”relations1” name=”eq”/>
<OMA><OMS cd=”fns1” name=”domain”/><OMV name=”F”/></OMA>
<OMV name=”V”/>

</OMA>
12 </OMOBJ> and

<OMOBJ id=”ran”>
<OMA>
<OMS cd=”relations1” name=”eq”/>
<OMA><OMS cd=”fns1” name=”range”/><OMV name=”F”/></OMA>

17 <OMV name=”V”/>
</OMA>

</OMOBJ>.
</CMP>
<CMP xml:lang=”de”>

22 Sei <OMOBJ><OMR href=”#set”/></OMOBJ> eine Menge.
Eine <term role=”definiendum”>unäre Operation</term>
ist eine Funktion <OMOBJ><OMR href=”#fun”/></OMOBJ>, so dass
<OMOBJ><OMR href=”#im”/></OMOBJ> und
<OMOBJ><OMR href=”#ran”/></OMOBJ>.

27 </CMP>
<CMP xml:lang=”fr”>

Soit <OMOBJ><OMR href=”#set”/></OMOBJ> un ensemble.
Une <term role=”definiendum”>opération unaire</term> sûr
<OMOBJ><OMR href=”#set”/></OMOBJ> est une fonction

32 <OMOBJ><OMR href=”#fun”/></OMOBJ> avec
<OMOBJ><OMR href=”#im”/></OMOBJ> et
<OMOBJ><OMR href=”#ran”/></OMOBJ>.

</CMP>

EErr(30)
Listing 14.1 shows an example of such a multilingual group. Here, the

OpenMath extension by DAG representation (see Section 13.1) facilitates
multi-language support: Only the language-dependent parts of the text have
to be rewritten, the (language-independent) formulae can simply be re-used
by cross-referencing.

14.2 Formal Mathematical Properties

An FMP4 element is the general element for representing formal mathematical FMP

content in the form of OpenMath objects. FMPs always appear in groups,
which can differ in the value of their logic attribute, which specifies the
logical formalism. The value of this attribute specifies the logical system used
in formalizing the content. All members of the group have to formalize the
same mathematical object or property, i.e. they have to be translations of
each other, like siblings CMPs, we speak of a multi-logic FMP group in this

4 The name comes from “Formal Mathematical Properties” and was originally
taken from OpenMath content dictionaries for continuity reasons.

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

132 14 Mathematical Text

case. Furthermore, if an FMP group has CMP siblings, all must express the same
content.

In Listing 14.2 we see two FMP elements, that state the property of being
a unary operation in two logics. The first one (fol for first-order logic) uses
an equivalence to convey the restriction, the second one (hol for higher-order
logic) has λ-abstraction and can therefore define the binary predicate binop

directly.

Listing 14.2. A multi-logic FMP group for Listing 14.1.

<omtext xml:id=”binop−def” type=”definition”>
. . . the content of Listing 14.1 here . . .
<FMP logic=”fol”>∀V, F .binop(F, V)⇔ Im(F) = V ∧Dom(F) = V </FMP>
<FMP logic=”hol”>binop = λV, F .Im(F) = V ∧Dom(F) = V </FMP>

5 </omtext>

As mathematical statements of properties of objects often come as se-
quents, i.e. as sets of conclusions drawn from a set of assumptions, OMDoc
also allows the content of an FMP to be a (possibly empty) set of assumptionassumption

elements followed by a (possibly empty) set of conclusion elements. The in-
conclusion tended meaning is that the FMP asserts that one of the conclusions is entailed

by the assumptions together in the current context. As a consequence

<FMP><conclusion>A</conclusion></FMP>

is equivalent to <FMP>A</FMP>, whereA is an OpenMath, Content-MathML,
or legacy representation of a mathematical formula. The assumption and
conclusion elements allow to specify the content by an om:OMOBJ, m:math,
or legacy element. The assumption and conclusion elements carry an op-
tional xml:id attribute, which can be used to refer to them by ref elements
in structure sharing. This is important for specifying sequent-style proofs (see
Chapter 17), where the assumptions and conclusions of sequents are largely
invariant over a proof and would have to be copied otherwise. The assumption
element carries an additional optional attribute inductive for inductive hy-
potheses.

In the (somewhat contrived) example in Listing 14.3 we show a sequent for
a simple fact about set intersection. Here the knowledge in both assumptions
(together) is enough to entail one of the conclusions (the first in this case).
For details about the phrase element see Section 14.4 below.

Listing 14.3. Representing Vernacular as an FMP Sequent

<CMP>If a ∈ U and a ∈ V , then a ∈ U ∩ V or
<phrase index=”moon cheese”>the moon is made of green cheese</phrase>.

</CMP>
4 <FMP>

<assumption xml:id=”A”>a ∈ U</assumption>
<assumption xml:id=”B”>a ∈ V </assumption>
<conclusion xml:id=”C”>a ∈ U ∩ V </conclusion>
<conclusion xml:id=”moon cheese”>made of(moon, gc)</conclusion>

9 </FMP>

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

14.3 Text Fragments and their Rhetoric/Mathematical Roles 133

14.3 Text Fragments and their Rhetoric/Mathematical
Roles

As we have explicated above, all mathematical documents state properties of
mathematical objects — informally in mathematical vernacular or formally
(as logical formulae), or both. OMDoc uses the omtext element to mark omtext

up text passages that form conceptual units, e.g. paragraphs, statements, or
remarks. omtext elements have an optional xml:id attribute, so that they can
be cross-referenced, the intended purpose of the text fragment in the larger
document context can be described by the optional attribute type. This can
take e.g. the values abstract, introduction, conclusion, comment, thesis,
antithesis, elaboration, motivation, evidence, [transition]31

a with the Err(31)
obvious meanings. In the last five cases omtext also has the extra attribute
for, and in the last one, also an attribute from, since these are in reference
to other OMDoc elements.

The content of an omtext element is mathematical vernacular contained in
a multi-lingual CMP group, followed by an (optional) multi-logic FMP group that
expresses the same content. This CMP group can be preceded by a metadata

element that can be used to specify authorship, give the passage a title, etc.
(see Section 12.1).

We have used the type attribute on omtext to classify text fragments by
their rhetoric role. This is adequate for much of the generic text that makes
up the narrative and explanatory text in a mathematical textbook. But many
text fragments in mathematical documents directly state properties of math-
ematical objects (we will call them mathematical statements; see Chapter 15
for a more elaborated markup infrastructure). These are usually classified as
definitions, axioms, etc. Moreover, they are of a form that can (in princi-
ple) be formalized up to the level of logical formula; in fact, mathematical
vernacular is seen by mathematicians as a more convenient form of commu-
nication for mathematical statements that can ultimately be translated into
a foundational logical system like axiomatic set theory [Ber91]. For such text
fragments, OMDoc reserves the following values for the type attribute:

axiom (fixes or restricts the meaning of certain symbols or concepts.) An
axiom is a piece of mathematical knowledge that cannot be derived from
anything else we know.

definition (introduces new concepts or symbols.) A definition is an axiom
that introduces a new symbol or construct, without restricting the mean-
ing of others.

example (for or against a mathematical property).
proof (a proof), i.e. a rigorous — but maybe informal — argument that a

mathematical statement holds.
hypothesis (a local assumption in a proof that will be discharged later) for

text fragments that come from (parts of) proofs.

31 Erratum! note (added text)

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

134 14 Mathematical Text

derive (a step in a proof), we will specify the exact meanings of this and the
two above in Chapter 17 and present more structured counterparts.

BErr(32)

BErr(33) Finally, OMDoc also reserves the values assertion, theorem, proposition,
lemma, corollary, postulate, conjecture, false-conjecture, assumption,
obligation, rule and formula for statements that assert properties of math-
ematical objects (see Figure 15.5 in Subsection 15.3.1 for explanations). NoteEErr(33)

EErr(32) that the differences between these values are largely pragmatic or proof-
theoretic (conjectures become theorems once there is a proof). Mathematical
omtext elements (such with one of these types) can have additional FMP ele-
ments (Formal Mathematical Property) that formally represents the meaning
of the descriptive text in the CMPs (if that is feasible).

Further types of text can be specified by providing a URI that points to
a description of the text type (much like the definitionURL attribute on the
m:csymbol elements in Content-MathML).

Of course, the type only allows a rough classification of the mathemati-
cal statements at the text level, and does not make the underlying content
structure explicit or reveals their contribution and interaction with mathemat-
ical context. For that purpose OMDoc supplies a set of specialized elements,
which we will discuss in Chapter 15. Thus omtext elements will be used to give
informal accounts of mathematical statements that are better and more fully
annotated by the infrastructure introduced in Chapter 15. However, in narra-
tive documents, we often want to be informal, while maintaining a link to the
formal element. For this purpose OMDoc provides the optional verbalizes
attribute on the omtext element. Its value is a whitespace-separated list of
URI references to formal representations (see Section 15.5 for further discus-
sion).

14.4 Phrase-Level Markup of Mathematical Vernacular

To make the sentence-internal structure of mathematical vernacular more
explicit, OMDoc provides an infrastructure to mark up natural language
phrases in sentences. Linguistically, a phrase is a group of words that func-
tions as a single unit in the syntax of a sentence. Examples include “noun
phrases, verb phrases, or prepositional phrases”. In OMDoc we adhere to
this intuition and restrict the phrase element to phrases in this sense. The
term element is naturally restricted to phrases by construction. The phrase

element is a general wrapper for sentence-level phrases that allows to mark
their specific properties.

The phrase element allows the same content as the CMP element, so that itphrase

32 Erratum: omtext can also be an assumption, obligation or rule as all
of these can be expressed in informal as well as formal way

33 Erratum: And there should also be <omtext type=“assertion”> for
generic assertions, corresponding to the <assertion> element with-
out a type.

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

14.5 Technical Terms 135

can be transparently nested. It has the optional attribute xml:id for referenc-
ing the text fragment and the CSS attributes style and class to associate
presentation information with it (see the discussion in Sections 10.2 and 19.1).
The type attribute can be used to specify the (linguistic or mathematical) type
of the phrase, currently OMDoc does not make any restrictions on the val-
ues of this attribute, for the mathematical type we recommend to use values
for the type attribute specified in Section 14.3. Furthermore, the phrase ele-
ment allows the attribute index for parallel multilingual markup: Recall that
sibling CMP elements form multilingual groups of text fragments. We can use
the phrase element to make the correspondence relation on text fragments
more fine-grained: phrase elements in sibling CMPs that have the same index

value are considered to be equivalent. Of course, the value of an index has to
be unique in the dominating CMP element (but not beyond). Thus the index

attributes simplify manipulation of multilingual texts, see Listing 14.7 for an
example at the discourse level.

Finally, the phrase element can carry a verbalizes attribute whose value
is a whitespace-separated list of URI references that act as pointers to other
OMDoc elements. This has two applications: the first is another kind of
parallel markup where we can state that a phrase corresponds to (and thus
“verbalizes”) a part of formula in a sibling FMP element.

Listing 14.4. Parallel Markup between Formal and Informal

1 <CMP>
If <phrase verbalizes=”#isaG”>〈G, ◦〉 is a group</phrase>, then of course
<phrase verbalizes=”#isaM”>it is a monoid</phrase> by construction.

</CMP>
<FMP>

6 <OMOBJ>
<OMA><OMS cd=”logic1” name=”implies”/>
<OMA id=”isaG”><OMS cd=”algebra” name=”group”/>
<OMA id=”GG”><OMS cd=”set” name=”pair”>
<OMV name=”G”/><OMV name=”op”/>

11 </OMA>
</OMA>
<OMA xml:id=”isaM”><OMS cd=”algebra” name=”monoid”/>
<OMR href=”GG”/>

</OMA>
16 </OMA>

</OMOBJ>
</FMP>

Another important application of the verbalizes is the case of inline math-
ematical statements, which we will discuss in Section 15.5.

14.5 Technical Terms

In OMDoc we can give the notion of a technical term a very precise mean-
ing: it is a phrase representing a concept for which a declaration exists in a
content dictionary (see Subsection 15.2.1). In this respect it is the natural

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

136 14 Mathematical Text

language equivalent for an OpenMath symbol or a Content-MathML to-
ken5. Let us consider an example: We can equivalently say “0 ∈ N” and “the
number zero is a natural number”. The first rendering in a formula, we would
cast as the following OpenMath object:

<OMOBJ>
<OMA><OMS cd=”set1” name=”in”/>
<OMS cd=”nat” name=”zero”/>
<OMS cd=”nat” name=”Nats”/>

</OMA>
</OMOBJ>

with the effect that the components of the formula are disambiguated by point-
ing to the respective content dictionaries. Moreover, this information can be
used by added-value services e.g. to cross-link the symbol presentations in the
formula to their definition (see Chapter 25), or to detect logical dependen-
cies. To allow this for mathematical vernacular as well, we provide the term

element: in our example we might use the following markup.

. . .<term cd=”nat” name=”zero”>the number zero</term> is an
<term cd=”nat” name=”Nats”>natural number</term>. . .

The term element has two required attributes: cd and name[, and option-term

Err(34) ally cdbase]34
a , which together determine the meaning of the phrase just like

they do for om:OMS elements (see the discussion in Section 13.1 and Subsec-
tion 15.6.2). The term element also allows the attribute xml:id for identifica-
tion of the phrase occurrence, the CSS attributes for styling and the optional
role attribute that allows to specify the role the respective phrase plays. We
reserve the value definiens for the defining occurrence of a phrase in a defi-
nition. This will in general mark the exact point to point to when presenting
other occurrences of the same6 phrase. Other attribute values for the role

are possible, OMDoc does not fix them at the current time. Consider for
instance the following text fragment from Figure 4.1 in Chapter 4.

Definition 1. Let E be a set. A mapping of E × E is called a law
of composition on E. The value f(x, y) of f for an ordered pair
(x, y) ∈ E × E is called the composition of x and y under this law.
A set with a law of composition is called a magma.

Here the first boldface term is the definiendum for a “law of composition”,BErr(35)

EErr(35) the second one for the result of applying this to two arguments. It seems
that this is not a totally different concept that is defined here, but is derived
systematically from the concept of a “law of composition” defined before.

5 and is subject to the same visibility and scoping conditions as those; see Sec-
tion 15.6 for details

34 Erratum! also need cdbase for identifying (added text)
6 We understand this to mean with the same cd and name attributes.

35 Erratum: Should be Deffiniendum instead of deffiniens

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

14.6 Rich Text Structure 137

Pending a thorough linguistic investigation we will mark up such occurrences
with definiens-applied, for instance in BErr(36)

Listing 14.5. Marking up the Technical Terms

Let E be a set. A mapping of E × E is called a
<term cd=”magmas” name=”law of comp” role=”definiendum”>law of composition</term> on E.

3 The value f(x, y) of f for an ordered pair (x, y) ∈ E × E is called the
<term cd=”magmas”name=”law of comp” role=”definiendum−applied”>composition of</term>
x and y under this law.

EErr(36)
There are probably more such systematic correlations; we leave their catego-
rization and modeling in OMDoc to the future.

14.6 Rich Text Structure (Module RT)

The infrastructure for mathematical vernacular introduced above assumed
the CMP elements as atomic fragments of mathematical vernacular allowing
for very little discourse-level structure below the level of CMP. This would be
sufficient, if the CMP were only used for text, but as we have seen above, the
CMP element is also used for mathematical text fragments that correspond to
mathematical statements like definitions or theorems, which might have inter-
nal text structure and therefore required corresponding structural elements in
OMDoc.

Element Attributes D Content

p xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉
ol xml:id, style, class, index, verbalizes + li*

ul xml:id, style, class, index, verbalizes + li*

li xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉
dl xml:id, style, class, index, verbalizes + di*

di xml:id, style, class, index, verbalizes + dt*,dd*

dt xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉
dd xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉
idx (xml:id|xref) – idt?, ide+

ide index, sort-by, see, seealso, links – idp*

idt style, class – 〈〈math vernacular〉〉
idp sort-by, see, seealso, links – 〈〈math vernacular〉〉
table xml:id, style, class, index, verbalizes + tr*

tr xml:id, style, class, index, verbalizes + td*

td xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉
th xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉
link href xml:id, style, class, index, verbalizes – 〈〈math vernacular〉〉
note type, xml:id, style, class, index, verbalizes + 〈〈math vernacular〉〉

Fig. 14.3. Rich Text Format OMDoc

In this section we will discuss the OMDoc rich text structure module RT,
which introduces text structuring elements for mathematical text below the

36 Erratum: should be ”definiendum” not ”definiens”

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

138 14 Mathematical Text

level of mathematical statements. The elements in this module are loosely
patterned after elements from the XHTML specification [Gro00], and can
occur as part of mathematical vernacular. Where we do not explicitly discuss
the content, it is mathematical vernacular as well. The module RT provides
five classes of elements, which we will show in context in Listing 14.6.

Listing 14.6. An Example of Rich Text Structure

<CMP>
<p style=”color:red” xml:id=”p1”>All <idx><idt>animals are dangerous</idt>
<idp>dangerous</idp><idp seealso=”creature”>animal</idp></idx>!
(which is a highly <phrase class=”emphasis”>unfounded</phrase>

5 statement). In reality only some animals are, for instance:</p>
<ul xml:id=”l1”>
sharks (they bite) and
bees (they sting).

10 <p>If we measure danger by the number of deaths, we obtain</p>

<table>
<tr> <th>Culprits</th> <th>Deaths</th> <th>Action</th></tr>
<tr> <td>sharks</td> <td>312</td> <td>bite</td></tr>
<tr xml:id=”bn”> <td>bees</td> <td>23</td> <td>sting</td></tr>

15 <tr> <td>cars</td> <td>7500</td> <td>crash</td></tr>
</table>
<p>So, if we do the numbers <note xml:id=”n1” type=”ednote”>check the
numbers again</note> we see that animals are dangerous, but they are
less so than cars but much more photogenic as we can see

20 <link href=”http://www.yellowpress.com/killerbee.jpg”>here</link>.</p>

<note type=”footnote”>From the International Journal of Bee−keeping; numbers only
available for 2002.</note>

</CMP>

Paragraphs p elements can be used as children in a CMP to divide the textp

into paragraphs.
Ordered Lists The ol element is a constructor for ordered lists, which has liol

li
elements as children that represent the items. These contain mathematical
vernacular as content and are presented as consecutively numbered.

Unordered Lists ul is the constructor for unordered or bulleted lists, the inul

the presentation, list items are indicated by some sort of bullet.
Description Lists Finally, dl is a constructor for description lists, which havedl

di elements as children. The di elements contain an optional dt element
di

dt

(description title) followed by a (possibly empty) list of dd elements that

dd

contain the descriptions.
Tables To mark up simple tables we use the table element. Just as in

table

XHTML, it has an arbitrary number of tr (table row) elements that

tr

contain td (table data) and th (table header) elements, which contain

td

th

mathematical vernacular. Note that OMDoc does not support advanced
formatting attributes of XHTML, but as tables are mathematical text in
the module RT it does support nested tables.

Hyperlinks The link element is equivalent to the XHTML a element, and

link

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

14.6 Rich Text Structure 139

carries a required href7 attribute that points to an arbitrary resource in
form of a URI reference.

Index Markup The idx element is used for index markup in OMDoc. It con- idx

tains an optional idt element that contains the index text, i.e. the phrase
idt

that is indexed. The remaining content of the index element specifies what
is entered into various indexes. For every index this phrase is registered
to there is one ide element (index entry); the respective entry is specified ide

by name in its [optional]37
a index attribute. The ide element contains Err(37)

a sequence of index phrases given in idp elements. The content of an
idpidp element is regular mathematical text. Since index entries are usually

sorted, (and mathematical text is difficult to sort), they carry an attribute
sort-by whose value (a sequence of Unicode characters) can be sorted lex-
ically [DW05]. Moreover, each idp and ide element carries the attributes
see, seealso, and links, that allow to specify extra information on these.
The values of the first ones are references to idx elements, while the value
of the links attribute is a whitespace-separated list of (external) URI
references. The formatting of the index text is governed by the attributes
style and class on the idt element. The idx element can carry either
an xml:id attribute (if this is the defining occurrence of the index text)
or an xref attribute. In the latter case, all the ide elements from the
defining idx (the one that has the xml:id attribute) are imported into
the referring idx element (the one that has the xref attribute).

Notes The note element is the closest approximation to a footnote or end- note

note, where the kind of note is determined by the type attribute. OMDoc
supplies footnote as a default value, but does not restrict the range of
values. Its for attribute allows it to be attached to other OMDoc ele-
ments externally where it is not allowed by the OMDoc document type.
In our example, we have attached a footnote by reference to a table row,
which does not allow note children.

All elements in the RT module carry an optional xml:id attribute for iden-
tification and an index attribute for parallel multilingual markup (e.g. Sec-
tion 14.4 for an explanation and Listing 14.7 for a translation example).

Listing 14.7. Multilingual Parallel Markup

1 <omtext xml:id=”animals.overview”>
<CMP>
<p index=”intro”>Consider the following animals:</p>
<ul index=”animals”>
<li index=”first”>a tiger,

6 <li index=”second”>a dog.

</CMP>
<CMP xml:lang=”de”>

7 It is anticipated that future versions of OMDoc may use simple links from
xlink [DMOT01] for such cross-referencing tasks, but at the moment we keep
in style to the rest of the specification.

37 Erratum! the index attribute should be optional (added text)

mtext.tex 8379 2009-06-11 05:32:28Z kohlhase

140 14 Mathematical Text

<p index=”intro”>Betrachte die folgenden Tiere:</p>
11 <ul index=”animals”>

<li index=”first”>Ein Tiger
<li index=”second”>Ein Hund

</CMP>

16 </omtext>

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15

Mathematical Statements (Module ST)

In this chapter we will look at the OMDoc infrastructure to mark up the
functional structure of mathematical statements and their interaction with a
broader mathematical context.

15.1 Types of Statements in Mathematics

In the last chapter we introduced mathematical statements as special text
fragments that state properties of the mathematical objects under discussion
and categorized them as definitions, theorems, proofs,. . . . A set of statements
about a related set of objects make up the context that is needed to un-
derstand other statements. For instance, to understand a particular theorem
about finite groups, we need to understand the definition of a group, its prop-
erties, and some basic facts about finite groups first. Thus statements interact
with context in two ways: the context is built up from (clusters of) statements,
and statements only make sense with reference to a context. Of course this
dual interaction of statements with context1 applies to any text and to com-
munication in general. In mathematics, where the problem is aggravated by
the load of notation and the need for precision for the communicated concepts
and objects, contexts are often discussed under the label of mathematical
theories. We will distinguish two classes of statements with respect to their
interaction with theories: We view axioms and definitions as constitutive for a
given theory, since changing this information will yield a different theory (with
different mathematical properties, see the discussion in Section 2.2). Other
mathematical statements like theorems or the proofs that support them are
not constitutive, since they only illustrate the mathematical objects in the
theory by explicitly stating the properties that are implicitly determined by
the constitutive statements.

1 In linguistics and the philosophy of language this phenomenon is studied under
the heading of “discourse theories”, see e.g. [KR93] for a start and references.

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

142 15 Mathematical Statements

To support this notion of context OMDoc supports an infrastructure for
theories using special theory elements, which we will introduce in Section 15.6
and extend in Chapter 18. Theory-constitutive elements must be contained
as children in a theory element; we will discuss them in Section 15.2, non-
constitutive statements will be defined in Section 15.3. They are allowed to
occur outside a theory element in OMDoc documents (e.g. as top-level ele-
ments), however, if they do they must reference a theory, which we will call
their home theory in a special theory attribute. This situates them into the
context provided by this theory and gives them access to all its knowledge.
The home theory of theory-constitutive statements is given by the theory they
are contained in.

The division of statements into constitutive and non-constitutive ones and
the encapsulation of constitutive elements in theory elements add a certain
measure of safety to the knowledge management aspect of OMDoc. Since
XML elements cannot straddle document borders, all constitutive parts of a
theory must be contained in a single document; no constitutive elements can
be added later (by other authors), since this would change the meaning of the
theory on which other documents may depend on.

Before we introduce the OMDoc elements for theory-constitutive state-
ments, let us fortify our intuition by considering some mathematical exam-
ples. Axioms are assertions about (sets of) mathematical objects and concepts
that are assumed to be true. There are many forms of axiomatic restrictions
of meaning in mathematics. Maybe the best-known are the five Peano Axioms
for natural numbers.

1. 0 is a natural number.
2. The successor s(n) of a natural number n is a natural number.
3. 0 is not a successor of any natural number.
4. The successor function is one-one (i.e. injective).
5. The set N of natural numbers contains only elements that can be con-

structed by axioms 1. and 2.

Fig. 15.1. The Peano Axioms

The Peano axioms in Figure 15.1 (implicitly) introduce three symbols: the
number 0, the successor function s, and the set N of natural numbers. The five
axioms in Figure 15.1 jointly constrain their meaning such that conforming
structures exist (the natural numbers we all know and love) any two structures
that interpret 0, s, and N and satisfy these axioms must be isomorphic. This
is an ideal situation — the axioms are neither too lax (they allow too many
mathematical structures) or too strict (there are no mathematical structures)
— which is difficult to obtain. The latter condition (inconsistent theories)
is especially unsatisfactory, since any statement is a theorem in such theories.

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.1 Types of Statements in Mathematics 143

As consistency can easily be lost by adding axioms, mathematicians try to
keep axiom systems minimal and only add axioms that are safe.

Sometimes, we can determine that an axiom does not destroy consistency
of a theory T by just looking at its form: for instance, axioms of the form s =
A, where s is a symbol that does not occur in T and A is a formula containing
only symbols from T will introduce no constraints on the meaning of T -
symbols. The axiom s = A only constrains the meaning of the new symbol
to be a unique object: the one denoted by A. We speak of a conservative
extension in this case. So, if T was a consistent theory, the extension of
T with the symbol s and the axiom s = A must be one too. Thus axioms
that result in conservative extensions can be added safely — i.e. without
endangering consistency — to theories.

Generally an axiom A that results in a conservative extension is called a
definition and any new symbol it introduces a definiendum (usually marked
e.g. in boldface font in mathematical texts), and we call definiens the mate-
rial in the definition that determines the meaning of the definiendum. We say
that a definiendum is well-defined, iff the corresponding definiens uniquely
determines it; adding such definitions to a theory always results in a conser-
vative extension. BErr(38)

Definiendum Definiens Type

The number 1 1: = s(0) (1 is the successor of 0) simple

The exponen-
tial function
e·

The exponential function e· is the solution to
the differential equation ∂f = f [where f(0) = 1].

implicit

The addition
function +

Addition on the natural numbers is defined by
the equations x+ 0 = x and x+ s(y) = s(x+ y).

recursive

Fig. 15.2. Some Common Definitions

EErr(38)
Definitions can have many forms, they can be

• equations where the left hand side is the defined symbol and the right
hand side is a term that does not contain it, as in our discussion above or
the first case in Figure 15.2. We call such definitions simple.

• general statements that uniquely determine the meaning of the objects or
concepts in question, as in the second definition in Figure 15.2. We call
such definitions implicit; the Peano axioms are another example of this
category.
Note that this kind of definitions requires a proof of unique existence to
ensure well-definedness. Incidentally, if we leave out the part in square
brackets in the second definition in Figure 15.2, the differential equation
only characterizes the exponential function up to additive real constants.

38 Erratum: “Definiendum” and “Definiens” should switched

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

144 15 Mathematical Statements

In this case, the “definition” only restricts the meaning of the exponential
function to a set of possible values. We call such a set of axioms a loose
definition.

• given as a set of equations, as in the third case of Figure 15.2, even though
this is strictly a special case of an implicit definition: it is a sub-case, where
well-definedness can be shown by giving an argument why the systematic
applications of these equations terminates, e.g. by exhibiting an ordering
that makes the left hand sides strictly smaller than the right-hand sides.
We call such a definition inductive.

15.2 Theory-Constitutive Statements in OMDoc

The OMDoc format provides an infrastructure for four kinds of theory-
constitutive statements: symbol declarations, type declarations, (proper) ax-
ioms, and definitions. We will take a look at all of them now.

Element Attributes D Content

Required Optional C

symbol name xml:id, role, scope, style,
class

+ type*

type xml:id, system, style,
class

– CMP*,〈〈mobj〉〉

axiom xml:id, for, type, style,
class

+ CMP*,FMP*

definition for xml:id, type, style, class,
uniqueness, existence,
consistency, exhaustivity

+ CMP*, (FMP* | requation+
| 〈〈mobj〉〉)?, measure?,
ordering?

requation xml:id, style, class – 〈〈mobj〉〉,〈〈mobj〉〉
measure xml:id, style, class – 〈〈mobj〉〉
ordering xml:id, style, class – 〈〈mobj〉〉
where 〈〈mobj〉〉 is (OMOBJ |m:math |legacy)

Fig. 15.3. Theory-Constitutive Elements in OMDoc

15.2.1 Symbol Declarations

The symbol element declares a symbol for a mathematical concept, such as 1symbol

for the natural number “one”, + for addition, = for equality, or group for the
property of being a group. Note that we not only use the symbol element for
mathematical objects that are usually written with mathematical symbols,
but also for any concept or object that has a definition or is restricted in its
meaning by axioms.

We will refer to the mathematical object declared by a symbol element as
a “symbol”, iff it is usually communicated by specialized notation in math-
ematical practice, and as a “concept” otherwise. The name “symbol” of the
symbol element in OMDoc is in accordance with usage in the philosophical

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.2 Theory-Constitutive Statements in OMDoc 145

literature (see e.g. [NS81]): A symbol is a mental or physical representation
of a concept. In particular, a symbol may, but need not be representable

by a (set of) glyphs (symbolic notation). The definiendum objects in Fig-
ure 15.2 would be considered as “symbols” while the concept of a “group” in
mathematics would be called a “concept”.

The symbol element has a required attribute name whose value uniquely
identifies it in a theory. Since the value of this attribute will be used as an
OpenMath symbol name, it must be an XML name2 as defined in XML
1.1 [BPSM+04]. The optional attribute scope takes the values global and
local, and allows a simple specification of visibility conditions: if the scope

attribute of a symbol has value local, then it is not exported outside the
theory; [The scope attribute is deprecated, a formalization using the hiding Err(39)
attribute on the imports element should be used instead]39

a . Finally, the op-
tional attribute role that can take the values3

binder The symbol may appear as a binding symbol of an binding object,
i.e. as the first child of an om:OMBIND object, or as the first child of an
m:apply element that has an m:bvar as a second child.

attribution The symbol may be used as key in an OpenMath om:OMATTR

element, i.e. as the first element of a key-value pair, or in an equivalent
context (for example to refer to the value of an attribution). This form of
attribution may be ignored by an application, so should be used for infor-
mation which does not change the meaning of the attributed OpenMath
object.

semantic-attribution This is the same as attribution except that it mod-
ifies the meaning of the attributed OpenMath object and thus cannot
be ignored by an application.

error The symbol can only appear as the first child of an OpenMath error
object.

application The symbol may appear as the first child of an application
object.

constant The symbol cannot be used to construct a compound object.
type The symbol denotes a sets that is used in a type systems to annotate

mathematical objects.
sort The symbol is used for a set that are inductively built up from construc-

tor symbols; see Chapter 16.

If the role is not present, the value object is assumed.

2 This limits the characters allowed in a name to a subset of the characters in
Unicode 2.0; e.g. the colon : is not allowed. Note that this is not a problem, since
the name is just used for identification, and does not necessarily specify how a
symbol is presented to the human reader. For that, OMDoc provides the notation
definition infrastructure presented in Chapter 19.

39 Erratum! scope is deprecated (added text)
3 The first six values come from the OpenMath2 standard. They are specified in

content dictionaries; therefore OMDoc also supplies them.

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

146 15 Mathematical Statements

The children of the symbol element consist of a multi-system group of
type elements (see Subsection 15.2.3 for a discussion). For this group the
order does not matter. In Listing 15.1 we have a symbol declaration for the
concept of a monoid. Keywords or simple phrases that describes the symbol
in mathematical vernacular can be added in the metadata child of symbol as
dc:subject and dc:descriptions; the latter have the same content model
as the CMP elements, see the discussion in Section 14.1). If the document
containing their parent symbol element were stored in a data base system, it
could be looked up via these metadata. As a consequence the symbol name
need only be used for identification. In particular, it need not be mnemonic,
though it can be, and it need not be language-dependent, since this can be
done by suitable dc:subject elements.

Listing 15.1. An OMDoc symbol Declaration

<symbol name=”monoid”>
<metadata>
<dc:subject xml:lang=”en”>monoid</dc:subject>

4 <dc:subject xml:lang=”de”>Monoid</dc:subject>
<dc:subject xml:lang=”it”>monoide</dc:subject>

</metadata>
<type system=”simply−typed”>set[any]→ (any → any → any)→ any → bool</type>
<type system=”props”>

9 <OMOBJ><OMS cd=”arities” name=”ternary−relation”/></OMOBJ>
</type>

</symbol>

15.2.2 Axioms

The relation between the components of a monoid would typically be specified
by a set of axioms (e.g. stating that the base set is closed under the operation).
For this purpose OMDoc uses the axiom element, which allows as childrenaxiom

a multilingual group of CMPs, which express the mathematical content of the
axiom and a multi-logic FMP group that expresses this as a logical formula.
axiom elements may have a generated-from attribute, which points to an-
other OMDoc element (e.g. an adt, see Chapter 16) which subsumes it, since
it is a more succinct representation of the same mathematical content. Finally
the axiom element has an optional for attribute to specify salient semantic
objects it uses as a whitespace-separated list of [names]40

r to symbols declaredErr(40)
in the same theory, see Listing 15.2 for an example. Finally, the axiom ele-
ment can have an type attribute, whose values we leave unspecified for the
moment.BErr(41)

Listing 15.2. An OMDoc axiom

<axiom xml:id=”mon.ax” for=”monoid”>
<CMP>If (M, ∗) is a semigroup with unit e, then (M, ∗, e) is a monoid.</CMP>

40 Erratum! the for attribute in the axiom element must reference symbol names
(original text was: “URI references”)

41 Erratum: for attribute on axiom should be of type NCNames

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.2 Theory-Constitutive Statements in OMDoc 147

</axiom>

EErr(41)

15.2.3 Type Declarations

Types (also called sorts in some contexts) are representations of certain sim-
ple sets that are treated specially in (human or mechanical) reasoning pro-
cesses. A type declaration e: t makes the information that a symbol or
expression e is in a set represented by a type t available to a specified math-
ematical process. For instance, we might know that 7 is a natural number,
or that expressions of the form

∑n
i=1 aix

i are polynomials, if the ai are real
numbers, and exploit this information in mathematical processes like proving,
pattern matching, or while choosing intuitive notations. If a type is declared
for an expression that is not a symbol, we will speak of a term declaration.

OMDoc uses the type element for type declarations. The optional at- type

tribute system contains a URI reference that identifies the type system which
interprets the content. There may be various sources of the set membership
information conveyed by a type declaration, to justify it this source may be
specified in the optional just-by attribute. The value of this attribute is a
URI reference that points to an assertion or axiom element that asserts
∀x1, . . . , xn.e ∈ t for a type declaration e: t with variables x1, . . . , xn. If the
just-by attribute is not present, then the type declaration is considered to
be generated by an implicit axiom, which is considered theory-constitutive4. BErr(42)

The type element contains one or two mathematical objects. In the first
case, it represents a type declaration for a symbol (we call this a symbol
declaration), which can be specified in the optional for attribute or by
embedding the type element into the respective symbol element. For instance
in Listing 15.1, the type declaration of monoid characterizes a monoid as a
three-place predicate (taking as arguments the base set, the operation, and a
neutral element).

A type element with two mathematical objects represents a term declara-
tion e: t, where the first object represents the expression e and the second one
the type t (see Listing 15.7 for an example). There the term x+ x is declared
to be an even number by a term declaration. EErr(42)

As reasoning processes vary, information pertaining to multiple type sys-
tems may be associated with a single symbol and there can be more than one
type declaration per expression and type system, this just means that the
object has more than one type in the respective type system (not all type
systems admit principal types).

4 It is considered good practice to make the axiom explicit in formal contexts, as
this allows an extended automation of the knowledge management process.

42 Erratum: examples reference wrong listings

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

148 15 Mathematical Statements

15.2.4 Definitions

Definitions are a special class axioms that completely fix the meaning of sym-
bols. Therefore definition elements that represent definitions carry the re-definition

quired for attribute, which contain a whitespace-separated list of names of
symbols in the same theory.[Err(43)

]43
a We call symbols that are referenced in definitions defined and primi-

tive otherwise. definition contain a multilingual CMP group to describe the
meaning of the defined symbols.

In Figure 15.2 we have seen that there are many ways to fix the mean-
ing of a symbol, therefore OMDoc definition elements are more complex
than axioms. In particular, the definition element supports several kinds of
definition mechanisms with specialized content models specified in the type

attribute (cf. the discussion at the end of Section 15.1):

simple In this case the definition contains a mathematical object that can
be substituted for the symbol specified in the for attribute of the defini-
tion. Listing 15.3 gives an example of a simple definition of the number
one from the successor function and zero. OMDoc treats the type at-
tribute as an optional attribute. If it is not given explicitly, it defaults to
simple.BErr(44)

Listing 15.3. A Simple OMDoc definition.

<symbol name=”one”/>
2 <definition xml:id=”one.def” for=”one” type=”simple”>

<CMP><OMOBJ><OMS cd=”nat” name=”one”/></OMOBJ> is the successor of
<OMOBJ><OMS cd=”nat” name=”zero”/></OMOBJ>.</CMP>

<OMOBJ>
<OMA>

7 <OMS cd=”nat” name=”suc”/>
<OMS cd=”nat” name=”zero”/>

</OMA>
</OMOBJ>
</definition>

EErr(44)
implicit This kind of definition is often (more accurately) called “definition

by description”, since the definiendum is described so accurately, that
there is exactly one object satisfying the description. The “description”
of the defined symbol is given as a multi-system FMP group whose content
uniquely determines the value of the symbols that are specified in the for

attribute of the definition. The necessary statement of unique existence
can be specified in the existence and uniqueness attribute, whose values
are URI references to to assertional statements (see Subsection 15.3.4)
that represent the respective properties. We give an example of an implicit
definition in Listing 15.4.BErr(45)

43 Erratum! Note that this use of the for attribute is different from the other
usages, which are URI references. (added text)

44 Erratum: for attribute on definition should be of type NCNames, also
corrected cd attribute.

45 Erratum: for attribute on definition should be of type NCNames

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.2 Theory-Constitutive Statements in OMDoc 149

Listing 15.4. An Implicit Definition of the Exponential Function

<definition xml:id=”exp−def” for=”exp” type=”implicit”
uniqueness=”#exp−unique” existence=”#exp−exists”>

<FMP>exp′ = exp ∧ exp(0) = 1</FMP>
4 </definition>

<assertion xml:id=”exp−unique”>
<CMP>

There is at most one differentiable function that solves the
differential equation in definition <ref type=”cite” xref=”#exp−def”/>.

9 </CMP>
</assertion>
<assertion xml:id=”exp−exists”>
<CMP>

The differential equation in <ref type=”cite” xref=”#exp−def”/> is solvable.
14 </CMP>

</assertion>

EErr(45)
inductive This is a variant of the implicit case above. It defines a recur-

sive function by a set of recursive equations (in requation elements) requation

whose left and right hand sides are specified by the two children. The first
one is called the pattern, and the second one the value. The intended
meaning of the defined symbol is, that the value (with the variables suit-
ably substituted) can be substituted for a formula that matches the pat-
tern element. In this case, the definition element can carry the optional
attributes exhaustivity and consistency, which point to assertions
stating that the cases spanned by the patterns are exhaustive (i.e. all cases
are considered), or that the values are consistent (where the cases overlap,
the values are equal).
Listing 15.5 gives an example of a a recursive definition of the addition
on the natural numbers. BErr(46)

Listing 15.5. A recursive definition of addition

<definition xml:id=”plus.def” for=”plus” type=”inductive”
consistency=”#s−not−0” exhaustivity=”#s−or−0”>

<metadata><dc:subject>addition</dc:subject></metadata>
<CMP>Addition is defined by recursion on the second argument.</CMP>

5 <requation>x+ 0 ; x</requation>
<requation>x+ s(y) ; s(x+ y)</requation>

</definition>

EErr(46)
To guarantee termination of the recursive instantiation (necessary to en-
sure well-definedness), it is possible to specify a measure function and
well-founded ordering by the optional measure and ordering elements measure

ordering
which contain mathematical objects. The elements contain mathematical
objects. The content of the measure element specifies a measure function,
i.e. a function from argument tuples for the function defined in the parent
definition element to a space with an ordering relation which is specified
in the ordering element. This element also carries an optional attribute
terminating that points to an assertion element that states that this
ordering relation is a terminating partial ordering.

46 Erratum: for attribute on definition should be of type NCNames

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

150 15 Mathematical Statements

pattern This is a special degenerate case of the recursive definition. A func-
tion is defined by a set of requation elements, but the defined function
does not occur in the second children. This form of definition is often
used instead of simple in logical languages that do not have a function
constructor. It allows to define a function by its behavior on patterns
of arguments. Since termination is trivial in this case, no measure and
ordering elements appear in the body.

informal The definition is completely informal, it only contains a CMP ele-
ment.

15.3 The Unassuming Rest

The bulk of mathematical knowledge is in form of statements that are not
theory-constitutive: statements of properties of mathematical objects that are
entailed by the theory-constitutive ones. As such, these statements are log-
ically redundant, they do not add new information about the mathematical
objects, but they do make their properties explicit. In practice, the entailment
is confirmed e.g. by exhibiting a proof of the assertion; we will introduce the
infrastructure for proofs in Chapter 17.BErr(47)

Element Attributes D Content

Required Optional C

assertion xml:id, type, theory,
class, style, status,
just-by

+ CMP*, FMP*

type system xml:id, for, just-by,
theory, class, style

– CMP*, 〈〈mobj〉〉,〈〈mobj〉〉

example for xml:id, type,
assertion, theory,
class, style

+ CMP* | 〈〈mobj〉〉*

alternative for, theory,
entailed-by,
entails,
entailed-by-thm,
entails-thm

xml:id, type, theory,
class, style

+ CMP*, (FMP* |
requation+ |
〈〈mobj〉〉)?, measure?,
ordering?

where 〈〈mobj〉〉 is (OMOBJ |m:math |legacy)

Fig. 15.4. Assertions, Examples, and Alternatives in OMDoc

EErr(47)

15.3.1 Assertions

OMDoc uses the assertion element for all statements (proven or not) aboutassertion

47 Erratum: deleted spurious for attribute on the assertion element,
alternative should have the same content as definition

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.3 The Unassuming Rest 151

mathematical objects (see Listing 15.6) that are not axiomatic (i.e. constitu-
tive for the meaning of the concepts or symbols involved). Traditional math-
ematical documents discern various kinds of these: theorems, lemmata, corol-
laries, conjectures, problems, etc.

These all have the same structure (formally, a closed logical formula).
Their differences are largely pragmatic (e.g. theorems are normally more im-
portant in some theory than lemmata) or proof-theoretic (conjectures become
theorems once there is a proof). Therefore, we represent them in the general
assertion element and leave the type distinction to a type attribute, which
can have the values in Figure 15.5. The assertion element also takes an op-

Value Explanation

theorem, proposition an important assertion with a proof

Note that the meaning of the type (in this case the existence of a proof) is not
enforced by OMDoc applications. It can be appropriate to give an assertion the
type theorem, if the author knows of a proof (e.g. in the literature), but has not
formalized it in OMDoc yet.

lemma a less important assertion with a proof

The difference of importance specified in this type is even softer than the other
ones, since e.g. reusing a mathematical paper as a chapter in a larger monograph,
may make it necessary to downgrade a theorem (e.g. the main theorem of the
paper) and give it the status of a lemma in the overall work.

corollary a simple consequence

An assertion is sometimes marked as a corollary to some other statement, if the
proof is considered simple. This is often the case for important theorems that
are simple to get from technical lemmata.

postulate, conjecture an assertion without proof or counter-example

Conjectures are assertions, whose semantic value is not yet decided, but which
the author considers likely to be true. In particular, there is no proof or counter-
example (see Section 15.4).

false-conjecture an assertion with a counter-example

A conjecture that has proven to be false, i.e. it has a counter-example. Such
assertions are often kept for illustration and historical purposes.

obligation, assumption an assertion on which the proof of another depends

These kinds of assertions are convenient during the exploration of a mathematical
theory. They can be used and proven later (or assumed as an axiom).

formula if everything else fails

This type is the catch-all if none of the others applies.

Fig. 15.5. Types of Mathematical Assertions

tional xml:id element that allows to reference it in a document, an optional
theory attribute to specify the theory that provides the context for this as-
sertion, and an optional attribute generated-from, that points to a higher

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

152 15 Mathematical Statements

syntactic construct that generates these assertions, e.g. an abstract data type
declaration given by an adt element (see Chapter 16).

Listing 15.6. An OMDoc Assertion About Semigroups

<assertion xml:id=”ida.c6s1p4.l1” type=”lemma”>
<CMP> A semigroup has at most one unit.</CMP>

3 <FMP>∀S.sgrp(S)→ ∀x, y.unit(x, S) ∧ unit(y, S)→ x = y</FMP>
</assertion>

To specify its proof-theoretic status of an assertion assertion carries the
two optional attributes status and just-by. The first contains a keyword
for the status and the second a whitespace-separated list of URI references
to OMDoc elements that justify this status of the assertion. For the speci-
fication of the status we adapt an ontology for deductive states of assertion
from [SZS04] (see Figure 15.6). Note that the states in Figure 15.6 are not
mutually exclusive, but have the inclusions depicted in Figure 15.7.

15.3.2 Type Assertions

In the last section, we have discussed the type elements in symbol decla-
rations. These were axiomatic (and thus theory-constitutive) in character,
declaring a symbol to be of a certain type, which makes this information
available to type checkers that can check well-typedness (and thus plausibil-
ity) of the represented mathematical objects.

However, not all type information is axiomatic, it can also be deduced from
other sources knowledge. We use the same type element we have discussed in
Subsection 15.2.3 for such type assertions, i.e. non-constitutive statements
that inform a type-checker. In this case, the type element can occur at top
level, and even outside a theory element (in which case they have to specify
their home theory in the theory attribute).

Listing 15.7 contains a type assertion x+x: evens, which makes the infor-
mation that doubling an integer number results in an even number available
to the reasoning process.BErr(48)

Listing 15.7. A Term declaration in OMDoc.

1 <type xml:id=”double−even.td” system=”#POST”
theory=”adv.int” for=”plus” just−by=”#double−even”>

<m:math>
<m:apply><m:plus/>
<m:ci type=”integer”>X</m:ci>

6 <m:ci type=”integer”>X</m:ci>
</m:apply>

</m:math>
<m:math>
<m:csymbol definitionURL=”http://omdoc.org/cd/integers/evens”/>

11 </m:math>
</type>

<assertion xml:id=”double−even” type=”lemma” theory=”adv.int”>

48 Erratum: for attribute on definition should be of type NCNames

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.3 The Unassuming Rest 153

status just-by points to

tautology Proof of F
All T -interpretations satisfy A and some Ci
tautologous-conclusion Proof of Fc.
All T -interpretations satisfy some Cj
equivalent Proofs of F and F−1

A and C have the same T -models (and there are some)

theorem Proof of F
All T -models of A (and there are some) satisfy some Ci
satisfiable Model of A and some Ci
Some T -models of A (and there are some) satisfy some Ci
contradictory-axioms Refutation of A
There are no T -models of A
no-consequence T -model of A and some Ci, T -model of A ∪ C.
Some T -models of A (and there are some) satisfy some Ci, some satisfy C
counter-satisfiable Model of A ∪ C
Some T -models of A (and there are some) satisfy C
counter-theorem Proof of C from A
All T -models of A (and there are some) satisfy C
counter-equivalent Proof of C from A and proof of A from C
A and C have the same T -models (and there are some)

unsatisfiable-conclusion Proof of C
All T -interpretations satisfy C
unsatisfiable Proof of ¬F
All T -interpretations satisfy A and C
Where F is an assertion whose FMP has assumption elements A1, . . . ,An

and conclusion elements C1, . . . , Cm. Furthermore, let A: = {A1, . . . ,An}
and C: = {C1, . . . , Cm}, and F−1 be the sequent that has the Ci as assump-
tions and the Ai as conclusions. Finally, let C: = {C1, . . . , Cm}, where Ci is a
negation of Ci.

Fig. 15.6. Proof Status for Assertions in a Theory T

satisfiable counter-satisfiable

theorem counter-theorem

tautologous-conclusion

equivalent

no-consequence

contradictory-axioms

counter-equivalent

unsatisfiable-conclusion

tautology unsatisfiable

Fig. 15.7. Relations of Assertion States

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

154 15 Mathematical Statements

<FMP>
16 <m:math>

<m:apply><m:forall/>
<m:bvar><m:ci xml:id=”x13” type=”integer”>X</m:ci></m:bvar>
<m:apply><m:in/>
<m:apply><m:plus/>

21 <m:ci definitionURL=”x13” type=”integer”>X</m:ci>
<m:ci definitionURL=”x13” type=”integer”>X</m:ci>

</m:apply>
<m:csymbol definitionURL=”http://omdoc.org/cd/nat/evens”/>

</m:apply>
26 </m:apply>

</m:math>
</FMP>

</assertion>

EErr(48)
The body of a type assertion contains two mathematical objects, first the type
of the object and the second one is the object that is asserted to have this
type.

15.3.3 Alternative Definitions

In contrast to what we have said about conservative extensions at the end of
Subsection 15.2.4, mathematical documents often contain multiple definitions
for a concept or mathematical object. However, if they do, they also contain a
careful analysis of equivalence among them. OMDoc allows us to model this
by providing the alternative element. Conceptually, an alternative definitionalternative

or axiom is just a group of assertions that specify the equivalence of logical
formulae. Of course, alternatives can only be added in a consistent way to
a body of mathematical knowledge, if it is guaranteed that it is equivalent
to the existing ones. The for on the alternative points to the [symbolErr(49)
to which the alternative definition pertains]49

r . Therefore, alternative has
the attributes entails and entailed-by, that specify assertions that state
the necessary entailments. It is an integrity condition of OMDoc that any
alternative element references at least one definition or alternative

element that entails it and one that it is entailed by (more can be given for
convenience). The entails-thm, and entailed-by-thm attributes specify the
corresponding assertions. This way we can always reconstruct equivalence of
all definitions for a given symbol. As alternative definitions are not theory-
constitutive, they can appear outside a theory element as long as they have
a theory attribute.

15.3.4 Assertional Statements

There is another distinction for statements that we will need in the following.
Some kinds of mathematical statements add information about the mathe-
matical objects in question, whereas other statements do not. For instance,

49 Erratum! fixed the target of the for attribute (original text was: “primary defi-
nition or assertion”)

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.4 Mathematical Examples in OMDoc 155

a symbol declaration only declares an unambiguous name for an object. We
will call the following OMDoc elements assertional: axiom (it asserts cen-
tral properties about an object), type (it asserts type properties about an
object), definition (this asserts properties of a new object), and of course
assertion.

The following elements are considered non-assertional: symbol (only a
name is declared for an object), alternative (here the assertional content
is carried by the assertion elements referenced in the structure-carrying at-
tributes of alternative). For the elements introduced below we will discuss
whether they are assertional or not in their context. In a nutshell, only state-
ments introduced by the module ADT (see Chapter 16) will be assertional.

15.4 Mathematical Examples in OMDoc

In mathematical practice examples play a great role, e.g. in concept formation
as witnesses for definitions or as either supporting evidence, or as counter-
examples for conjectures. Therefore examples are given status as primary
objects in OMDoc. Conceptually, we model an example E as a pair (W,A),
where W = (W1, . . . ,Wn) is an n-tuple of mathematical objects and A is an
assertion. If E is an example for a mathematical concept given as an OMDoc
symbol S, then A must be of the form S(W1, . . . ,Wn).

If E is an example for a conjecture C, then we have to consider the situation
more carefully. We assume that C is of the form QD for some formula D,
where Q is a sequence Q1W1, . . . ,QmWm of m ≥ n = #W quantifications
of using quantifiers Qi like ∀ or ∃. Now let Q′ be a sub-sequence of m − n
quantifiers ofQ and D′ be D only that all the Wij such that theQij are absent
from Q′ have been replaced by Wj for 1 ≤ j ≤ n. If E = (W,A) supports C,
then A = Q′D′ and if E is a counter-example for C, then A = ¬Q′D′.

OMDoc specifies this intuition in an example element that contains a example

multilingual CMP group for the description and n mathematical objects (the
witnesses). It has the attributes

for specifying for which concepts or assertions it is an example. This is
a reference to a whitespace-separated list of URI references to symbol,
definition, [axiom,]50

a [alternative]51
a , or assertion elements. Err(50)

Err(51)type specifying the aspect, the value is one of for or against
assertion a reference to the assertion A mentioned above that formally

states that the witnesses really form an example for the concept of as-
sertion. In many cases even the statement of this is non-trivial and may
require a proof.

50 Erratum! added the axiom element to the list; cf. discussion on omdoc-dev on
May 16, 2008 (added text)

51 Erratum! added the alternative element to the list (added text)

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

156 15 Mathematical Statements

example elements are considered non-assertional in OMDoc, since the as-
sertional part is carried by the assertion element referenced in the assertion
attribute.

Note that the list of mathematical objects in an example element does
not represent multiple examples, but corresponds to the argument list of the
symbol, they exemplify. In the example below, the symbol for monoid is a
three-place relation (see the type declaration in Listing 15.1), so we have
three witnesses.BErr(52)

Listing 15.8. An OMDoc representation of a mathematical example

1 <symbol name=”strings−over”/>
<definition xml:id=”strings.def” for=”strings−over”>. . . A∗ . . .</definition>
<symbol name=”concat”/>
<definition xml:id=”concat.def” for=”concat”>. . . :: . . .</definition>
<symbol name=”empty−string”/>

6 <definition xml:id=”empty−string.def” for=”empty−string”>. . . ε . . .</definition>
. . .
<assertion xml:id=”string.struct.monoid” type=”lemma”>
<CMP>(A∗, ::, ε) is a monoid.</CMP>
<FMP>mon(A∗, ::, ε)</FMP>

11 </assertion>
. . .
<example xml:id=”mon.ex1” for=”monoid” type=”for”

assertion=”string.struct .monoid”>
<CMP>The set of strings with concatenation is a monoid.</CMP>

16 <OMOBJ>
<OMA id=”nat−strings”>
<OMS cd=”strings” name=”strings”/>
<OMS cd=”setname1” name=”N”/>

</OMA>
21 </OMOBJ>

<OMOBJ><OMS cd=”strings” name=”concat”/></OMOBJ>
<OMOBJ><OMS cd=”strings” name=”empty−string”/></OMOBJ>

</example>

26 <assertion xml:id=”monoid.are.groups” type=”false−conjecture”>
<CMP>Monoids are groups.</CMP>
<FMP>∀S, o, e.mon(S, o, e)→ ∃i.group(S, o, e, i)</FMP>
</assertion>

31 <example xml:id=”mon.ex2” for=”#monoids.are.groups” type=”against”
assertion=”strings. isnt .group”>

<CMP>The set of strings with concatenation is not a group.</CMP>
<OMOBJ><OMR href=”#nat−strings”/></OMOBJ>
<OMOBJ><OMS cd=”strings” name=”strings”/></OMOBJ>

36 <OMOBJ><OMS cd=”strings” name=”concat”/></OMOBJ>
<OMOBJ><OMS cd=”strings” name=”empty−string”/></OMOBJ>

</example>

<assertion xml:id=”strings.isnt .group” type=”theorem”>
41 <CMP>(A∗, ::, ε) is a monoid, but there is no inverse function for it.</CMP>

</assertion>

EErr(52)
In Listing 15.8 we show an example of the usage of an example element

in OMDoc: We declare constructor symbols strings-over, that takes an
alphabet A as an argument and returns the set A∗ of stringss over A, concat
for strings concatenation (which we will denote by ::), and empty-string

for the empty string ε. Then we state that W = (A∗, ::, ε) is a monoid in

52 Erratum: for attribute on definition should be of type NCNames

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.5 Inline Statements 157

an assertion with xml:id="string.struct.monoid". The example element
with xml:id="mon.ex1" in Listing 15.8 is an example for the concept of a
monoid, since it encodes the pair (W,A) where A is given by reference to
the assertion string.struct.monoid in the assertion attribute. Example
mon.ex2 uses the pair (W,A′) as a counter-example to the false conjecture
monoids.are.groups using the assertion strings.isnt.group for A′.

15.5 Inline Statements

Note that the infrastructure for statements introduced so far does its best
to mark up the interplay of formal and informal elements in mathematical
documents, and make explicit the influence of the context and their contri-
bution to it. However, not all statements in mathematical documents can be
adequately captured directly. Consider for instance the following situation,
which we might find in a typical mathematical textbook.

Theorem 3.12: In a monoid M the left unit and the right unit coin-
cide, we call it the unit of M .

The overt role of this text fragment is that of a mathematical theorem — as
indicated by the cue word “Theorem”, therefore we would be tempted rep-
resent it as an omtext element with the value theorem for the type attribute.
But the relative clause is clearly a definition (the definiens is even marked in
boldface). What we have here is an aggregated verbalization of two mathe-
matical statements. In a simple case like this one, we could represent this as
follows: BErr(53)

BErr(54)Listing 15.9. A Simple-Minded Representation of Theorem 3.12

<assertion type=”theorem” style=”display=flow”>
<CMP>In a monoid M , the left unit and the right unit coincide,</CMP>

3 </assertion>
<definition for=”unit” style=”display:flow”>

<CMP>we call it the <term role=”definiendum” name=”unit”>unit</term> of M</CMP>
</definition>

EErr(54)

EErr(53)
But this representation remains unsatisfactory: the definition is not part

of the theorem, which would really make a difference if the theorem contin-
ued after the inline definition. The real problem is that the inline definition is
linguistically a phrase-level construct, while the omtext element is a discourse-
level construct. However, as a phrase-level construct, the inline definition can-
not really be taken as stand-alone, but only makes sense in the context it is
presented in (which is the beauty of it; the re-use of context). With the phrase
element and its verbalizes, we can do the following: BErr(55)

BErr(56)53 Erratum: for attribute on definition should be of type NCNames
54 Erratum: should be ”definendum” not ”definiens”
55 Erratum: for attribute on definition should be of type NCNames
56 Erratum: should be ”definiendum” not ”definiens”

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

158 15 Mathematical Statements

Listing 15.10. An Inline Definition

<assertion xml:id=’unit−unique’ type=”theorem” >
<CMP>In a monoid M, the left unit and the right unit coincide,
<phrase verbalizes=”#unit−def”>we call it the unit of M</phrase>.</CMP>

4 </assertion>
<symbol name=”unit”/>
<definition xml:id=”unit−def” for=”unit” just−by=’#unit−unique’>
<CMP>We call the (unique) element of a monoid M that acts as a left

and right unit the <term role=”definiendum” name=”unit”>unit</term> of M.</CMP>
9 </definition>

EErr(56)

EErr(55)
thus we would have the phrase-level markup in the proper place, and we
would have an explicit version of the definition which is standalone5, and we
would have the explicit relation that states that the inline definition is an
“abbreviation” of the standalone definition.

15.6 Theories as Structured Contexts

OMDoc provides an infrastructure for mathematical theories as first-class ob-
jects that can be used to structure larger bodies of mathematics by functional
aspects, to serve as a framework for semantically referencing mathematical
objects, and to make parts of mathematical developments reusable in multi-
ple contexts. The module ST presented in this chapter introduces a part of
this infrastructure, which can already address the first two concerns. For the
latter, we need the machinery for complex theories introduced in Chapter 18.

Theories are specified by the theory element in OMDoc, which hastheory

[an optional]57
r xml:id attribute for referencing the theory. Furthermore, the

Err(57)
theory element can have the cdbase attribute that allows to specify the
cdbase this theory uses for disambiguation on om:OMS elements (see Sec-
tion 13.1 for a discussion). Additional information about the theory like a
title or a short description can be given in the metadata element. After this,
any top-level OMDoc element can occur, including the theory-constitutive el-
ements introduced in Sections 15.1 and 15.2, even theory elements themselves.
Note that theory-constitutive elements may only occur in theory elements.

Theories can be structured like documents e.g. into sections and the like
(see Section 11.4 for a discussion) via the tgroup element, which behavestgroup

exactly like the omgroup element introduced in Section 11.4 except that it also
allows theory-constitutive elements, but does not allow a theory attribute,
since this information is already given by the dominating theory element.6

5 Purists could use the CSS attribute style on the definition element with value
display:none to hides it from the document; it might also be placed into another
document altogether

57 Erratum! the xml:id attribute on the theory element should be optional (orig-
inal text was: “a required”)

6 This element has been introduced to keep OMDoc validation manageable: We
cannot directly use the omgroup element,since there is no simple, context-free way
to determine whether an omgroup is dominated by a theory element.

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.6 Theories as Structured Contexts 159

Element Attributes D Content

Req. Optional C

theory xml:id, class, style, cdbase, cdversion,
cdrevision, cdstatus, cdurl, cdreviewdate

+ (〈〈top+thc〉〉 |
imports)*

imports from id, type, class, style +
tgroup xml:id, modules, type, class, style + (〈〈top+thc〉〉)*
where 〈〈top+thc〉〉 stands for top-level (but no omgroup) and theory-constitutive elements

Fig. 15.8. Theories in OMDoc

15.6.1 Simple Inheritance

theory elements can contain imports elements (mixed in with the top-level
ones) to specify inheritance: The main idea behind structured theories and
specification is that not all theory-constitutive elements need to be explicitly
stated in a theory; they can be inherited from other theories. Formally, the
set of theory-constitutive elements in a theory is the union of those that are
explicitly specified and those that are imported from other theories. This has
consequences later on, for instance, these are available for use in proofs. See
Section 17.2 for details on availability of assertional statements in proofs and
justifications.

The meaning of the imports element is determined by two attributes: imports

from The value of this attribute is a URI reference that specifies the source
theory, i.e. the theory we import from. The current theory (the one
specified in the parent of the imports element, we will call it the target
theory) inherits the constitutive elements from the source theory.

type This optional attribute can have the values global and local (the
former is assumed, if the attribute is absent): We call constitutive ele-
ments local to the current theory, if they are explicitly defined as chil-
dren, and else inherited. A local import (an imports element with
type="local") only imports the local elements of the source theory, a
global import also the inherited ones.

The meaning of nested theory elements is given in terms of an implicit imports
relation: The inner theory imports from the outer one. Thus BErr(58)

BErr(59)1 <theory xml:id=”a.thy”>
<symbol name=”aa”/>
<theory xml:id=”b.thy”>
<symbol name=”cc”/>
<definition xml:id=”cc.def” for=”cc” type=”simple”>

6 <OMOBJ><OMS cd=”a.thy” name=”aa”/></OMOBJ>
</definition>

</theory>
</theory>

is equivalent to

58 Erratum: The symbol name af should be aa
59 Erratum: for attribute on definition should be of type NCNames

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

160 15 Mathematical Statements

1 <theory xml:id=”a.thy”><symbol name=”aa”/></theory>
<theory xml:id=”b.thy”>
<imports from=”#a.thy” type=”global”/>
<symbol name=”cc”/>
<definition xml:id=”cc.def” for=”cc” type=”simple”>

6 <OMOBJ><OMS cd=”a.thy” name=”aa”/></OMOBJ>
</definition>

</theory>

EErr(59)
In particular, the symbol cc is visible only in theory b.thy, not in the rest
of theory a.thy in the first representation. Note that the inherited elementsEErr(58)
of the current theory can themselves be inherited in the source theory. For
instance, in the Listing 15.12 the left-inv is the only local axiom of the
theory group, which has the inherited axioms closed, assoc, left-unit.

In order for this import mechanism to work properly, the inheritance re-
lation, i.e. the relation on theories induced by the imports elements, must be
acyclic. There is another, more subtle constraint on the inheritance relation
concerning multiple inheritance. Consider the situation in Listing 15.11: here
theories A and B import theories with xml:id="mythy", but from different
URIs. Thus we have no guarantee that the theories are identical, and seman-
tic integrity of the theory C is at risk. Note that this situation might in fact be
totally unproblematic, e.g. if both URIs point to the same document, or if the
referenced documents are identical or equivalent. But we cannot guarantee
this by content markup alone, we have to forbid it to be safe.

Listing 15.11. Problematic Multiple Inheritance

<theory xml:id=”A”>
2 <imports from=”http://red.com/theories.omdoc#mythy”/>

</theory>
<theory xml:id=”B”>
<imports from=”http://blue.org/cd/all.omdoc#mythy”/>

</theory>
7 <theory xml:id=”C”><imports from=”#A”/><imports from=”#B”/></theory>

Let us now formulate the constraint carefully, the base URI of an XML
document is the URI that has been used to retrieve it. We adapt this to
OMDoc theory elements: the base URI of an imported theory is the URI
declared in the cdbase attribute of the theory element (if present) or the
base URI of the document which contains it7. For theories that are imported
along a chain of global imports, which include relative URIs, we need to
employ URI normalization to compute the effective URI. Now the constraint
is that any two imported theories that have the same value of the xml:id

attribute must have the same base URI. Note that this does not imply a global
unicity constraint for xml:id values of theory elements, it only means that
the mapping of theory identifiers to URIs is unambiguous in the dependency
cone of a theory.

7 Note that the base URI of the document is sufficient, since a valid OMDoc
document cannot contain more than one theory element for a given xml:id

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.6 Theories as Structured Contexts 161

In Listing 15.12 we have specified three algebraic theories that gradually
build up a theory of groups importing theory-constitutive statements (sym-
bols, axioms, and definitions) from earlier theories and adding their own con-
tent. The theory semigroup provides symbols for an operation op on a base
set set and has the axioms for closure and associativity of op. The theory
of monoids imports these without modification and uses them to state the
left-unit axiom. The theory monoid then proceeds to add a symbol neut
and an axiom that states that it acts as a left unit with respect to set and
op. The theory group continues this process by adding a symbol inv for the
function that gives inverses and an axiom that states its meaning. BErr(60)

Listing 15.12. A Structured Development of Algebraic Theories in OMDoc

<theory xml:id=”semigroup”>
<symbol name=”set”/><symbol name=”op”/>

3 <axiom xml:id=”closed”> . . . </axiom><axiom xml:id=”assoc”> . . . </axiom>
</theory>

<theory xml:id=”monoid”>
<imports from=”#semigroup”/>

8 <symbol name=”neut”/><symbol name=”setstar”/>
<axiom xml:id=”left−unit”>
<CMP>neut is a left unit for op.</CMP><FMP>∀x ∈ set.op(x, neut) = x</FMP>

</axiom>
<definition xml:id=”setstar.def” for=”setstar” type=”implicit”>

13 <CMP>·∗ subtracts the unit from a set </CMP><FMP>∀S.S∗ = S\{unit}</FMP>
</definition>

</theory>

<theory xml:id=”group”>
18 <imports from=”#monoid”/>

<symbol name=”inv”/>
<axiom xml:id=”left−inv”>
<CMP>For every X ∈ set there is an inverse inv(X) wrt. op.</CMP>

</axiom>
23 </theory>

EErr(60)
The example in Listing 15.12 shows that with the notion of theory inher-

itance it is possible to re-use parts of theories and add structure to specifi-
cations. For instance it would be very simple to define a theory of Abelian
semigroups by adding a commutativity axiom.

The set of symbols, axioms, and definitions available for use in proofs in the
importing theory consists of the ones directly specified as symbol, axiom, and
definition elements in the target theory itself (we speak of local axioms and
definitions in this case) and the ones that are inherited from the source theories
via imports elements. Note that these symbols, axioms, and definitions (we
call them inherited) can consist of the local ones in the source theories and
the ones that are inherited there.

The local and inherited symbols, definitions, and axioms are the only ones
available to mathematical statements and proofs. If a symbol is not available
in the home theory (the one given by the dominating theory element or the

60 Erratum: for attribute on definition should be of type NCNames

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

162 15 Mathematical Statements

one specified in the theory attribute of the statement), then it cannot be used
since its semantics is not defined.

15.6.2 OMDoc Theories as Content Dictionaries

In Chapter 13, we have introduced the OpenMath and Content-MathML
representations for mathematical objects and formulae. One of the central
concepts there was the notion that the representation of a symbol includes a
pointer to a document that defines its meaning. In the original OpenMath
standard, these documents are identified as OpenMath content dictionaries,
the MathML recommendation is not specific. In the examples above, we have
seen that OMDoc documents can contain definitions of mathematical con-
cepts and symbols, thus they are also candidates for “defining documents” for
symbols. By the OpenMath2 standard [BCC+04] suitable classes of OMDoc
documents can act as OpenMath content dictionaries (we call them OMDoc
content dictionaries; see Subsection 22.3.2). The main distinguishing fea-
ture of OMDoc content dictionaries is that they include theory elements with
symbol declarations (see Section 15.2) that act as the targets for the pointers
in the symbol representations in OpenMath and Content-MathML. The
theory name specified in the xml:id attribute of the theory element takes
the place of the CDname defined in the OpenMath content dictionary.BErr(61)

Furthermore, the URI specified in the cdbase attribute is the one used for
disambiguation on om:OMS elements (see Section 13.1 for a discussion).

For instance the symbol declaration in Listing 15.1 can be referenced as

<OMS cd=”elAlg” name=”monoid” cdbase=”http://omdoc.org/algebra.omdoc”/>

if it occurs in a theory for elementary algebra whose xml:id attribute has the
value elAlg and which occurs in a resource with the URI http://omdoc.org/
algebra.omdoc or if the cdbase attribute of the theory element has the value
http://omdoc.org/algebra.omdoc. To be able to act as an OpenMath2EErr(61)
content dictionary format, OMDoc must be able to express content dictionary
metadata (see Listing 5.1 for an example). For this, the theory element carries
some optional attributes that allow to specify the administrative metadata of
OpenMath content dictionaries.

The cdstatus attribute specifies the content dictionary status, which
can take one of the following values: official (i.e. approved by the Open-
Math Society), experimental (i.e. under development and thus liable to
change), private (i.e. used by a private group of OpenMath users) or
obsolete (i.e. only for archival purposes). The attributes cdversion and
cdrevision jointly specify the content dictionary version number, which

61 Erratum(clarification): This specification of the inheritance mecha-
nism is to wishy washy. See section 3.1 of the errata document for a
clarification.

http://omdoc.org/algebra.omdoc
http://omdoc.org/algebra.omdoc
http://omdoc.org/algebra.omdoc

statements.tex 8723 2010-09-22 21:10:13Z kohlhase

15.6 Theories as Structured Contexts 163

consists of two parts, a major version and a revision, both of which are non-
negative integers. For details between the relation between content dictionary
status and versions consult the OpenMath standard [BCC+04].

Furthermore, the theory element can have the following attributes:

cdbase for the content dictionary base which, when combined with the con-
tent dictionary name, forms a unique identifier for the content dictionary.
It may or may not refer to an actual location from which it can be re-
trieved.

cdurl for a valid URL where the source file for the content dictionary encod-
ing can be found.

cdreviewdate for the review date of the content dictionary, i.e. the date
until which the content dictionary is guaranteed to remain unchanged.

adt.tex 6165 2006-10-07 13:21:01Z

adt.tex 6165 2006-10-07 13:21:01Z

16

Abstract Data Types (Module ADT)

Most specification languages for mathematical theories support definition
mechanisms for sets that are inductively generated by a set of constructors
and recursive functions on these under the heading of abstract data types.
Prominent examples of abstract data types are natural numbers, lists, trees,
etc. The module ADT presented in this chapter extends OMDoc by a con-
cise syntax for abstract data types that follows the model used in the Casl
(Common Abstract Specification Language [CoF04]) standard.

Conceptually, an abstract data type declares a collection of symbols and
axioms that can be used to construct certain mathematical objects and to
group them into sets. For instance, the Peano axioms (see Figure 15.1) intro-
duce the symbols 0 (the number zero), s (the successor function), and N (the
set of natural numbers) and fix their meaning by five axioms. These state that
the set N contains exactly those objects that can be constructed from 0 and
s alone (these symbols are called constructor symbols and the representa-
tions constructor terms). Optionally, an abstract data type can also declare
selector symbols, for (partial) inverses of the constructors. In the case of
natural numbers the predecessor function is a selector for s: it “selects” the
argument n, from which a (non-zero) number s(n) has been constructed.

Following Casl we will call sets of objects that can be represented as con-
structor terms sorts. A sort is called free, iff there are no identities between
constructor terms, i.e. two objects represented by different constructor terms
can never be equal. The sort N of natural numbers is a free sort. An example
of a sort that is not free is the theory of finite sets given by the construc-
tors ∅ and the set insertion function ι , since the set {a} can be obtained
by inserting a into the empty set an arbitrary (positive) number of times; so
e.g. ι(a, ∅) = ι(a, ι(a, ∅)). This kind of sort is called generated, since it only
contains elements that are expressible in the constructors. An abstract data
type is called loose, if it contains elements besides the ones generated by the
constructors. We consider free sorts more strict than generated ones, which
in turn are more strict than loose ones.
In OMDoc, we use the adt element to specify abstract data types possibly adt

adt.tex 6165 2006-10-07 13:21:01Z

166 16 Abstract Data Types

Element Attributes D Content

Req. Optional C

adt xml:id, class, style,
parameters

+ sortdef+

sortdef name type, role, scope, class,
style

+ (constructor |
insort)*, recognizer?

constructor name type, scope, class, style + argument*

argument + type, selector?

insort for –
selector name type, scope, role, total,

class, style
+ EMPTY

recognizer name type, scope, role, class,
style

+

Fig. 16.1. Abstract data types in OMDoc

consisting of multiple sorts. It is a theory-constitutive statement and can only
occur as a child of a theory element (see Section 15.1 for a discussion). An
adt element contains one or more sortdef elements that define the sorts and
specify their members and it can carry a parameters attribute that contains
a whitespace-separated list of parameter variable names. If these are present,
they declare type variables that can be used in the specification of the new
sort and constructor symbols see Section 26.20 for an example.

We will use an augmented representation of the abstract data type of nat-
ural numbers as a running example for introduction of the functionality added
by the ADT module; Listing 16.1 contains the listing of the OMDoc encoding.
In this example, we introduce a second sort P for positive natural numbers to
make it more interesting and to pin down the type of the predecessor function.

A sortdef element is a highly condensed piece of syntax that declares asortdef

sort symbol together with the constructor symbols and their selector sym-
bols of the corresponding sort. It has a required name attribute that specifies
the symbol name, an optional type attribute that can have the values free,
generated, and loose with the meaning discussed above. A sortdef element
contains a set of constructor and insort elements. The latter are emptyconstructor

insort
elements which refer to a sort declared elsewhere in a sortdef with their for
attribute: An insort element with for="〈〈URI〉〉#〈〈name〉〉" specifies that all

BErr(62) the constructors of the sort 〈〈name〉〉 are also constructors for the one defined
in the parent sortdef. []62:1

d Furthermore, the type of a sort given by aEErr(62)
sortdef element can only be as strict as the types of any sorts included by
its insort children.

Listing 16.1 introduces the sort symbols pos-nats (positive natural num-
bers) and nats (natural numbers) , the symbol names are given by the re-

62 Erratum: The for attribute contains a URI reference according to
the RelaxNG schema; the locality restriction here contradicts that
and needs to be removed.

62:1 deleted: Note that the sort 〈〈name〉〉 must be declared in a sortdef in the same
adt element.

adt.tex 6165 2006-10-07 13:21:01Z

16 Abstract Data Types 167

quired name attribute. Since a constructor is in general an n-ary function, a
constructor element contains n argument children that specify the argument argument

sorts of this function along with possible selector functions. The argument sort
is given as the first child of the argument element: a type element as described
in Subsection 15.2.3. Note that n may be 0 and thus the constructor element
may not have argument children (see for instance the constructor for zero

in Listing 16.1). The first sortdef element there introduces the constructor
symbol succ@Nat for the successor function. This function has one argument,
which is a natural number (i.e. a member of the sort nats).

Sometimes it is convenient to specify the inverses of a constructors that are
functions. For this OMDoc offers the possibility to add an empty selector selector

element as the second child of an argument child of a constructor. The
required attribute name specifies the symbol name, the optional total at-
tribute of the selector element specifies whether the function represented
by this symbol is total (value yes) or partial (value no). In Listing 16.1 the
selector element in the first sortdef introduces a selector symbol for the
successor function succ. As succ is a function from nats to pos-nats, pred
is a total function from pos-nats to nats.

Finally, a sortdef element can contain a recognizer child that specifies recognizer

a symbol for a predicate that is true, iff its argument is of the respective sort.
The name of the predicate symbol is specified in the required name attribute.
Listing 16.1 introduces such a recognizer predicate as the last child of the
sortdef element for the sort pos-nats.

Note that the sortdef, constructor, selector, and recognizer ele-
ments define symbols of the name specified by their name element in the
theory that contains the adt element. To govern the visibility, they carry the
attribute scope (with values global and local) and the attribute role (with
values type, sort, object).

Listing 16.1. The natural numbers using adt in OMDoc

<theory xml:id=”Nat”>
<adt xml:id=”nat−adt”>
<metadata>

4 <dc:title>Natural Numbers as an Abstract Data Type.</dc:title>
<dc:description>The Peano axiomatization of natural numbers.</dc:description>

</metadata>

<sortdef name=”pos−nats” type=”free”>
9 <metadata>

<dc:description>The set of positive natural numbers.</dc:description>
</metadata>
<constructor name=”succ”>
<metadata><dc:description>The successor function.</dc:description></metadata>

14 <argument>
<type><OMOBJ><OMS cd=’Nat’ name=”nats”/></OMOBJ></type>
<selector name=”pred” total=”yes”>
<metadata><dc:description>The predecessor function.</dc:description></metadata>

</selector>
19 </argument>

</constructor>
<recognizer name=”positive”>
<metadata>

adt.tex 6165 2006-10-07 13:21:01Z

168 16 Abstract Data Types

<dc:description>
24 The recognizer predicate for positive natural numbers.

</dc:description>
</metadata>

</recognizer>
</sortdef>

29

<sortdef name=”nats” type=”free”>
<metadata><dc:description>The set of natural numbers</dc:description></metadata>
<constructor name=”zero”>
<metadata><dc:description>The number zero.</dc:description></metadata>

34 </constructor>
<insort for=”#pos−nats”/>

</sortdef>
</adt>

</theory>

To summarize Listing 16.1: The abstract data type nat-adt is free and de-
fines two sorts pos-nats and nats for the (positive) natural numbers. The
positive numbers (pos-nats) are generated by the successor function (which
is a constructor) on the natural numbers (all positive natural numbers are
successors). On pos-nats, the inverse pred of succ is total. The set nats of
all natural numbers is defined to be the union of pos-nats and the construc-
tor zero. Note that this definition implies the five well-known Peano Axioms:
the first two specify the constructors, the third and fourth exclude identities
between constructor terms, while the induction axiom states that nats is gen-
erated by zero and succ. The document that contains the nat-adt could also
contain the symbols and axioms defined implicitly in the adt element explic-
itly as symbol and axiom elements for reference. These would then carry the
generated-from attribute with value nat-adt.

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

17

Representing Proofs (Module PF)

Proofs form an essential part of mathematics and modern sciences. Concep-
tually, a proof is a representation of uncontroversial evidence for the truth of
an assertion.

The question of what exactly constitutes a proof has been controversially
discussed (see e.g. [BC01a]). The clearest (and most radical) definition is given
by theoretical logic, where a proof is a sequence, or tree, or directed acyclic
graph (DAG) of applications of inference rules from a formally defined logical
calculus, that meets a certain set of well-formedness conditions. There is a
whole zoo of logical calculi that are optimized for various applications. They
have in common that they are extremely explicit and verbose, and that the
proofs even for simple theorems can become very large. The advantage of
having formal and fully explicit proofs is that they can be very easily verified,
even by simple computer programs. We will come back to this notion of proof
in Section 17.4.

In mathematical practice the notion of a proof is more flexible, and more
geared for consumption by humans: any line of argumentation is considered
a proof, if it convinces its readers that it could in principle be expanded to a
formal proof in the sense given above. As the expansion process is extremely
tedious, this option is very seldom carried out explicitly. Moreover, as proofs
are geared towards communication among humans, they are given at vastly
differing levels of abstraction. From a very informal proof idea for the ini-
tiated specialist of the field, who can fill in the details herself, down to a
very detailed account for skeptics or novices which will normally be still well
above the formal level. Furthermore, proofs will usually be tailored to the
specific characteristics of the audience, who may be specialists in one part
of a proof while unfamiliar to the material in others. Typically such proofs
have a sequence/tree/DAG-like structure, where the leaves are natural lan-
guage sentences interspersed with mathematical formulae (or mathematical
vernacular).

Let us consider a proof and its context (Figure 17.1) as it could be found
in a typical elementary math. textbook, only that we have numbered the

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

170 17 Representing Proofs

proof steps for referencing convenience. Figure 17.1 will be used as a running
example throughout this chapter.

Theorem: There are infinitely many prime numbers.
Proof: We need to prove that the set P of all prime numbers is not
finite.

1. We proceed by assuming that P is finite and reaching a
contradiction.

2. Let P be finite.
3. Then P = {p1, . . . , pn} for some pi.

4. Let q
def
= p1 · · · pn + 1.

5. Since for each pi ∈ P we have q > pi, we conclude q /∈ P .
6. We prove the absurdity by showing that q is prime:
7. For each pi ∈ P we have q = pik + 1 for some natural

number k, so pi can not divide q;
8. q must be prime as P is the set of all prime numbers.
9. Thus we have contradicted our assumption (2)

10. and proven the assertion.

Fig. 17.1. A Theorem with a Proof.

Since proofs can be marked up on several levels, we will introduce the
OMDoc markup for proofs in stages: We will first concentrate on proofs as
structured texts, marking up the discourse structure in example Figure 17.1.
Then we will concentrate on the justifications of proof steps, and finally we
will discuss the scoping and hierarchical structure of proofs.

The development of the representational infrastructure in OMDoc has a
long history: From the beginning the format strived to allow structural se-
mantic markup for textbook proofs as well as accommodate a wide range
of formal proof systems without over-committing to a particular system.
However, the proof representation infrastructure from Version 1.1 of OM-
Doc turned out not to be expressive enough to represent the proofs in the
Helm library [APCS01]. As a consequence, the PF module has been re-
designed [AKC03] as part of the MoWGLI project [AK02]. The current ver-
sion of the PF module is an adaptation of this proposal to be as compatible as
possible with earlier versions of OMDoc. It has been validated by interpret-
ing it as an implementation of the λµµ̃ calculus [Coe05] proof representation
calculus.

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

17.1 Proof Structure 171

17.1 Proof Structure

In this section, we will concentrate on the structure of proofs apparent in
the proof text and introduce the OMDoc infrastructure needed for marking
up this aspect. Even if the proof in Figure 17.1 is very short and simple, we
can observe several characteristics of a typical mathematical proof. The proof
starts with the thesis that is followed by nine main “steps” (numbered from
1 to 10). A very direct representation of the content of Figure 17.1 is given in
Listing 17.1. BErr(63)

Listing 17.1. An OMDoc Representation of Figure 17.1.

<assertion xml:id=”a1”>
2 <CMP>There are infinitely many prime numbers.</CMP>

</assertion>
<proof xml:id=”p” for=”#a1”>
<omtext xml:id=”intro”>
<CMP>We need to prove that the set P of all prime numbers is not finite.</CMP>

7 </omtext>
<derive xml:id=”d1”>
<CMP>We proceed by assuming that P is finite and reaching a contradiction.</CMP>
<method>
<proof xml:id=”p1”>

12 <hypothesis xml:id=”h2”><CMP>Let P be finite.</CMP></hypothesis>
<derive xml:id=”d3”>
<CMP>Then P = {p1, . . . , pn} for some pi.</CMP>
<method><premise xref=”#h2”/></method>

</derive>
17 <symbol name=”q”/>

<definition xml:id=”d4” for=”q” type=”informal”>

<CMP>Let q
def
= p1 · · · pn + 1</CMP>

</definition>
<derive xml:id=”d5”>

22 <CMP> Since for each pi ∈ P we have q > pi, we conclude q /∈ P .</CMP>
</derive>
<omtext xml:id=”c6”>
<CMP>We prove the absurdity by showing that q is prime:</CMP>

</omtext>
27 <derive xml:id=”d7”>

<CMP>For each pi ∈ P we have q = pik + 1 for some
natural number k, so pi can not divide q;</CMP>

<method><premise xref=”#d4”/></method>
</derive>

32 <derive xml:id=”d8”>
<CMP>q must be prime as P is the set of all prime numbers.</CMP>
<method><premise xref=”#d7”/></method>

</derive>
<derive xml:id=”d9”>

37 <CMP>Thus we have contradicted our assumption</CMP>
<method><premise xref=”#d5”/><premise xref=”#d8”/></method>

</derive>
</proof>

</method>
42 </derive>

<derive xml:id=”d10” type=”conclusion”>
<CMP>This proves the assertion.</CMP>

</derive>
</proof>

EErr(63)
Proofs are specified by proof elements in OMDoc that have the optional

proof
63 Erratum: for attribute on definition should be of type NCNames

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

172 17 Representing Proofs

attributes xml:id and theory and the required attribute for. The for at-
tribute points to the assertion that is justified by this proof (this can be an
assertion element or a derive proof step (see below), thereby making it
possible to specify expansions of justifications and thus hierarchical proofs).
Note that there can be more than one proof for a given assertion.BErr(64)

Element Attributes D Content

Req. Optional C

proof for theory, xml:id,
class, style

+ (omtext | derive | hypothesis |
symbol | definition)*

proofobject for xml:id, class,
style, theory

+ CMP*, (OMOBJ |m:math |legacy)

hypothesis xml:id, class,
style, inductive

– CMP*, FMP*

derive xml:id, class,
style, type

– CMP*, FMP*, method?

method xref – (OMOBJ |m:math |legacy | premise
| proof | proofobject)*

premise xref rank – EMPTY

Fig. 17.2. The OMDoc Proof Elements

EErr(64)
The content of a proof consists of a sequence of proof steps, whose DAG

structure is given by cross-referencing. These proof steps are specified in four
kinds of OMDoc elements:

omtext OMDoc allows this element to allow for intermediate text in proofs
that does not have to have a logical correspondence to a proof step, but
e.g. guides the reader through the proof. Examples for this are remarks by
the proof author, e.g. an explanation why some other proof method will
not work. We can see another example in Listing 17.1 in lines 5-7, where
the comment gives a preview over the course of the proof.

derive elements specify normal proof steps that derive a new claim from al-
ready known ones, from assertions or axioms in the current theory, or from
the assumptions of the assertion that is under consideration in the proof.
See for example lines 12ff in Listing 17.1 for examples of derive proof
steps that only state the local assertion. We will consider the specification
of justifications in detail in Section 17.2 below. The derive element car-derive

ries an optional xml:id attribute for identification and an optional type
to single out special cases of proofs steps.
The value conclusion is reserved for the concluding step of a proof1, i.e.
the one that derives the assertion made in the corresponding theorem.

64 Erratum: made the for attribute in the proofobject element required;
added the rank attribute to the premise element

1 As the argumentative structure of the proof is encoded in the justification struc-
ture to be detailed in Section 17.2, the concluding step of a proof need not be the
last child of a proof element.

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

17.2 Proof Step Justifications 173

The value gap is used for proof steps that are not justified (yet): we call
them gap steps. Note that the presence of gap steps allows OMDoc to
specify incomplete proofs as proofs with gap steps.

hypothesis elements allow to specify local assumptions that allow the hypo-
thetical reasoning discipline needed for instance to specify proof by contra-
diction, by case analysis, or simply to show that A implies B, by assuming
A and then deriving B from this local hypothesis. The scope of an hypoth-
esis extends to the end of the proof element containing it. In Listing 17.1
the classification of step 2 from Figure 17.1 as the hypothesis element hypothesis

h2 forces us to embed it into a derive element with a proof grandchild,
making a structure apparent that was hidden in the original.
An important special case of hypothesis is the case of “inductive hypoth-
esis”, this can be flagged by setting the value of the attribute inductive

to yes; the default value is no.
symbol/definition These elements allow to introduce new local symbols

that are local to the containing proof element. Their meaning is just
as described in Section 15.2, only that the role of the axiom element
described there is taken by the hypothesis element. In Listing 17.1 step
4 in the proof is represented by a symbol/definition pair. Like in the
hypothesis case, the scope of this symbol extends to the end of the proof
element containing it.

These elements contain an informal (natural language) representation of
the proof step in a multilingual CMP group and possibly an FMP element that
gives a formal representation of the claim made by this proof step. A derive

element can furthermore contain a method element that specifies how the as-
sertion is derived from already-known facts (see the next section for details).
All of the proof step elements have an optional xml:id attribute for identifi-
cation and the CSS attributes.

As we have seen above, the content of any proof step is essentially a
Gentzen-style sequent; see Listing 17.3 for an example. This mixed representa-
tion enhances multi-modal proof presentation [Fie97], and the accumulation of
proof information in one structure. Informal proofs can be formalized [Bau99];
formal proofs can be transformed to natural language [HF96]. The first is im-
portant, since it will be initially infeasible to totally formalize all mathematical
proofs needed for the correctness management of the knowledge base.

17.2 Proof Step Justifications

So far we have only concerned ourselves with the linear structure of the proof,
we have identified the proof steps and classified them by their function in
the proof. A central property of the derive elements is that their content
(the local claim) follows from statements that we consider true. These can
be earlier steps in the proof or general knowledge. To convince the reader of

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

174 17 Representing Proofs

a proof, the steps are often accompanied with a justification. This can be
given either by a logical inference rule or higher-level evidence for the truth
of the claim. The evidence can consist in a proof method that can be used
to prove the assertion, or in a separate subproof, that could be presented if
the consumer was unconvinced. Conceptually, both possibilities are equivalent,
since the method can be used to compute the subproof (called its expansion).
Justifications are represented in OMDoc by the method children of derive

elements2 (see Listing 17.2 for an example):
The method element contains a structural specification of the justificationmethod

of the claim made in the FMP of a derive element. So the FMP together with
the method element jointly form the counterpart to the natural language con-
tent of the CMP group, they are sibling to: The FMP formalizes the local claim,
and the method stands for the justification. In Listing 17.2 the formula in the
CMP element corresponds to the claim, whereas the part “By . . . , we have” is
the justification. In other words, a method element specifies a proof method or
inference rule with its arguments that justifies the assertion made in the FMP

elements. It has an optional xref attribute whose target is an OMDoc defi-
nition of an inference rule or proof method.3 A method may have om:OMOBJ,
m:math, legacy, premise, proof, and proofobject4 children. These act as
parameters to the method, e.g. for the repeated universal instantiation method
in Listing 17.2 the parameters are the terms to instantiate the bound variables.

The premise elements are used to refer to already established assertions:premise

other proof steps or statements (given as assertion, definition, or axiom

elements) the method was applied to to obtain the local claim of the proof
step. The premise elements are empty and carry the required attribute xref,
which contains the URI of the assertion. Thus the premise elements specify
the DAG structure of the proof. Note that even if we do not mark up the
method in a justification (e.g. if it is unknown or obvious) it can still make
sense to structure the argument in premise elements. We have done so in
Listing 17.1 to make the dependencies of the argumentation explicit.

2 The structural and formal justification elements discussed in this section are de-
rived from hierarchical data structures developed for semi-automated theorem
proving (satisfying the logical side). They allow natural language representations
at every level (allowing for natural representation of mathematical vernacular
at multiple levels of abstraction). This proof representation (see [BCF+97] for a
discussion and pointers) is a DAG of nodes which represent the proof steps.

3 At the moment OMDoc does not provide markup for such objects, so that they
should best be represented by symbols with definition where the inference rule
is explained in the CMP (see the lower part of Listing 17.2), and the FMP holds
a content representation for the inference rule, e.g. using the content dictio-
nary [Koh05c]. A good enhancement is to encapsulate system-specific encodings
of the inference rules in private or code elements and have the xref attribute
point to these.

4 This object is an alternative representation of certain proofs, see Section 17.4.

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

17.2 Proof Step Justifications 175

If a derive step is a logically (or even mathematically) complex step, an
expansion into sub-steps can be specified in a proof or proofobject element
embedded into the justifying method element. An embedded proof allows us
to specify generic markup for the hierarchic structure of proofs. Expansions
of nodes justified by method applications are computed, but the information
about the method itself is not discarded in the process as in tactical theorem
provers like Isabelle [Pau94] or NuPrL [CAB+86]. Thus, proof nodes may
have justifications at multiple levels of abstraction in an hierarchical proof
data structure. Thus the method elements allow to augment the linear struc-
ture of the proof by a tree/DAG-like secondary structure given by the premise
links. Due to the complex hierarchical structure of proofs, we cannot directly
utilize the tree-like structure provided by XML, but use cross-referencing. The
derive step in Listing 17.2 represents an inner node of the proof tree/DAG
with three children (the elements with identifiers A2, A4, and A5). BErr(65)

Listing 17.2. A derive Proof Step

<proof xml:id=”proof.2.1.2.proof.D2.1” for=”#assertion.2.1.2”>
. . .
<derive xml:id=”D2.1”>

4 <CMP>By <ref type=”cite” xref=”#A2”/>, <ref type=”cite” xref=”#A4”/>, and
<ref type=”cite” xref=”#A5”/> we have z + (a+ (−a)) = (z + a) + (−a).</CMP>

<FMP>z + (a+ (−a)) = (z + a) + (−a)</FMP>
<method xref=”nk−sorts.omdoc#NK−Sorts.forallistar”>
<OMOBJ><OMV name=”z”/></OMOBJ>

9 <OMOBJ><OMV name=”a”/></OMOBJ>
<OMOBJ>−a</OMOBJ>
<premise xref=”#A2”/><premise xref=”#A4”/><premise xref=”#A5”/>

</method>
</derive>

14 . . .
</proof>
. . .
<theory xml:id=”NK−Sorts”>
<metadata>

19 <dc:title>Natural Deduction for Sorted Logic</dc:title>
</metadata>

<symbol name=”forallistar”>
<metadata>

24 <dc:description>Repeated Universal Instantiation></dc:description>
</metadata>

</symbol>
<definition xml:id=” forallistar .def” for=” forallistar ” type=”informal”>
<CMP>Given n parameters, the inference rule ∀I∗ instantiates

29 the first n universal quantifications in the antecedent with them.</CMP>
</definition>
. . .

</theory>

EErr(65)
In OMDoc the premise elements must reference proof steps in the current

proof or statements (assertion or axiom elements) in the scope of the current
theory: A statement is in scope of the current theory, if its home theory is
the current theory or imported (directly or indirectly) by the current theory.

65 Erratum: for attribute on definition should be of type NCNames

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

176 17 Representing Proofs

Furthermore note that a proof containing a premise element is not self-
contained evidence for the validity of the assertion it proves. Of course it
is only evidence for the validity at all (we call such a proof grounded), if all
the statements that are targets of premise references have grounded proofs
themselves5 and the reference relation does not contain cycles. A grounded
proof can be made self-contained by inserting the target statements as derive
elements before the referencing premise and embedding at least one proof

into the derive as a justification.
Let us now consider another proof example (Listing 17.3) to fortify our

intuition.

Listing 17.3. An OMDoc Representation of a Proof by Cases

<assertion xml:id=”t1” theory=”sets”>
<CMP>If a ∈ U or a ∈ V , then a ∈ U ∪ V .</CMP>

3 <FMP>
<assumption xml:id=”t1 a”>a ∈ U ∨ a ∈ V </assumption>
<conclusion xml:id=”t1 c”>a ∈ U ∪ V </conclusion>

</FMP>
</assertion>

8 <proof xml:id=”t1 p1” for=”#t1” theory=”sets”>
<omtext xml:id=”t1 p1 m1”>
<CMP> We prove the assertion by a case analysis.</CMP>

</omtext>
<derive xml:id=”t1 p1 l1”>

13 <CMP>If a ∈ U , then a ∈ U ∪ V .</CMP>
<FMP>
<assumption xml:id=”t1 p1 l1 a”>a ∈ U</assumption>
<conclusion xml:id=”t1 p1 l1 c”>a ∈ U ∪ V </conclusion>

</FMP>
18 <method xref=”sk.omdoc#SK.by definition”>∪</method>

</derive>
<derive xml:id=”t1 p1 l2”>
<CMP>If a ∈ V , then a ∈ U ∪ V .</CMP>
<FMP>

23 <assumption xml:id=”t1 p1 l2 a”>a ∈ V </assumption>
<conclusion xml:id=”t1 p1 l2 c”>a ∈ U ∪ V </conclusion>

</FMP>
<method xref=”sk.omdoc#SK.by definition”>∪</method>

</derive>
28 <derive xml:id=”t1 p1 c”>

<CMP> We have considered both cases, so we have a ∈ U ∪ V .</CMP>
</derive>

</proof>

This proof is in sequent style: The statement of all local claims is in self-
contained FMPs that mark up the statement in assumption/conclusion form,
which makes the logical dependencies explicit. In this example we use inference
rules from the calculus “SK”,Gentzen’s sequent calculus for classical first-order
logic [Gen35], which we assume to be formalized in a theory SK. Note that
local assumptions from the FMP should not be referenced outside the derive

step they were made in. In effect, the derive element serves as a grouping
device for local assumptions.

5 For assertion targets this requirement is obvious. Obviously, axioms do not
need proofs, but certain forms of definitions need well-definedness proofs (see
Subsection 15.2.4). These are included in the definition of a grounded proof.

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

17.3 Scoping and Context in a Proof 177

Note that the same effect as embedding a proof element into a derive step
can be obtained by specifying the proof at top-level and using the optional
for attribute to refer to the identity of the enclosing proof step (given by its
optional xml:id attribute), we have done this in the proof in Listing 17.4,
which expands the derive step with identifier t1 p1 l1 in Listing 17.3. BErr(66)

Listing 17.4. An External Expansion of Step t 1 p1 l1 in Listing 17.3

<definition xml:id=”union.def” for=”union”>
<OMOBJ>∀P,Q, x.x ∈ P ∪Q⇔ x ∈ P ∨ x ∈ Q</OMOBJ>

</definition>
4

<proof xml:id=”t1 p1 l1.exp” for=”#t1 p1 l1”>
<derive xml:id=”t1 p1 l1.d1”>
<FMP>
<assumption xml:id=”t1 p1 l1.d1.a”>a ∈ U</assumption>

9 <conclusion xml:id=”t1 p1 l1.d1.c”>a ∈ U</conclusion>
</FMP>
<method xref=”sk.omdoc#SK.axiom”/>

</derive>
<derive xml:id=”t1 p1 l1.l1.d2”>

14 <FMP>
<assumption xml:id=”t1 p1 l1.d2.a”>a ∈ U</assumption>
<conclusion xml:id=”t1 p1 l1.d2.c”>a ∈ U ∨ a ∈ V </conclusion>

</FMP>
<method xref=”sk.omdoc#SK.orR”><premise xref=”#t1 p1 l1.d1”/></method>

19 </derive>
<derive xml:id=”t1 p1 l1.d3”>
<FMP>
<assumption xml:id=”t1 p1 l1.d3.a”>a ∈ U ∨ a ∈ V </assumption>
<conclusion xml:id=”t1 p1 l1.d3.c”>a ∈ U ∪ V </conclusion>

24 </FMP>
<method xref=”sk.omdoc#SK.definition−rl”>U , V , a
<premise xref=”#unif.def”/>

</method>
</derive>

29 <derive xml:id=”t1 p1 l1.d4”>
<FMP>
<assumption xml:id=”t1 p1 l1.d3.a”>a ∈ U</assumption>
<conclusion xml:id=”t1 p1 l1.d3.c”>a ∈ U ∪ V </conclusion>

</FMP>
34 <method xref=”sk.omdoc#SK.cut”>

<premise xref=”#t1 p1 l1.d2”/>
<premise xref=”#t1 p1 l1.d3”/>

</method>
</derive>

39 </proof>

EErr(66)

17.3 Scoping and Context in a Proof

Unlike the sequent style proofs we discussed in the last section, many infor-
mal proofs use the natural deduction style [Gen35], which allows to reason
from local assumptions. We have already seen such hypotheses as hypothesis
elements in Listing 17.1. The main new feature is that hypotheses can be
introduced at some point in the proof, and are discharged later. As a conse-
quence, they can only be used in certain parts of the proof. The hypothesis

66 Erratum: for attribute on definition should be of type NCNames

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

178 17 Representing Proofs

is inaccessible for inference outside the nearest ancestor proof element of the
hypothesis.

Let us now reconsider the proof in Figure 17.1. Some of the steps (2, 3,
4, 5, 7) leave the thesis unmodified; these are called forward reasoning or
bottom-up proof steps, since they are used to derive new knowledge from
the available one with the aim of reaching the conclusion. Some other steps (1,
6) are used to conclude the (current) thesis by opening new subproofs, each
one characterized with a new local thesis. These steps are called backward
reasoning or top-down proof steps steps, since they are used to reduce a
complex problem (proving the thesis) to several simpler problems (the sub-
proofs). In our example, both backward reasoning steps open just one new
subproof: Step 1 reduces the goal to proving that the finiteness of P implies
a contradiction; step 5 reduces the goal to proving that q is prime.

Step 2 is used to introduce a new hypothesis, whose scope extends from
the point where it is introduced to the end of the current subproof, covering
also all the steps inbetween and in particular all subproofs that are introduced
in these. In our example the scope of the hypothesis that P is finite (step 2 in
Figure 17.1) are steps 3 – 8. In an inductive proof, for instance, the scope of
the inductive hypothesis covers only the proof of the inductive step and not
the proof of the base case (independently from the order adopted to present
them to the user).

Step 4 is similar, it introduces a new symbol q, which is a local declaration
that has scope over lines 4 – 9. The difference between a hypothesis and a
local declaration is that the latter is used to introduce a variable as a new
element in a given set or type, whereas the former, is used to locally state some
property of the variables in scope. For example, “let n be a natural number”
is a declaration, while “suppose n to be a multiple of 2” is a hypothesis.
The introduction of a new hypothesis or local declaration should always be
justified by a proof step that discharges it. In our example the declaration
P is discharged in step 10. Note that in contrast to the representation in
Listing 17.1 we have chosen to view step 6 in Figure 17.1 as a top-down proof
step rather than a proof comment.

To sum up, every proof step is characterized by a current thesis and a
context, which is the set of all the local declarations, hypotheses, and local
definitions in scope. Furthermore, a step can either introduce a new hypothe-
sis, definition, or declaration or can just be a forward or backward reasoning
step. It is a forward reasoning derive step if it leaves the current thesis as it
is. It is a backward reasoning derive step if it opens new subproofs, each one
characterized by a new thesis and possibly a new context.BErr(67)

Listing 17.5. A top-down Representation of the Proof in Figure 17.1.

1 <assertion xml:id=”a1”>
<CMP>There are infinitely many prime numbers.</CMP>

</assertion>

67 Erratum: for attribute on definition should be of type NCNames

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

17.3 Scoping and Context in a Proof 179

<proof for=”#a1”>
<omtext xml:id=”c0”>

6 <CMP>We need to prove that the set P of all prime numbers is not finite.</CMP>
</omtext>
<derive xml:id=”d1”>
<CMP> We proceed by assuming that P is finite and reaching a contradiction.</CMP>
<method xref=”nk.omdoc#NK.by−contradiction”>

11 <proof>
<hypothesis xml:id=”h2”><CMP>Let P be finite.</CMP></hypothesis>
<derive xml:id=”d3”><CMP>Then P = {p1, . . . , pn} for some n</CMP></derive>
<symbol name=”q”/>
<definition xml:id=”d4” for=”q” type=”informal”>

16 <CMP>Let q
def
= p1 · · · pn + 1</CMP>

</definition>
<derive xml:id=”d5a”>
<CMP>For each pi ∈ P we have q > pi</CMP>
<method xref=”#Trivial”><premise xref=”#d4”/></method>

21 </derive>
<derive xml:id=”d5b”>
<CMP>q /∈ P</CMP>
<method xref=”#Trivial”><premise xref=”#d5”/></method>

</derive>
26 <derive xml:id=”d6”>

<CMP>We show absurdity by showing that q is prime</CMP>
<FMP>⊥</FMP>
<method xref=”#Contradiction”>
<premise xref=”#d5b”/>

31 <proof>
<derive xml:id=”d7a”>
<CMP>

For each pi ∈ P we have q = pik + 1 for a given natural number k.
</CMP>

36 <method xref=”#By Definition”><premise xref=”#d1”/></method>
</derive>
<derive xml:id=”d7b”>
<CMP>Each pi ∈ P does not divide q</CMP>

</derive>
41 <derive xml:id=”d8”>

<CMP>q is prime</CMP>
<method xref=”#Trivial”>
<premise xref=”#h2”/>
<premise xref=”#p4”/>

46 </method>
</derive>

</proof>
</method>

</derive>
51 </proof>

</method>
</derive>

</proof>

EErr(67)
proof elements are considered to be non-assertional in OMDoc, since

they do not make assertions about mathematical objects themselves, but only
justify such assertions. The assertional elements inside the proofs are governed
by the scoping mechanisms discussed there, so that using them in a context
where assertional elements are needed, can be forbidden.

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

180 17 Representing Proofs

17.4 Formal Proofs as Mathematical Objects

In OMDoc, the notion of fully formal proofs is accommodated by the
proofobject element. In logic, the term proof object is used for term rep-proofobject

resentations for formal proofs via the Curry/Howard/DeBruijn Isomorphism
(see e.g. [Tho91] for an introduction and Figure 17.3 for an example). λ-terms
are among the most succinct representations of calculus-level proofs as they
only document the inference rules. Since they are fully formal, they are very
difficult to read and need specialized proof presentation systems for human
consumption. In proof objects inference rules are represented as mathematical
symbols, in our example in Figure 17.3 we have assumed a theory PL0ND for
the calculus of natural deduction in propositional logic which provides the
necessary symbols (see Listing 17.6).

The proofobject element contains an optional multilingual group of CMP
elements which describes the formal proof as well as a proof object which can
be an om:OMOBJ, m:math, or legacy element.

Note that using OMDoc symbols for inference rules and mathematical
objects for proofs reifies them to the object level and allows us to treat them
at par with any other mathematical objects. We might have the following
theory for natural deduction in propositional logic as a reference target for
the second inference rule in Figure 17.3.BErr(68)

Listing 17.6. A Theory for Propositional Natural Deduction

<theory xml:id=”PL0ND”>
<metadata>
<dc:description>The Natural Deduction Calculus for Propositional Logic</dc:description>

</metadata>
5 . . .

<symbol name=”andI”>
<metadata><dc:subject>Conjunction Introduction</dc:subject></metadata>
<type system=”prop−as−types”>A→ B → (A ∧ B)</type>

</symbol>
10

<definition xml:id=”andI.def” for=”andi”>
<CMP>Conjunction introduction, if we can derive A and B,

then we can conclude A ∧ B.</CMP>
</definition>

15 . . .
</theory>

EErr(68)
In particular, it is possible to use a definition element to define a derived

inference rule by simply specifying the proof term as a definiens:

<symbol name=”andcom”>
<metadata><dc:description>Commutativity for ∧</dc:description></metadata>
<type system=”prop−as−types”>(A ∧ B)→ (B ∧ A)</type>

4 </symbol>
<definition xml:id=”andcom.def” for=”#andcom” type=”simple”>
<OMOBJ><OMR href=”#andcom.pf”/></OMOBJ>

</definition>

68 Erratum: for attribute on definition should be of type NCNames

proofs.tex 8722 2010-09-22 21:08:56Z kohlhase

17.4 Formal Proofs as Mathematical Objects 181

[A ∧B]
∧Er

B

[A ∧B]
∧El

A
∧I

B ∧A
⇒I

A ∧B ⇒ B ∧A

<proofobject xml:id=”ac.p” for=”#and−comm”>
<metadata>
<dc:description>
Assuming A ∧ B we have B and A
from which we can derive B ∧ A.
</dc:description>
</metadata>
<OMOBJ>
<OMBIND id=”andcom.pf”>
<OMS cd=”PL0ND” name=”impliesI”/>
<OMBVAR>
<OMATTR>
<OMATP>
<OMS cd=”PL0ND” name=”type”/>
A ∧ B
</OMATP>
<OMV name=”X”/>
</OMATTR>
</OMBVAR>
<OMA>
<OMS cd=”PL0ND” name=”andI”/>
<OMA>
<OMA>
<OMS cd=”PL0ND” name=”andEr”/>
<OMV name=”X”/>
</OMA>
<OMA>
<OMS cd=”PL0ND” name=”andEl”/>
<OMV name=”X”/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
</proofobject>

The schema on the left shows the proof as a natural deduction proof tree,
the OMDoc representation gives the proof object as a λ term. This term
would be written as the following term in traditional (mathematical) notation:
⇒I(λX : A ∧B. ∧I(∧Er(X),∧El(X)))

Fig. 17.3. A Proof Object for the Commutativity of Conjunction

Like proofs, proofobjects elements are considered to be non-assertional in
OMDoc, since they do not make assertions about mathematical objects them-
selves, but only justify such assertions.

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

18

Complex Theories (Modules CTH and DG)

In Section 15.6 we have presented a notion of theory and inheritance that
is sufficient for simple applications like content dictionaries that informally
(though presumably rigorously) define the static meaning of symbols. Expe-
rience in e.g. program verification has shown that this infrastructure is insuf-
ficient for large-scale developments of formal specifications, where reusability
of formal components is the key to managing complexity. For instance, for a
theory of rings we cannot simply inherit the same theory of monoids as both
the additive and multiplicative structure.

In this chapter, we will generalize the inheritance relation from Section 15.6
to that of “theory inclusions”, also called “theory morphisms” or “theory
interpretations” elsewhere [Far93]. This infrastructure allows to structure a
collection of theories into a complex theory graph that particularly supports
modularization and reuse of parts of specifications and theories. This gives
rise to the name “complex theories” of the OMDoc module. BErr(69)

EErr(69)

18.1 Inheritance via Translations

Literal inheritance of symbols is often insufficient to re-use mathematical
structures and theories efficiently. Consider for instance the situation in the
elementary algebraic hierarchy: for a theory of rings, we should be able to
inherit the additive group structure from the theory group of groups and the
structure of a multiplicative monoid from the theory monoid: A ring is a set
R together with two operations + and ∗, such that (R,+) is a group with

69 Erratum: changed the order of type and hiding attributes in
the morphism element; removed the consistency and consistency-
just attributes from the morphism, inclusion, theory-inclusion,
and axiom-inclusion elements; changed the contents of the
theory-inclusion element to (morphism?, obligation*); changed the
contents of the morphism element to (requation+, measure?, order-
ing?); added the element obligation

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

184 18 Complex Theories

Element Attributes D Content

Required Optional C

theory xml:id, class, style + (〈〈top-level〉〉 | imports
| inclusion)*

imports from xml:id, type, class,
style, conservativity,
conservativity-just

+ morphism?

morphism xml:id, base, class,
style, hiding, type,
consistency, exhaustivity

– requation+, measure?,
ordering?

inclusion via xml:id – EMPTY

theory-inclusion from, to xml:id, class, style + morphism?, obligation*

axiom-inclusion from, to xml:id, class, style + morphism?, obligation*

obligation induced-by,
assertion

xml:id – EMPTY

Fig. 18.1. Complex Theories in OMDoc

unit 0 and inverse operation − and (R∗, ∗) is a monoid with unit 1 and base
set R∗: = {r ∈ R

∣∣r 6= 0}. Using the literal inheritance regime introduced so
far, would lead us into a duplication of efforts as we have to define theories
for semigroups and monoids for the operations + and ∗ (see Figure 18.2).

semigroup+

(R,+)

monoid+

(R,+, 0)

group+

(R,+, 0,−)

ring+,∗

(R,R∗,+, 0,−, ∗, 1)

semigroup∗

(R∗, ∗)

monoid∗

(R∗, ∗, 1)

Fig. 18.2. A Theory of Rings via Simple Inheritance

This problem1 can be alleviated by allowing theory inheritance via trans-
lations. Instead of literally inheriting the symbols and axioms from the source
theory, we involve a symbol mapping function (we call this a morphism)
in the process. This function maps source formulae (i.e. built up exclusively
from symbols visible in the source theory) into formulae in the target theory
by translating the source symbols.

Figure 18.3 shows a theory graph that defines a theory of rings by im-
porting the monoid axioms via the morphism σ. With this translation, we do

1 which seems negligible in this simple example, but in real life, each instance of
multiple inheritance leads to a multiplication of all dependent theories, which
becomes an exponentially redundant management nightmare.

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

18.1 Inheritance via Translations 185

not have to duplicate the monoid and semigroup theories and can even move
the definition of ·∗ operator into the theory of monoids, where it intuitively
belongs2.

semigroup

(R,+)

monoid

(R,+, 0)

group

(R,+, 0,−)

ring

(R,+, 0,−, ∗, 1)

σ: =

R 7→ R∗

+ 7→ ∗
0 7→ 1

σ

Fig. 18.3. A Theory of Rings via Morphisms

Formally, we extend the notion of inheritance given in Section 15.6 by
allowing a target theory to import another a source theory via a morphism:
Let S be a theory with theory-constitutive elements3 t1, . . . , tn and σ:S → T
a morphism, if we declare that T imports S via σ, then T inherits the theory-
constitutive statements σ(ti) from S. For instance, the theory of rings inherits
the axiom ∀x.x+ 0 = x from the theory of monoids as σ(∀x.x+ 0 = x) =
∀x.x ∗ 1 = x.

To specify the formula mapping function, module CTH extends the
imports element by allowing it to have a child element morphism, which spec- morphism

ifies a formula mapping by a set of recursive equations using the requation el-
ement described in Section 15.2. The optional attribute type allows to specify
whether the function is really recursive (value recursive) or pattern-defined
(value pattern). As in the case of the definition element, termination of the
defined function can be specified using the optional child elements measure

and ordering, or the optional attributes uniqueness and existence, which
point to uniqueness and existence assertions. Consistency and exhaustivity of
the recursive equations are specified by the optional attributes consistency

and exhaustivity.
Listing 18.1 gives the OMDoc representation of the theory graph in Fig-

ure 18.3, assuming the theories in Listing 15.12.

Listing 18.1. A Theory of Rings by Inheritance Via Renaming

2 On any monoid M = (S, ◦, e), we have the ·∗ operator, which converts a set

S ⊆M in to S∗: = {r ∈ S
∣∣∣r 6= e}

3 which may in turn be inherited from other theories

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

186 18 Complex Theories

<theory xml:id=”ring”>
<symbol name=”times”/><symbol name=”one”/>

3 <imports xml:id=”add.import” from=”#group” type=”global”/>
<imports xml:id=”mult.import” from=”#monoid” type=”global”>
<morphism>
<requation>
<OMOBJ><OMS cd=”monoid” name=”set”/></OMOBJ>

8 <OMOBJ>
<OMA><OMS cd=”monoid” name=”setstar”/>
<OMS cd=”semigroup” name=”set”/>

</OMA>
</OMOBJ>

13 </requation>
<requation>
<OMOBJ><OMS cd=”monoid” name=”op”/></OMOBJ>
<OMOBJ><OMS cd=”ring” name=”times”/></OMOBJ>

</requation>
18 <requation>

<OMOBJ><OMS cd=”monoid” name=”neut”/></OMOBJ>
<OMOBJ><OMS cd=”ring” name=”one”/></OMOBJ>

</requation>
</morphism>

23 </imports>
<axiom xml:id=”ring.distribution”>
<CMP><OMOBJ><OMS cd=”semigroup” name=”op”/></OMOBJ> distributes over
<OMOBJ><OMS cd=”ring” name=”times”/></OMOBJ>

</CMP>
28 </axiom>

</theory>

To conserve space and avoid redundancy, OMDoc morphisms need only
specify the values of symbols that are translated; all other symbols are in-
herited literally. Thus the set of symbols inherited by an imports element
consists of the symbols of the source theory that are not in the domain of the
morphism. In our example, the symbols R, +, 0, −, ∗, 1 are visible in the
theory of rings (and any other symbols the theory of semigroups may have
inherited). Note that we do not have a name clash from multiple inheritance.

Finally, it is possible to hide symbols from the source theory by specifying
them in the hiding attribute. The intended meaning is that the underlying
signature mapping is defined (total) on all symbols in the source theory ex-
cept on the hidden ones. This allows to define symbols that are local to a
given theory, which helps achieve data protection. Unfortunately, there is no
simple interpretation of hiding in the general case in terms of formula transla-
tions, see [CoF04, MAH06] for details. [The definition of hiding used there isErr(70)
more general. The variant used here arises as the special case where the hid-
ing morphism, which goes against the import direction, is an inclusion; then
the symbols that are not in the image are the hidden ones.]70

a If we restrict
ourselves to hiding defined symbols, then the situation becomes simpler to
understand: A morphism that hides a (defined) symbol s will translate the
theory-constitutive elements of the source theory by expanding definitions.
Thus s will not be present in the target theory, but all the contributions of
the theory-constitutive elements of the source theory will have been inherited.
Say, we want to define the concept of a sorting function, i.e. a function that

70 Erratum! noted special case (added text)

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

18.2 Postulated Theory Inclusions 187

— given a list L as input — returns a returns a permutation L′ of L that
is ordered. In the situation depicted in Figure 18.4, we would the concept of
an ordering function (a function that returns a permutation of the input list
that is ordered) with the help of predicates perm and ordered. Since these
are only of interest in the context of the definition of the latter, they would
typically be hidden in order to refrain from polluting the name space.

As morphisms often contain common prefixes, the morphism element has
an optional base attribute, which points to a chain of morphisms, whose
composition is taken to be the base of this morphism. The intended meaning
is that the new morphism coincides as a function with the base morphism,
wherever the specified pattern do not match, otherwise their corresponding
values take precedence over those in the base morphism. Concretely, the base

contains a whitespace-separated list of URI references to theory-inclusion,
axiom-inclusion, and imports elements. Note that the order of the refer-
ences matters: they are ordered in order of the path in the local chain, i.e if
we have [base="#〈〈ref1〉〉...#〈〈refn〉〉" there must be theory inclusions σi with Err(71)
xml:id="〈〈refi〉〉", such that the target theory of σi−1 is the source theory of
σi, and such that the source theory of σ1 and the target theory of σn are the
same as those of the current theory inclusion]71

r .
Finally, the CTH module adds two the optional attributes conservativity

and conservativity-just to the imports element for stating and justifying
conservativity (see the discussion below).

18.2 Postulated Theory Inclusions

We have seen that inheritance via morphisms provides a powerful mechanism
for structuring and re-using theories and contexts. It turns out that the distin-
guishing feature of theory morphisms is that all theory-constitutive elements
of the source theory are valid in the target theory (possibly after translation).
This can be generalized to obtain even more structuring relations and thus
possibilities for reuse among theories. Before we go into the OMDoc infras-
tructure, we will briefly introduce the mathematical model (see e.g. [Hut00]
for details).

A theory inclusion from a source theory S to a target theory T
is a mapping σ from S objects4 to those of T , such that for every theory-
constitutive statement S of S, σ(S) is provable in T (we say that σ(S) is a
T -theorem).

In OMDoc, we weaken this logical property to a structural one: We say
that a theory-constitutive statement S in theory S is structurally included

71 Erratum! Clarified wording (original text was:
“globals="...#〈〈ref1〉〉#〈〈ref2〉〉..." there must be theory inclusions σi with
xml:id="〈〈refi〉〉", such that the target theory of σi−1 is the source theory of σi”)

4 Mathematical objects that can be represented using the only symbols of the source
theory S.

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

188 18 Complex Theories

in theory T via σ, if there is an assertional statement T in T , such that the
content of T is σ(S). Note that strictly speaking, σ is only defined on formulae,
so that if a statement S is only given by a CMP, σ(S) is not defined. In such
cases, we assume σ(S) to contain a CMP element containing suitably translated
mathematical vernacular. In this view, a structural theory inclusion from
S to T is a morphism σ:S → T , such that every theory-constitutive element
is structurally included in T .

Note that an imports element in a theory T with source theory S as
discussed in Section 18.1 induces a theory inclusion from S into T 5 (the
theory-constitutive statements of S are accessible in T after translation and
are therefore structurally included trivially). We call this kind of theory in-
clusion definitional, since it is a theory inclusion by virtue of the definition
of the target theory. For all other theory inclusions (we call them postulated
theory inclusions), we have to establish the theory inclusion property by
proving the translations of the theory-constitutive statements of the source
theory (we call these translated formulae proof obligation).

The benefit of a theory inclusion is that all theorems, proofs, and proof
methods of the source theory can be used (after translation) in the target
theory (see Section 18.4). Obviously, the transfer approach only depends on
the theorem inclusion property, and we can extend its utility by augmenting
the theory graph by more theory morphisms than just the definitional ones
(see [FGT93] for a description of the Imps theorem proving system that makes
heavy use of this idea). We use the infrastructure presented in this chapter to
structure a collection of theories as a graph — the theory graph — where
the nodes are theories and the links are theory inclusions (definitional and
postulated ones).

We call a theory inclusion σ:S → T conservative, iff A is already a
S-theorem for all T -theorems of the from σ(A). If the morphism σ is the
identity, then this means the local axioms in T only affect the local symbols
of T , and do not the part inherited from S. In particular, conservative ex-
tensions of consistent theories cannot be inconsistent. For instance, if all the
local theory-constitutive elements in T are symbol declarations with defini-
tions, then conservativity is guaranteed by the special form of the definitions.
We can specify conservativity of a theory inclusion via the conservativity[Err(72)
attribute]72

a . The values [conservative]73
r and [definitional]74

r are used forErr(73)

Err(74)
the two cases discussed above. There is a third value: [monomorphism]75

r , which

Err(75)
5 Note that in contrast to the inheritance relation induced by the imports elements

the relation induced by general theory inclusions may be cyclic. A cycle just means
that the theories participating in it are semantically equivalent.

72 Erratum! added missing word (added text)
73 Erratum! Fixed value of the conservativity attribute (original text was:

“conservative”)
74 Erratum! Fixed value of the conservativity attribute (original text was:

“conservative”)

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

18.3 Local/Required Theory Inclusions 189

we will not explain here, but refer the reader to [MAH06].
OMDoc implements the concept of postulated theory inclusions in the

top-level theory-inclusion element. It has the required attributes from and theory-inclusion

to, which point to the source- and target theories and contains a morphism

child element as described above to define the translation function. A subse-
quent (possibly empty) set of obligation elements can be used to mark up
proof obligations for the theory-constitutive elements of the source theory.

An obligation is an empty element whose assertion attribute points obligation

to an assertion element that states that the theory-constitutive statement
specified by the induced-by (translated by the morphism in the parent
theory-inclusion) is provable in the target theory. Note that a theory-inclusion
element must contain obligation elements for all theory-constitutive ele-
ments (inherited or local) of the source theory to be correct.

Listing 18.2 shows a theory inclusion from the theory group defined in
Listing 15.12 to itself. The morphism just maps each element of the base set
to its inverse. A good application for this kind of theory morphism is to import
claims for symmetric (e.g. with respect to the function inv, which serves as an
involution in group) cases via this theory morphism to avoid explicitly having
to prove them (see Section 18.4).

Listing 18.2. A Theory Inclusion for Groups

1 <assertion xml:id=”conv.assoc”>∀x, y, z ∈M.z ◦ (y ◦ x) = (z ◦ y) ◦ x</assertion>
<assertion xml:id=”conv.closed” theory=”semigroup”>∀x, y ∈M.y ◦ x ∈M</assertion>
<assertion xml:id=”left.unit” theory=”monoid”>∀x ∈M.e ◦ x = x</assertion>

<assertion xml:id=”conv.inv” theory=”group”>∀x, y ∈M.x ◦ x−1 = e</assertion>
<theory−inclusion xml:id=”grp−conv−grp” from=”#group” to=”#group”>

6 <morphism><requation>X ◦ Y ; Y ◦X</requation></morphism>
<obligation assertion=”#conv.closed” induced−by=”#closed.ax”/>
<obligation assertion=”#conv.assoc” induced−by=”#assoc.ax”/>
<obligation assertion=”#left.unit” induced−by=”#unit.ax”/>
<obligation assertion=”#conv.inv” induced−by=”#inv.ax”/>

11 </theory−inclusion>

18.3 Local- and Required Theory Inclusions

In some situations, we need to pose well-definedness conditions on theories,
e.g. that a specification of a program follows a certain security model, or that a
parameter theory used for actualization satisfies the assumptions made in the
formal parameter theory; (see Chapter 6 for a discussion). If these conditions
are not met, the theory intuitively does not make sense. So rather than simply
stating (or importing) these assumptions as theory-constitutive statements —
which would make the theory inconsistent, when they are not met — they
can be stated as well-definedness conditions. Usually, these conditions can be

75 Erratum! Fixed value of the conservativity attribute (original text was:
“conservative”)

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

190 18 Complex Theories

posited as theory inclusions, so checking these conditions is a purely structural
matter, and comes into the realm of OMDoc’s structural methods.

OMDoc provides the empty inclusion element for this purpose. It caninclusion

occur anywhere as a child of a theory element and its via attribute points
to a theory inclusion, which is required to hold in order for the parent theory
to be well-defined.

If we consider for instance the situation in Figure 18.46. There we have a
theory OrdList of lists that is generic in the elements (which is assumed to be
a totally ordered set, since we want to talk about ordered lists). We want to to
instantiate OrdList by applying it to the theory NatOrd of natural numbers
and obtain a theory NatOrdList of lists of natural numbers by importing the
theory OrdList in NatOrdList. This only makes sense, if NatOrd is a totally
ordered set, so we add an inclusion element in the statement of theory
NatOrdList that points to a theory inclusion of TOSet into OrdNat, which
forces us to verify the axioms of TOSet in OrdNat.

NatOrdList

cons, nil,
0, s,N, <

NatOrd

0, s,N, <
TOSet

Elem,<

OrdList

cons, nil,
Elem,<

imports imports

theory-inclusion

Actualization

imports

induces

theory inclusion

axiom inclusion

imports

local imports

Fig. 18.4. A Structured Specification of Lists (of Natural Numbers)

Furthermore note, that the inclusion of OrdList into NatOrdList should
not include the TOSet axioms on orderings, since this would defeat the
purpose of making them a precondition to well-definedness of the theory
NatOrdList. Therefore OMDoc follows the “development graph model” put
forward in [Hut00] and generalizes the notion of theory inclusions even fur-
ther: A formula mapping between theories S and T is called a local theory
inclusion or axiom inclusion, if the theory inclusion property holds for the
local theory-constitutive statements of the source theory. To distinguish this
from the notion of a proper theory inclusion — where the theory inclusion
property holds for all theory constitutive statements of S (even the inherited
ones) — we call the latter one global. Of course all global theory inclusions
are also local ones, so that the new notion is a true generalization. Note that
the structural inclusions of an axiom inclusion are not enough to justify trans-
lated source theorems in the target theory.

6 This example is covered in detail in Chapter 6.

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

18.4 Induced Assertions 191

To allow for a local variant of inheritance, the CTH module adds an at-
tribute type to the imports element. This can take the values global (the
default) and local. In the latter case, only the theory-constitutive statements
that are local to the source theory are imported.

Furthermore, the CTH module introduces the axiom-inclusion element axiom-inclusion

for local theory inclusions. This has the same attributes as theory-inclusion:
from to specify source theory, to for the target theory. It also allows obligation
elements as children.

18.4 Induced Assertions and Expositions

The main motivation of theory inclusions is to be able to transport mathe-
matical statements from the source theory to the target theory. In OMDoc,
this operation can be made explicit by the attributes generated-from and
generated-via that the module CTH adds to all mathematical statements.
On a statement T, the second attribute points to a theory inclusion σ whose
target is (imported into the) current theory, the first attribute points to a
statement S in that theory which is of the same type (i.e. has the same OM-
Doc element name) as T. The content of T must be (equivalent to) the
content of S translated by the morphism of σ.

In the context of the theory inclusion in Listing 18.2, we might have the
following situation:

Listing 18.3. Translating a Statement via a Theory Inclusion

<assertion xml:id=”foo” type=”theorem”>. . .</assertion>
<proof xml:id=”foo.pf” for=”#foo”>. . .</proof>
<assertion xml:id=”target” induced−by=”#foo” induced−via=”#grp−conv−grp”>

4 . . .
</assertion>

Here, the second assertion is induced by the first one via the theory inclusion in
Listing 18.2, the statement of the theorem is about the inverses. In particular,
the proof of the second theorem comes for free, since it can also be induced
from the proof of the first one.

In particular we see that in OMDoc documents, not all statements are
automatically generated by translation e.g. the proof of the second assertion
is not explicitly stated. Mathematical knowledge management systems like
knowledge bases might choose to do so, but at the document level we do
not mandate this, as it would lead to an explosion of the document sizes.
Of course we could cache the transformed proof giving it the same “cache
attribute state”.

Note that not only statements like assertions and proofs can be translated
via theory inclusions, but also whole documents: Say that we have course
materials for elementary algebra introducing monoids and groups via left units
and left inverses, but want to use examples and exercises from a book that
introduces them using right units and right inverses. Assuming that both

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

192 18 Complex Theories

are formalized in OMDoc, we can just establish a theory morphism much
like the one in Listing 18.2. Then we can automatically translate the exercises
and examples via this theory inclusion to our own setting by just applying the
morphism to all formulae in the text7 and obtain exercises and examples that
mesh well with our introduction. Of course there is also a theory inclusion in
the other direction, which is an inverse, so our colleague can reuse our course
materials in his right-leaning setting.

Another example is the presence of different normalization factors in
physics or branch cuts in elementary complex functions. In both cases there
is a plethora of definitions, which all describe essentially the same objects
(see e.g. [BCD+02] for an overview over the branch cut situation). Reading
materials that are based on the “wrong” definition is a nuisance at best, and
can lead to serious errors. Being able to adapt documents by translating them
from the author theory to the user theory by a previously established theory
morphism can alleviate both.

Mathematics and science are full of such situations, where objects can
be viewed from different angles or in different representations. Moreover, no
single representation is “better” than the other, since different views reveal
or highlight different aspects of the object (see [?] for a systematic account).
Theory inclusions seem uniquely suited to formalize the structure of different
views in mathematics and their interplay, and the structural markup for theo-
ries in OMDoc seems an ideal platform for offering added-value services that
feed on these structures without committing to a particular formalization or
foundation of mathematics.

18.5 Development Graphs (Module DG)

The OMDoc module DG for development graphs complements module
CTH with high-level justifications for the theory inclusions. Concretely, the
module provides an infrastructure for dealing efficiently with the proof obli-
gations induced by theory inclusions and forms the basis for a management
of theory change. We anticipate that the elements introduced in this chapter
will largely be hidden from the casual user of mathematical software systems,
but will form the basis for high-level document- and mathematical knowledge
management services.

7 There may be problems, if mathematical statements are verbalized; this can cur-
rently not be translated directly, since it would involve language processing tools
much beyond the content processing tools described in this book. For the moment,
we assume that the materials are written in a controlled subset of mathematical
vernacular that avoids these problems.

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

18.5 Development Graphs 193

18.5.1 Introduction

As we have seen in the example in Listing 18.2, the burden of specifying an
obligation element for each theory-constitutive element of the source theory
can make the establishment of a theory inclusion quite cumbersome — theories
high up in inheritance hierarchies can have a lot (often hundreds) of inherited,
theory-constitutive statements. Even more problematically, such obligations
are a source of redundancy and non-local dependencies, since many of the
theory-constitutive elements are actually inherited from other theories.

Consider for instance the situation in Figure 18.5, where we are interested
in the top theory inclusion Γ . On the basis of theories T1 and T2, theory C1 is
built up via theories A1 and B1. Similarly, theory C2 is built up via A2 and B2

(in the latter, we have a non-trivial non-trivial morphism σ). Let us assume
for the sake of this argument that for Xi ∈ {A,B, C} theories X1 and X2 are
so similar that axiom inclusions (they are indicated by thin dashed arrows in
Figure 18.5 and have the formula-mappings α, β, and γ) are easy to prove8.

T1 T2

A1

B1

C1

A2

B2

C2

σ
α

β

γ

Γ

theory inclusion

axiom inclusion

inheritance

Fig. 18.5. A Development Graph with Theory Inclusions

To justify Γ , we must prove that the Γ -translations of all the theory-
constitutive statements of C1 are provable in C2. So let statement B be theory-
constitutive for C1, say that it is local in B1, then we already know that β(B) is
provable in B2 since β is an axiom inclusion. Moreover, we know that σ(β(B))
is provable in C2, since σ is a (definitional, global) theory inclusion. So, if we
have Γ = σ ◦ β, then we are done for B and in fact for all local statements
of B1, since the argument is independent of B. Thus, we have established
the existence of an axiom inclusion from B1 to C2 simply by finding suitable
inclusions and checking translation compatibility.

We will call a situation, where a theory T can be reached by an axiom
inclusion with a subsequent chain of theory inclusions a local chain (with

8 A common source of situations like this is where the X2 are variants of the X1

theories. Here we might be interested whether C2 still proves the same theories
(and often also in the converse theory inclusion Γ−1 that would prove that the
variants are equivalent).

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

194 18 Complex Theories

morphism τ : = σn ◦ · · · ◦ σ1 ◦ σ), if S σ−→ T1 is an axiom inclusion or (local

theory import) and Ti
σi−→ Ti+1 are theory inclusions (or local theory import).

S T1 T2 · · · Tn Tσ σ1 σ2 σn−1 σn

τ = σn ◦ · · · ◦ σ1 ◦ σ

Note that by an argument like the one for B above, a local chain justifies
an axiom inclusion from S into T : all the τ -translations of the local theory-
constitutive statements in S are provable in T .

In our example in Figure 18.5 — given the obvious compatibility assump-
tions on the morphisms which we have not marked in the figure, — we can
justify four new axiom inclusions from the theories T1, T2, A1, and B1 into C2
by the following local chains9.

T1 A2 C2

T2 B2 C2
σ

A1 A2 C2

B1 B2 C2
α

β σ

Thus, for each theory X that C1 inherits from, there is an axiom inclusion
into C2. So for any theory-constitutive statement in C1 (it must be local in
one of the X) we know that it is provable in C2; in other words Γ is a theory
inclusion if it is compatible with the morphisms of these axiom inclusions. We
have depicted the situation in Figure 18.6.

T1 T2

A1

B1

C1

A2

B2

C2

σ
α

β

γ

Γ

theory inclusion

axiom inclusion

inheritance

Fig. 18.6. A Decomposition for the theory inclusion Γ

We call a situation where we have a formula mapping S σ−→ T , and an
axiom inclusion X σX−→ T for every theory X that S inherits from a decompo-
sition for σ, if the σX and σ are compatible. As we have seen in the example
above, a decomposition for σ can be used to justify that σ a theory inclusion:
all theory-constitutive elements in S are local in itself or one of the theories X

9 Note for the leftmost two chains use the fact that theory inclusions (in our case
definitional ones) are also axiom inclusions by definition.

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

18.5 Development Graphs 195

it inherits from. So if we have axiom inclusions from all of these to T , then all
obligations induced by them are justified and σ is indeed a theory inclusion.

18.5.2 An OMDoc Infrastructure for Development Graphs
(Module DG)

The DG module provides the decomposition element to model justification decomposition

by decomposition situations. This empty element can occur at top-level or
inside a theory-inclusion element.

The decomposition element can occur as a child to a theory-inclusion

element and carries the required attribute links that contains a whitespace-
separated list of URI references to the axiom- and theory-inclusion ele-
ments that make up the decomposition situation justifying the parent theory-inclusion
element. Note that the order of references in links is irrelevant. If the
decomposition appears on top-level, then the optional for attribute must
be used to point to the theory-inclusion it justifies. In this situation the
decomposition element behaves towards a theory-inclusion much like a
proof for an assertion. BErr(76)

Element Attributes D Content

Required Optional C

decomposition links for – EMPTY

path-just local,
globals

for – EMPTY

theory-inclusion from, to xml:id,
class, style

+ morphism?, (decomposition* |
obligation*)

axiom-inclusion from, to xml:id,
class, style

+ morphism?, (path-just* |
obligation*)

Fig. 18.7. Development Graphs in OMDoc

EErr(76)
Furthermore module DG provides path-just elements as children to the

axiom-inclusion elements to justify that this relation holds, much like a
proof element provides a justification for an assertion element for some
property of mathematical objects.

A path-just element justifies an axiom-inclusion by reference to other path-just

axiom- or theory-inclusions. Local chains are encoded in the empty path-just

element via the required attributes local (for the first axiom-inclusion) and
the attribute globals attribute, which contains a whitespace-separated list of
URI references to theory-inclusions. Note that the order of the references
in the globals matters: they are ordered in order of the path in the local

76 Erratum: added the optional for attribute for the
decomposition element; removed the by attribute from
the theory-inclusion element; changed the contents of the
theory-inclusion element to (morphism?, (decomposition* — obli-
gation*))

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

196 18 Complex Theories

chain, i.e if we have globals="... #ref1 #ref2 ..." there must be theory
inclusions σi with xml:id="refi", such that the target theory of σ1 is the
source theory of σ2.

Like the decomposition element, path-just can appear at top-level, if
it specifies the axiom-inclusion it justifies in the (otherwise optional) for

attribute.
Let us now fortify our intuition by casting the situation in Listings 18.4

to 18.5.2 in OMDoc syntax. Another — more mathematical — example is
carried out in detail in Chapter 7.

Listing 18.4. The OMDoc representation of the theories in Figure 18.5.

<theory xml:id=”t1”>. . .</theory> <theory xml:id=”t2”>. . .</theory>

<theory xml:id=”a1”> <theory xml:id=”b1”>
<imports xml:id=”ima1” from=”#t1”/> <imports xml:id=”imb1” from=”#t2”/>

5 <axiom xml:id=”axa11”>. . .</axiom> <axiom xml:id=”axb11”>. . .</axiom>
<axiom xml:id=”axa12”>. . .</axiom> </theory>

</theory>

<theory xml:id=”a2”> <theory xml:id=”b2”>
10 <imports xml:id=”im1a2” from=”#t1”/> <imports xml:id=”imb2” from=”#t2”/>

<imports xml:id=”im2a2” from=”#t2”/>
<axiom xml:id=”axa21”>. . .</axiom> <axiom xml:id=”axb21”>. . .</axiom>

</theory> </theory>

15 <theory xml:id=”c1”> <theory xml:id=”c2”>
<imports xml:id=”im1c1” from=”#a1”/> <imports xml:id=”im1c2” from=”#a2”/>
<imports xml:id=”im2c1” from=”#b1”/> <imports xml:id=”im2c2” from=”#b2”/>
<axiom xml:id=”axc11”>. . .</axiom> <axiom xml:id=”axc21”>. . .</axiom>

</theory> </theory>

Here we set up the theory structure with the theory inclusions given by the
imports elements (without morphism to simplify the presentation). Note that
these have xml:id attributes, since we need them to construct axiom- and
theory inclusions later. We have also added axioms to induce proof obligations
in the axiom inclusions:

Listing 18.5. The OMDoc Representation of the Inclusions in Figure 18.5.

1 <axiom−inclusion xml:id=”aia” from=”#a1” to=”#a2”>
<obligation induced−by=”#axa11” assertion=”#th−axa11”/>
<obligation induced−by=”#axa12” assertion=”#th−axa12”/>

</axiom−inclusion>

6 <axiom−inclusion xml:id=”bib” from=”#b1” to=”#b2”>
<obligation induced−by=”#axb11” assertion=”#th−axb1”/>

</axiom−inclusion>

<axiom−inclusion xml:id=”cic” from=”#c1” to=”#c2”>
11 <obligation induced−by=”#axc11” assertion=”#th−axc1”/>

</axiom−inclusion>

We leave out the actual assertions that justify the obligations to conserve
space. From the axiom inclusions, we can now build four more via path justi-
fications:

Listing 18.6. The Induced Axiom Inclusions in Figure 18.5.

complex-theories.tex 6813 2007-09-13 15:27:43Z clange

18.5 Development Graphs 197

<axiom−inclusion xml:id=”t1ic” from=”#t1” to=”#c2”>
<path−just local=”#im1a2” globals=”#im1c2”/>

3 </axiom−inclusion>

<axiom−inclusion xml:id=”t2ic” from=”#t2” to=”#c2”>
<path−just local=”#imb2” globals=”#im2c2”/>
</axiom−inclusion>

8

<axiom−inclusion xml:id=”aic” from=”#a1” to=”#c2”>
<path−just local=”#aia” globals=”#im1c2”/>
</axiom−inclusion>

13 <axiom−inclusion xml:id=”bic” from=”#b1” to=”#c2”>
<path−just local=”#bib” globals=”#im2c2”/>
</axiom−inclusion>

Note that we could also have justified the axiom inclusion t2ic with two
local paths: via the theory A2 and via B2 (assuming the translations work
out). These alternative justifications make the development graph more robust
against change; if one fails, the axiom inclusion still remains justified. Finally,
we can assemble all of this information into a decomposition that justifies the
theory inclusion Γ :

<theory−inclusion xml:id=”tcic” from=”#c1” to=”#c2”>
<decomposition links=”#t1ic #t2ic #aic #bic #cic”/>

</theory−inclusion>

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

19

Notation and Presentation (Module PRES)

As we have seen, OMDoc is concerned mainly with the content and struc-
ture of mathematical documents, and offers a complex infrastructure for deal-
ing with that. However, mathematical texts often carry typographic conven-
tions that cannot be determined by general principles alone. Moreover, non-
standard presentations of fragments of mathematical texts sometimes carry
meanings that do not correspond to the mathematical content or structure
proper. In order to accommodate this, OMDoc provides a limited function-
ality for embedding style information into the document. BErr(77)

Element Attributes Content

Required Optional

omstyle element for, xml:id, xref, class, style (style|xslt)*

presentation for xml:id, xref, fixity, role, lbrack,
rbrack, separator, bracket-style,
class, style, precedence,
crossref-symbol

CMP*, (use |
xslt | style)*

xslt format xml:lang, requires, xref XSLT fragment

use format xml:lang, requires, fixity,
precedence lbrack, rbrack,
separator, element, attributes,
crossref-symbol

(element | text
| recurse | map
| value-of)*

Fig. 19.1. The OMDoc Elements for Notation Information

EErr(77)
The normal (but of course not the only) way to generate presentation

from XML documents is to use XSLT style sheets (see Chapter 25 for other
applications). XSLT [XSL99] is a general transformation language for XML.
XSLT programs (often called style sheets) consist of a set of templates
(rules for the transformation of certain nodes in the XML tree). These tem-
plates are recursively applied to the input tree to produce the desired output.

77 Erratum: added CMP* to content of presentation element

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

200 19 Notation and Presentation

The general approach to presentation and notation in OMDoc is not to
provide general-purpose presentational primitives that can be sprinkled over
the document, since that would distract the author from the mathematical
content, but to support the specification of general style information for OM-
Doc elements and mathematical symbols in separate elements.

In the case of a single OMDoc document it is possible to write a spe-
cialized style sheet that transforms the content-oriented markup used in the
document into mathematical notation. However, if we have to deal with a large
collection of OMDoc representations, then we can either write a specialized
style sheet for each document (this is clearly infeasible to do by hand), or we
can develop a style sheet for the whole collection (such style sheets tend to
get large and unmanageable).

The OMDoc format allows to generate specialized style sheets that are
tailored to the presentation of (collections of) OMDoc documents. The mech-
anism will be discussed in Chapter 25, here we only concern ourselves with the
OMDoc primitives for representing the necessary data. In the next section,
we will address the specification of style information for OMDoc elements by
omstyle elements, and then the question of the specification of notation for
mathematical symbols in presentation elements.

19.1 Specifying Style Information for OMDoc Elements

OMDoc provides the omstyle1 elements for specifying style information foromstyle

OMDoc elements. An omstyle element has the attributes

element This required attribute specifies the OMDoc element this style in-
formation should be applied to. The value of this attribute must be the
full qualified name (i.e. including the namespace) of the element.

for This optional attribute allows to further restrict the OMDoc element to
a single instance. The value of this attribute is a URI reference to a single
element.

xref This optional attribute can be used to refer to another existing omstyle

element (in another document via a URI reference), sometimes avoiding
double specification: If an omstyle element carries an xref attribute, its
attributes and content is disregarded, and those of the target omstyle

element is considered instead.
class This optional attribute is an additional parameter that controls the

output style. Remember that all OMDoc elements that have xml:id at-
tributes also carry a class attribute, which allows to specify different

1 This element would perhaps be more aptly be named omclass, since its function
is more similar to the CSS class concept, but we keep the name omstyle for
backwards compatibility in OMDoc 1.2.

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

19.1 Styling OMDoc Elements 201

notational conventions (see Section 10.2): In the presentation of an OM-
Doc element only those omstyle elements are taken into account that
have the same value in the class attribute.
Note that the choice of notational style is not a content-carrying feature,
and should not be depended on, indeed the value of the class need not
be respected by output routines, but can be overwritten.

In the presentation process described in Section 25.3 the information specified
in the body of this element is then used to generate XSLT templates that
are included then into the generated style sheets. This information is either
given directly in XSLT using the xslt element, or in a style element using xslt

style
an OMDoc-internal equivalent of a small subset of XSLT. The latter is used
if the full power of XSLT is not needed, and has the advantage that it can be
transformed into the input of other formatting engines. The xslt and style

elements share the following attributes:

format This required attribute specifies the output format. Its value is a
set of format specifiers divided by the | character. We use the speci-
fiers TeX for TEX and LATEX, pmml for Presentation-MathML, cmml for
Content-MathML, html for HTML, mathematica for Mathematica®

notebooks. Other formats can be specified at liberty. Finally, there is the
pseudo format-specifier default, which will be taken, if no other format
is defined. Note that case matters in these specifiers, so TeX is not the
same as tex. Furthermore, default is not a regular format specifier, so it
cannot appear in the disjunctions.

xml:lang This specifies the languages for which this notation is used. Note
that it is used differently than e.g. in the CMP element: on omstyle, the
attribute xml:lang contains a whitespace-separated list of language speci-
fiers and it does not have a default value en, if the attribute is not present,
this means that this element is not language-specific.

requires This attribute contains a URI reference that points to a code ele-
ment that contains a code fragment that is needed to be included for the
presentation engine. For instance, the body of the omstyle element may
contain TEX macros that need to be defined. Their definitions would need
to be included in the output document by the presentation style sheet
before they can be used.

Listing 19.1 shows a very simple example, where a phrase element is used
to mark a text passage as “important”. Its class attribute is picked up by
the omstyle element to prompt special treatment in the output.

Listing 19.1. Specifying Style Information with the phrase Element.

<CMP>
2 I want to mark <phrase xml:id=”w1” class=”important”>this important

text</phrase> as special.<phrase class=”linebreak”/>
</CMP>

<omstyle element=”omdoc:phrase” class=”important”>
7 <style format=’html|pmml’><element name=”em”><recurse/></element></style>

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

202 19 Notation and Presentation

<xslt format=’TeX’ xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:text>\emph{</xsl:text>
<xsl:apply−templates/>

<xsl:text>}</xsl:text>
12 </xslt>

</omstyle>

<omstyle element=”omdoc:phrase” class=”linebreak”>
<style format=’html|pmml’><element name=”br”/></style>

17 <style format=’TeX’><text>\par\noindent</text></style>
</omstyle>

19.2 A Restricted Style Language

Let us now have a closer look at the presentation-language used in style

elements. In the first omstyle element in Listing 19.1 we see that the content
of an xslt element is an XSLT fragment. Note that when referring to OM-
Doc elements, the XSLT must use the full qualified name (i.e. including the
namespace) of the elements for the presentation to work.2

Element Attributes Content

Required Optional

style format xml:lang,
requires, xref

(element | text | recurse | map
| value-of)*

element name crid, cr, ns (attribute | element | text |
value-of | recurse | map)*

attribute name (value-of | text)*

text (#PCDATA)

value-of select EMPTY

recurse select EMPTY

map select separator?, (element | text |
recurse | map)

separator (element | text | recurse | map)

Fig. 19.2. The OMDoc Elements for Styling

Let us analyze the example to see the presentation in action before we
define it. In the first style element in the omstyle for linebreak in List-
ing 19.1 we see that the element element can be used to insert an XML
element into the output; in this case it is the empty HTML element
.
In the second style child the text element (it does not have attributes) allows
to add arbitrary text into the output (in this case some TEX macros). In the
first omstyle element, we see that the element element may be non-empty, it
contains the element recurse, which corresponds to the directive to continue
presentation generation recursively over the children of the element specified

2 For DTD validation the XSLT fragments must be encoded using the xsl: names-
pace prefix, unless the DTD has been adapted to a different prefix by setting the
appropriate parameter entity.

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

19.2 A Restricted Style Language 203

in the dominating omstyle element. The effect of this is that the content of
the first phrase element is encased in the HTML em element.

Textual material can be added to the output in two ways: by copying it
from the source, or supplying it in the transformation. For the latter, OMDoc
supplies the text element (it does not have attributes), which allows to add text

arbitrary text (its body) into the output. For the former, we have the value-of
value-of

element, an empty element that carries the required attribute select, whose
value is an XPath expression. It adds the value (a string) to the XML node
specified by the expression to the output.

The element element allows to generate XML elements. It has a required element

attribute name, which contains its (local) name, and the optional attribute ns

to specify the namespace. Attributes of the resulting element can be specified
by the attribute element: any attribute element adds an attribute-value attribute

pair of the form 〈〈name〉〉="〈〈value〉〉" to the output element specified by the
enclosing element element, where the local part 〈〈name〉〉 is the value of the
name attribute (its namespace URI given by the value the optional ns at-
tribute), and 〈〈value〉〉 is either the result of presentation on the content of the
attribute element or (iff that is empty), the value of the XPath expression
in the optional select attribute.

To navigate the OMDoc structure to be transformed, we have two ele-
ments: the recurse allows to specify a fragment continues presentation on
a sub-element, and the map element that maps directives over a set of sub-
elements. The recurse element is empty, and can have the attribute select, recurse

which contains an XPath [CD99] expression specifying a set of OMDoc el-
ements the presentation should continue with recursively. If this attribute is
missing, presentation continues on the children as in Listing 19.1. The map map

element (see Listing 19.3 for an example) has the optional attribute select

and contains a combination of the transformation directive elements element,
text, recurse, map after an optional separator child. The map element di-
rects the presentation engine to map the body directives3 over the list of
elements specified by the XPath expression in the select, between any two
elements, the result of styling the body of the separator element is inserted
between the result node sets. In Listing 19.3 the map element recursively styles
the children of the om:OMBVAR element and separates them by commata. Fur-
thermore, the map element can have the attributes precedence, lbrack, and
rbrack to specify brackets (with precedence-based elision) around the result.
This is useful for generating argument groups.

Note that this OMDoc-internalized subset of XSLT restricts the expres-
sivity of the presentation style by leaving out the computational features of
XSLT. Firstly, the infrastructure for iteration, recursion, variable declara-
tion, . . . is not present, and secondly, path expressions are restricted to pure
XPath [CD99], leaving out all XSLT extensions (e.g. functions calls), again
leaving us with a more declarative subset of XSLT.

3 i.e. those elements after the separator element

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

204 19 Notation and Presentation

19.3 Specifying the Notation of Symbols

In this section we discuss the problem of specifying the notation of mathemat-
ical symbols in OMDoc. The approach taken is very similar to the one for
OMDoc elements presented in the previous section. The mathematical con-
cepts and symbols introduced in an OMDoc document (by symbol elements
or implicitly by abstract data types) often carry typographic conventions that
cannot be determined by general principles alone. Therefore, these need to be
specified, so that pleasing presentations can be generated.

We have already seen the use of style and xslt elements for specifying
the presentation of general OMDoc elements in the last section. Here we will
present yet another way to specify presentation information that is special-
ized to notations of mathematical symbols. The main idea is to specify the
properties of mathematical symbols in relation to the representations of their
children and siblings.

19.3.1 Specifying Notation via Templates

Let us build up our intuition by an example: For the notation information for
the universal quantifier we would use an XSLT template like the one shown
in Listing 19.2.

Listing 19.2. An XSLT Template for the Universal Quantifier

<xsl:template match=”OMBIND[OMS[position()=1 and @name=’forall’ and @cd=’quant1’]]”>
2 <xsl:text>∀</xsl:text>

<xsl:for−each select=”OMBVAR”/>
<xsl:apply−templates/>
<xsl:if test=”position()!=last()”>,</xsl:if>
</xsl:for−each>

7 <xsl:text>.</xsl:text>
<xsl:apply−templates select=”∗[3]”/>

</xsl:template>

The XPath expression in the match attribute (the template head) specifies
that this template acts as a presentation rule for om:OMBIND elements, where
the first child is of the form <OMS cd="quant1" name="forall"/>. Applied
to such a node, the body of the template will be executed: it will print the
quantifier ∀, then the bound variables as a comma-separated list (for each of
the children of om:OMBVAR it recursively applies XSLT templates from the
style sheet), print a dot, and then recurse on the third child of the om:OMBIND

element. Thus this template will print the OpenMath expression below as
∀P,Q.P ∨Q⇒ Q ∨ P assuming appropriate templates for implication and
disjunction.

1 <OMBIND>
<OMS cd=”quant1” name=”forall”/>
<OMBVAR><OMV name=”P”/><OMV name=”Q”/></OMBVAR>
<OMA>
<OMS cd=”logic1” name=”implies”/>

6 <OMA><OMS cd=”logic1” name=”or”/>
<OMV name=”P”/>

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

19.3 Notation of Symbols 205

<OMV name=”Q”/>
</OMA>
<OMA><OMS cd=”logic1” name=”or”/>

11 <OMV name=”Q”/>
<OMV name=”P”/>

</OMA>
</OMA>

</OMBIND>

To annotate a symbol with notation information OMDoc supplies the
presentation element. It is a top-level element whose for attribute points presentation

to the symbol in question. It contains a multilingual CMP group that allows to
specify the notation4. Like the omstyle element, it has children that specify
the presentation: The xslt element can be used to literally include the body of
the template, and the style can express the presentation directives natively in
OMDoc. In Listing 19.3 we have juxtaposed the presentational content from
Listing 19.2 in xslt and style elements. Note that the directives in their
body share much of the structure; the directives in the style are somewhat
more succinct. The main difference to the XSLT template in Listing 19.2 is the
specification of the template head: the attributes in the presentation element
carry all the information necessary to identify the application conditions.

Listing 19.3. A Simple presentation Element for the Universal Quantifier

<presentation for=”#quant1.forall” role=”binding”>
<CMP>We write
<OMOBJ>
<OMBIND><OMS cd=”quant1” name=”forall”/>

5 <OMBVAR><OMV name=”X></OMBVAR>
<OMV name=”A”/>

</OMBIND>
</OMOBJ>
for the phrase ”A holds for all X”.

10 </CMP>
<xslt format=”default” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:text>∀</xsl:text>
<xsl:for−each select=”OMBVAR”/>
<xsl:apply−templates/>

15 <xsl:if test=”position()!=last()”>,</xsl:if>
</xsl:for−each>
<xsl:text>.</xsl:text>
<xsl:apply−templates select=”∗[3]”/>

</xslt>
20 <style format=”html”>

<text>∀</text>
<map select=”OMBVAR/∗”>
<separator><text>,</text></separator>
<recurse/>

25 </map>
<text>.</text>
<recurse select=”∗[3]”/>

</style>
<style format=”pmml”>

30 <element crid=”.” name=”mrow” ns=”http://www.w3.org/1998/Math/MathML”>
<element crid=”∗[1]” cr=”yes” name=”mo”><text>∀</text></element>
<element name=”mrow” crid=”∗[2]”>

4 Of course in the content markup in OMDoc, this looks somewhat awkward, since
the representation relies on the fact that it will be rendered in the correct way.
In the source, the whole markup looks somewhat circular.

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

206 19 Notation and Presentation

<map select=”OMBVAR/∗”>
<separator>

35 <element name=”mo” cr=”yes”>
<attribute name=”separator”><text>true</text></attribute>
<text>,</text>

</element>
</separator>

40 <recurse/>
</map>

</element>
<recurse select=”∗[3]”/>

</element>
45 </style>

</presentation>

The element element can have the crid attribute which specifies the
role of the generated element in parallel markup of mathematical formulae
(see Subsection 2.1.1). The value of this element (if present) must be a XPath
fragment (see [CD99]) pointing to the element in the source that semantically
corresponds to the generated element (see Listing 19.35). Finally, the element
element can carry the cr attribute, which (if its value is yes) instructs the
presentation system to to set an xlink:href attribute on the result element
that acts as a cross-reference to the symbol declaration.

19.3.2 Specifying Notation via Syntactic Roles

Note that hand-coding XSLT-templates is a tedious and error-prone process,
and that we need a template for each output format (e.g. LATEX, HTML,
Presentation-MathML, ASCII), and even various output languages (for in-
stance the greatest common divisor of two integers is expressed by the symbol
gcd in English but ggT (“größter gemeinsamer Teiler”) in German). Obvi-
ously, the respective templates for all of these transformations share a great
deal of structure (in our example, they only differ in the representation of the
glyph for the quantifier itself).

Therefore OMDoc goes another step and supplies a set of abbreviations
that are sufficient for most presentation applications via the use elements
that can occur as children of presentation elements. The user only needs to
specify the relevant information in the use elements and a separate translation
process generates the needed XSLT templates from that (see Chapter 25). The
use elements make use of the same symbolic attributes and specialize (over-use

define) these attributes according to the respective format and language. The
following set of attributes are particular to the presentation, since they are
independent of the language and the output format.

for, xref, class (see the specification for omstyle in the last section)
role This attribute specifies to which roles of the symbol the presentation

element applies. The value of this attribute can be one of

5 There the top-level generated mrow element corresponds to the application as
specified by the path “.”, whereas its first child corresponds to the quantifier
symbol, and the bound variables correspond to each other.

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

19.3 Notation of Symbols 207

applied for situations, where the symbol occurs as a function symbol that
is applied to a list of arguments, i.e. as the first child of an om:OMA or
an m:apply element.

binding for situations, where the symbol occurs as a binding symbol, i.e
as the first child of an om:OMBIND element or an m:apply element that
is followed by an m:bvar element.

key for situations, where the symbol occurs as a key in an attribution,
i.e. as a child of an om:OMATTR element at an odd position (Content-
MathML does not have the attribution construct).

In the examples in Figure 19.4 we have assumed the head to be an om:OMA

element (for functional application). It can also be an om:OMBIND as in the
case of a quantifier in Figure 19.5.

fixity This optional attribute can be one of the keywords prefix (the de-
fault), infix, postfix, and assoc. The value assoc has two variants:
infixl and infixr, which have the same presentation; infixl is used
for a binary infix operator that associates to the left like the list construc-
tor in Standard ML, infixr is the right-leaning analogon.
If the fixity attribute is given, then it determines the placement of the
symbol specified in the for attribute. For prefix it is placed in front of
the arguments, (this is the generic mathematical function notation). For
postfix the function is put behind the arguments, e.g. for derivatives:
f ′. The case infix is reserved for binary operators, where the function
is inserted between the two arguments. Finally, assoc is used for associa-
tive operators like addition, it puts the function symbol between any two
arguments.
Note that infix is almost a special case of assoc, but since it is reserved
for binary operators, it disregards any arguments but the first two.

bracket-style The fixity information can be combined with the bracketing
style, which can be either lisp (LISP-style brackets) or math (generic
mathematical function notation which is the default).
Figure 19.4 shows some combinations of attributes and their results on
the function style.

precedence allows us to specify the operator precedence in order to elide un-
necessary brackets. The OMDoc presentation system orients itself on the
Prolog standard: lower precedences mean stronger binding, and brackets
can be omitted. If we set the default precedence to 1000, and other prece-
dences as specified in Figure 19.3, then the formulae below are presented
as (x+ 2)2 and x+ y2, respectively.

<OMA> <OMA>
<OMS cd=”arith1” name=”power”/> <OMS cd=”arith1” name=”plus”/>
<OMA> <OMV name=”x”/>
<OMS cd=”arith1” name=”plus”/> <OMA>
<OMV name=”x”/> <OMS cd=”arith1” name=”power”/>
<OMV name=”y”/> <OMV name=”y”/>

</OMA> <OMI>2</OMI>
<OMI>2</OMI> </OMA>

</OMA> </OMA>

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

208 19 Notation and Presentation

Precedence Operators Comment

200 +,- unary

200 ˆ exponentiation

400 ∗,∧,∩ multiplicative

500 +,−,∨,∪ additive

600 / fraction

700 =, 6=,≤, <,>,≥ relation

Fig. 19.3. Common Operator Precedences

The next set of attributes can occur both in presentation and use elements.
If they occur in both, then the values of those specified on the use elements
take precedence over those specified in the dominating presentation element.

lbrack/rbrack These two attributes handle the brackets to be used in pre-
sentation of a complex expression. They will be used unless elided accord-
ing to the precedence.

separator This specifies the separator in the argument list of a function. The
default for separator is the comma. See Figure 19.4 for some combina-
tions.

fixity bracket-style separator yields

prefix lisp “ ” (f 1 2 3)

postfix lisp “ ” (1 2 3 f)

prefix math “,” f(1, 2, 3)

postfix math “,” (1, 2, 3)f

assuming lbrack="(" and rbrack=")"

Fig. 19.4. Attribute-Combination and Function Style

crossref-symbol This attribute specifies to which parts of the symbol’s pre-
sentation cross-references should be attached to: in some formats like
HTML, and recently also in LATEX (thanks to the hyperref.sty pack-
age), it may be useful to attach a hyperlink from the presentation of
the symbol to its definition. Some symbols are constructed by using the
lbrack and rbrack, or the separator attributes as part of the sym-
bol presentation. For instance, in the notation (a, b) for pairs, the binary
function symbol for pairing is really composed of three parts “(”, “)”, and
“,”, which should all be cross-referenced. The attribute’s values no, yes,
brackets, separator, lbrack, rbrack all can be used to specify this be-
havior. no means cross-referencing is forbidden, yes – which is the default
value – means cross-referencing only on the print-form of the function

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

19.3 Notation of Symbols 209

symbol, lbrack, rbrack, brackets, only on the left/right/both brackets,
separator, on the separator, and finally all on all presentation parts.
In Figure 19.5, the effect of the default yes can be seen in the lower
part of the figure: the LATEX and the HTML presentations have attached
hyperlinks to the representation of the universal quantifier.

Notation specification Example

<presentation for=”#forall”
role=”binding”
separator=”.”>

<use format=”TeX”>\forall</use>
<use format=”html”>∀</use>
</presentation>

<OMBIND>
<OMS cd=”quant1” name=”forall”/>
<OMBVAR>
<OMV name=”X”/>

</OMBVAR>
<OMS cd=”logic1” name=”true”/>

</OMBIND>

Using XSLT templates induced from the presentation element on the Open-
Math expression yields ∀X.true, where the glyph ∀ carries a hyperlink6 to
it definition, as the crossref-symbol on the presentation element has the
default value yes. Internally, the hyperlinks are format-dependent, we have:

LATEX: \href{../ocd/logic1.ps#true}{\forall}X.

\href{../ocd/logic1.ps#true}{{\sf true}}

HTML: ∀ X.

true

Fig. 19.5. Notation for forall (cf. Listing 19.2) using presentation

The next set of attributes can only appear on the use attribute, since they
are only meaningful for selected output formats.

format, xml:lang, requires (see the specification for xslt and style above).
element, attributes, bracket-style These attributes simplify the specifi-

cation of notations in XML-based formats like MathML. The element

attribute contains the name and the attributes the attribute declara-
tions of an XML element that takes the place of the brackets specified in
the attributes lbrack and rbrack. If the attribute fixity is used on a use

element in conjunction with the element and attributes attributes, then
it specifies the position of the element brackets rather than the brackets
specified in the lbrack and rbrack attributes.
For instance, the binomial coefficient is some presented as

(
n
m

)
(spoken

“n choose m”) and represented as

<mfrac linethickness=’0’><mi>n</mi><mi>m</mi></frac>

in Presentation-MathML. The first presentation element in Listing 19.4
shows a presentation element that has this effect. The second presentation

element in Listing 19.4 shows a notation declaration, which applied to

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

210 19 Notation and Presentation

<OMA><OMS cd=”arith” name=”power”/>
<OMI>3</OMI><OMI>5</OMI>

</OMA>

would yield 3⁵ for the target html.

Listing 19.4. Presentation for Binomial Coefficients

<presentation for=”#binomial” role=”applied”>
2 <use format=”default” fixity=”infix”>choose</use>

<use format=”TeX” lbrack=”\bigl({” rbrack=”}\bigr)”>\atop</use>
<use format=”pmml” element=”mfrac” attributes=”linethickness=’0’”/>

</presentation>

7 <presentation for=”#power” role=”applied” fixity=”infix”
crossref−symbol=”no” precedence=”200” bracket−style=”lisp”>
<use format=”html” fixity=”prefix” bracket−style=”math” element=”sup”/>
<use format=”TeX”>ˆ</use>
<use format=”pmml” element=”msup” fixity=”prefix”/>

12 </presentation>

Conceptually, the attributes of the presentation and use elements form a
meta-language for XSLT style sheets that aims at covering the most common
notations succinctly and legibly. In situations, where this language does not
suffice, we must fall back to to style or even xslt elements.

19.4 Presenting Bound Variables

As we have seen in Section 13.4, the presentation approaches for symbols do
not work for (bound) variables7, as there is no independent place to put the
presentation element. In this section, we will present the OMDoc solution
to this problem. The main idea is simply to annotate defining occurrences of
variables with notation information. Without this, we are forced to use the
ASCII variable name in OpenMath and a translation of the Presentation-
MathML in the m:ci element for other formats in MathML. This is hardly
adequate for modern mathematics, where variables are numbered, decorated
with primes or change marks, and cast in other colors or font families for
better recognition.

In OMDoc we follow the spirit of the OpenMath standard [BCC+04]
which suggests to annotate (via om:OMATTR parts of) the OpenMath objects
with notation information by presentation elements. Unlike OpenMath,
we restrict this practice to defining occurrences of bound variables, since all
the other constructs can be handled with the methods introduced above. We

7 We say that an om:OMBIND element binds a variable <OMV name="x"/>, iff this
om:OMBIND element is the nearest one, such that <OMV name="x"/> occurs in (sec-
ond child of the om:OMATTR element in) the om:OMBVAR child (this is the defining
occurrence of <OMV name="x"/>). For content MathML, the definition is anal-
ogous, only that an m:apply element with m:bvar child takes the role of the
om:OMBIND and om:OMBVAR elements.

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

19.4 Presenting Bound Variables 211

use the symbol <OMS cd="omdoc" name="notation"/> symbol to identify the
following object as a notation declaration and the om:OMFOREIGN element to
hold it. BErr(78)

Listing 19.5. Notation for Bound Variables in OpenMath

<OMOBJ>
<OMBIND>

3 <OMS cd=”quant1” name=”forall”/>
<OMBVAR>
<OMATTR>
<OMATP>
<OMS cd=”omdoc” name=”notation”/>

8 <OMFOREIGN encoding=”application/omdoc+xml”>
<presentation for=”#X”>
<use format=”TeX”>X 4</use>
<use format=”pmml”>
<msub><mi>X</mi><mn>4</mn></msub>

13 </use>
<use format=”html”>X₄</use>

</presentation>
</OMFOREIGN>

</OMATP>
18 <OMV name=”X4”/>

</OMATTR>
</OMBVAR>
<OMA><OMS cd=”relation1” name=”eq”/>
<OMV name=”X4”/>

23 <OMV name=”X4”/>
</OMA>

</OMBIND>
</OMOBJ>

To represent binding objects in Content-MathML we follow a very similar
strategy, using the m:semantics element to associate the defining occurrence
of the bound variable with its notation declaration, which is embedded into
the m:annotation-xml child.

Listing 19.6. Notation for Bound Variables in Content-MathML

<m:math>
<m:apply>
<m:forall/>

4 <m:bvar>
<m:semantics>
<m:ci><m:msub><m:mi>X</m:mi><m:mn>4</m:mn></m:msub></m:ci>
<m:annotation−xml encoding=”application/xml+OMDoc”

definitionURL=”http://omdoc.org/omdoc.omdoc#notation”>
9 <presentation for=”#X4”>

<use format=”TeX”>X 4</use>
<style format=”pmml”>
<element name=”msub” ns=”http://www.w3.org/1998/Math/MathML”>
<element name=”mi” ns=”http://www.w3.org/1998/Math/MathML”>

14 <text>X</text>
</element>
<element name=”mn” ns=”http://www.w3.org/1998/Math/MathML”>
<text>4</text>

</element>
19 </element>

</style>

78 Erratum: The for attribute should be #X4 instead of #X in listings 19.5
and 19.6

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

212 19 Notation and Presentation

<style format=”html”>
<text>X</text>
<element name=”sub” ns=”http://www.w3.org/1999/xhtml”>

24 <text>4</text>
</element>

</style>
</presentation>

</m:annotation−xml>
29 </m:semantics>

</m:bvar>
<m:apply><m:eq/><m:cn>4</m:cn><m:cn>4</m:cn></m:apply>

</m:apply>
</m:math>

EErr(78)
With these declarations, all the variables in the scope of the universal quanti-
fier would be represented as X4, yielding ∀X4.X4 = X4 which is exactly what
we wanted. Note that if we want to specify notations for function variables
(OMDoc does not prevent the user from doing this), we need to also spec-
ify notations for the non-applied occurrences of the symbol — otherwise a
fallback using the variable name has to be used. For instance, to make the
(false) conjecture that all relations are symmetric we could use the following
representation:

Listing 19.7. Notation for bound variables in OpenMath

<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
2 <OMBIND>

<OMS cd=”quant1” name=”forall”/>
<OMBVAR>
<OMATTR>
<OMATP>

7 <OMS cd=”omdoc” name=”notation”/>
<OMFOREIGN encoding=”application/omdoc+xml”>
<presentation xmlns=”http://www.mathweb.org/omdoc”

for=”#R” role=”applied” precedence=”500” fixity=”infix”>
<use format=”TeX”>\prec</use>

12 <use format=”pmml|html”>⋞</use>
</presentation>
<presentation xmlns=”http://www.mathweb.org/omdoc” for=”#R”>
<use format=”TeX”>{}\prec{}</use>
<use format=”pmml|html”>⋞</use>

17 </presentation>
</OMFOREIGN>

</OMATP>
<OMV name=”R”/>

</OMATTR>
22 <OMV name=”X”/>

</OMBVAR>
<OMA><OMV name=”R”/><OMV name=”X”/><OMV name=”X”/></OMA>

</OMBIND>
</OMOBJ>

This would give us the presentation ∀ ≺ , X.X ≺ X. Here, the first occurrence
of the variable ≺ is handled by the second notation declaration (it does not
occur in applied position), the second occurrence of ≺ is in applied position,
so the second notation declaration governs this and puts it in to infix position.
Note that while OMDoc allows to specify this kind of notation declarations,
they should be used with great care and discretion. In this particular case,
the infix notation of ≺ de-emphasizes the variable nature, and might lead

pres.tex 8379 2009-06-11 05:32:28Z kohlhase

19.4 Presenting Bound Variables 213

to confusion; moreover, the particular choice of the glyph ≺ may suggest
irreflexivity, which may or may not be intended.

ext.tex 6784 2007-09-04 04:19:46Z kohlhase

ext.tex 6784 2007-09-04 04:19:46Z kohlhase

20

Auxiliary Elements (Module EXT)

Up to now, we have been mainly concerned with providing elements for mark-
ing up the inherent structure of mathematical knowledge in mathematical
statements and theories. Now, we interface OMDoc documents with the In-
ternet in general and mathematical software systems in particular. We can
thereby generate presentations from OMDoc documents where formulae,
statements or even theories that are active components that can directly be
manipulated by the user or mathematical software systems. We call these
documents active documents. For this we have to solve two problems: an
abstract interface for calls to external (web) services1 and a way of storing
application-specific data in OMDoc documents (e.g. as arguments to the
system calls).

The module EXT provides a basic infrastructure for these tasks in OM-
Doc. The main purpose of this module is to serve as an initial point of entry.
We envision that over time, more sophisticated replacements will be developed
driven by applications.

Element Attributes D Content

Req. Optional C

private xml:id, for, theory, requires,
type, reformulates, class, style

+ CMP*, data+

code xml:id, for, theory, requires,
type, class, style

+ CMP*, input?, output?,
effect?, data+

input xml:id, style, class + CMP*, FMP*

output xml:id, style, class + CMP*, FMP*

effect xml:id, style, class + CMP*, FMP*

data format, href, size, original, pto,
pto-version

– <![CDATA[...]]>

Fig. 20.1. The OMDoc Auxiliary Elements for Non-XML Data

1 Compare Chapter 9 in the OMDoc Primer.

ext.tex 6784 2007-09-04 04:19:46Z kohlhase

216 20 Auxiliary Elements

20.1 Non-XML Data and Program Code in OMDoc

The representational infrastructure for mathematical knowledge provided by
OMDoc is sufficient as an output- and library format for mathematical soft-
ware systems like computer algebra systems, theorem provers, or theory de-
velopment systems. In particular, having a standardized output- and library
format like OMDoc will enhance system interoperability, and allows to build
and deploy general storage and library management systems (see Section 26.4
for an OMDoc example). In fact this was one of the original motivations for
developing the format.

However, most mathematical software systems need to store and communi-
cate system-specific data that cannot be standardized in a general knowledge-
representation format like OMDoc. Examples of this are pieces of program
code, like tactics or proof search heuristics of tactical theorem provers or
linguistic data of proof presentation systems. Only if these data can be inte-
grated into OMDoc, it will become a full storage and communication format
for mathematical software systems. One characteristic of such system-specific
data is that it is often not in XML syntax, or its format is not fixed enough
to warrant for a general XML encoding.

For this kind of data, OMDoc provides the private and code elements.private

code
As the name suggests, the latter is intended for program code2 and the former
for system-specific data that is not program code.

The attributes of these elements are almost identical and contain metadata
information identifying system requirements and relations to other OMDoc
elements. We will first describe the shared attributes and then describe the
elements themselves.

xml:id for identification.
theory specifies the mathematical theory (see Section 15.6) that the data is

associated with.
for allows to attach data to some other OMDoc element. Attaching private

elements to OMDoc elements is the main mechanism for system-specific
extension of OMDoc.

requires specifies other data this element depends upon as a whitespace-
separated list of URI references. This allows to factor private data into
smaller parts, allowing more flexible data storage and retrieval which is
useful for program code or private data that relies on program code. Such
data can be broken up into procedures and the call-hierarchy can be en-
coded in requires attributes. With this information, a storage application
based on OMDoc can always communicate a minimal complete code set
to the requesting application.

2 There is a more elaborate proposal for treating program code in the OMDoc
arena at [Koha], which may be integrated into OMDoc as a separate module in
the future, for the moment we stick to the basic approach.

ext.tex 6784 2007-09-04 04:19:46Z kohlhase

20.1 Non-XML Data and Program Code in OMDoc 217

reformulates (private only) specifies a set of OMDoc elements whose
knowledge content is reformulated by the private element as a whitespace-
separated list of URI references. For instance, the knowledge in the as-
sertion in Listing 20.1 can be used as an algebraic simplification rule in
the Analytica theorem prover [CKOS03] based on the Mathematica
computer algebra system.

The private and code elements contain an optional metadata element
and a set of data elements that contain or reference the actual data. BErr(79)

Listing 20.1. Reformulating Mathematical Knowledge

<assertion xml:id=”ALGX0”>
<CMP>If a, b, c, d are numbers, then we have a+ b(c+ d) = a+ bc+ bd.</CMP>

</assertion>
4 <private xml:id=”alg−expr−1” pto=”Analytica” reformulates=”ALGX0”>

<data format=”mathematica−5.0”>
<![CDATA[SIMPLIFYRULES[a + b ∗(c + d) :> a + b∗c + b∗d /; NumberQ[b]]]]>

</data>
</private>

EErr(79)
The data element contains the data in a CDATA section. Its pto attribute

datacontains a whitespace-separated list of URI references which specifies the set
of systems to which the data are related. The intention of this field is that
the data is visible to all systems, but should only manipulated by a system
that is mentioned here. The pto-version attribute contains a whitespace-
separated list of version number strings; this only makes sense, if the value of
the corresponding pto is a singleton. Specifying this may be necessary, if the
data or even their format change with versions.

If the content of the data element is too large to store directly in the
OMDoc or changes often, then the data element can be augmented by a
link, specified by a URI reference in the href attribute. If the data element is
non-empty and there is a href3, then the optional attribute original spec-
ifies whether the data content (value local) or the external resource (value
external) is the original. The optional size attribute can be used to specify
the content size (if known) or the resource identified in the href attribute.
The data element has the (optional) attribute format to specify the format
the data are in, e.g. image/jpeg or image/gif for image data, text/plain
for text data, binary for system-specific binary data, etc. It is good practice
to use the MIME types [FB96] for this purpose whenever applicable. Note
that in a private or code element, the data elements must differ in their
format attribute. Their order carries no meaning.

In Listing 20.2 we use a private element to specify data for an image4

in various formats, which is useful in a content markup format like OMDoc

79 Erratum: The reference reformulates="ALGX0" should be a URI refer-
ence, i.e. #ALGX0

3 e.g. if the data content serves as a cache for the data at the URI, or the data

content fixes a snapshot of the resource at the URI
4 actually Figure 4.1 from Chapter 4

ext.tex 6784 2007-09-04 04:19:46Z kohlhase

218 20 Auxiliary Elements

as the transformation process can then choose the most suitable one for the
target.

Listing 20.2. A private Element for an Image

<private xml:id=”legacy”>
2 <metadata>

<dc:title>A fragment of Bourbaki’s Algebra</dc:title>
<dc:creator role=”trl”>Michael Kohlhase</dc:creator>
<dc:date action=”created”>2002−01−03T0703</dc:date>
<dc:description>A fragment of Bourbaki’s Algebra</dc:description>

7 <dc:source>Nicolas Bourbaki, Algebra, Springer Verlag 1974</dc:source>
<dc:type>Text</dc:type>

</metadata>
<data format=”application/x−latex” href=”legacy.tex”/>
<data format=”image/jpg” href=”legacy.jpeg”/>

12 <data format=”application/postscript” href=”legacy.ps”/>
<data format=”application/pdf” href=”legacy.pdf”/>

</private>

The code element is used for embedding pieces of program code into an
OMDoc document. It contains the documentation elements input, output,input

output
and effect that specify the behavior of the procedure defined by the code

effect

fragment. The input element describes the structure and scope of the input
arguments, output the outputs produced by calling this code on these ele-
ments, and effect any side effects the procedure may have. They contain a
multilingual group of CMP elements with an optional FMP group for a formal
description. The latter may be used for program verification purposes. If any
of these elements are missing it means that we may not make any assumptions
about them, not that there are no inputs, outputs or effects. For instance, to
specify that a procedure has no side-effects we need to specify something like

1 <effect><CMP>None.</CMP></effect>

These documentation elements are followed by a set of data elements that
contain or reference the program code itself. Listing 20.5 shows an example
of a code element used to store Java code for an applet.

Listing 20.3. The Program Code for a Java Applet

<code xml:id=”callMint” requires=”org.riaca.cas”>
<metadata>
<dc:description>

4 The multiple integrator applet. It puts up a user interface , queries the user for a
function, which it then integrates by calling one of several computer algebra systems.

</dc:description>
</metadata>
<data format=”application/x−java−applet”>

9 <![CDATA[. . . 〈〈the callMint code goes here〉〉 . . .]]>
</data>
<input><CMP>None: the applet handles input itself.</CMP></input>
<output><CMP>The result of the integration.</CMP></output>
<effect><CMP>None.</CMP></effect>

14 </code>

ext.tex 6784 2007-09-04 04:19:46Z kohlhase

20.2 Applets and External Objects in OMDoc 219

20.2 Applets and External Objects in OMDoc

Web-based text markup formats like HTML have the concept of an exter-
nal object or “applet”, i.e. a program that can in some way be executed
in the browser or web client during document manipulation. This is one of
the primary format-independent ways used to enliven parts of the document.
Other ways are to change the document object model via an embedded pro-
gramming language (e.g. JavaScript). As this method (dynamic HTML) is
format-dependent5, it seems difficult to support in a content markup format
like OMDoc.

The challenge here is to come up with a format-independent representation
of the applet functionality, so that the OMDoc representation can be trans-
formed into the specific form needed by the respective presentation format.
Most user agents for these presentation formats have built-in mechanisms for
processing common data types such as text and various image types. In some
instances the user agent may pass the processing to an external application
(“plug-ins”). These need information about the location of the object data,
the MIME type associated with the object data, and additional values re-
quired for the appropriate processing of the object data by the object handler
at run-time. BErr(80)

Element Attributes D Content

Req. Optional C

omlet data, xml:id, action, show, actuate,
class, style

+ (〈〈CMP content〉〉 | param)*,private*,code*

param name value, valuetype - EMPTY

Fig. 20.2. The OMDoc Elements for External Objects

EErr(80)
In OMDoc, we use the omlet element for applets. It generalizes the

omlet
HTML applet concept in two ways: The computational engine is not re-
stricted to plug-ins of the browser (we do not know what the result format
and presentation engine will be) and the program code can be included in the
OMDoc document, making document-centered computation easier to man-
age.

Like the xhtml:object tag, the omlet element can be used to wrap any
text. In the OMDoc context, this means that the children of the omlet ele-
ment can be any elements or text that can occur in the CMP element together
with param elements to specify the arguments. The main presentation intu-
ition is that the applet reserves a rectangular space of a given pre-defined size
(specified in the CSS markup in the style attribute; see Listing 20.5) in the

5 In particular, the JavaScript references the HTML DOM, which in our model is
created by a presentation engine on the fly.

80 Erratum: Wrong Content Model for omlet

ext.tex 6784 2007-09-04 04:19:46Z kohlhase

220 20 Auxiliary Elements

result document presentation, and hands off the presentation and interaction
with the document in this space to the applet process. The data for the exter-
nal object is referenced in two possible ways. Either via the data attribute,
which contains a URI reference that points to an OMDoc code or private

element that is accessible (e.g. in the same OMDoc) or by embedding the
respective code or private elements as children at the end of the omlet el-
ement. This indirection allows us to reuse the machinery for storing code in
OMDocs. For a simple example see Listing 20.5.

The behavior of the external object is specified in the attributes action,
show and actuate attributes6.

The action specified the intended action to be performed with the data.
For most objects, this is clear from the MIME type. Images are to be displayed,
audio formats will be played, and application-specific formats are passed on
to the appropriate plug-in. However, for the latter (and in particular for pro-
gram code), we might actually be interested to display the data in its raw (or
suitably presented) form. The action addresses this need, it has the possi-
ble values execute (pass the data to the appropriate plug-in or execute the
program code), display (display it to the user in audio- or visual form), and
other (the action is left unspecified).

The show attribute is used to communicate the desired presentation of
the ending resource on traversal from the starting resource. It has one of
the values new (display the object in a new document), replace (replace the
current document with the presentation of the external object), embed (replace
the omlet element with the presentation of the external object in the current
document), and other (the presentation is left unspecified).

The actuate attribute is used to communicate the desired timing of the
action specified in the action attribute. Recall that OMDoc documents as
content representations are not intended for direct viewing by the user, but
appropriate presentation formats are derived from it by a “presentation pro-
cess” (which may or may not be incorporated into the user agent). Therefore
the actuate attribute can take the values onPresent (when the presenta-
tion document is generated), onLoad (when the user loads the presentation
document), onRequest (when the user requests it, e.g. by clicking in the pre-
sentation document), and other (the timing is left unspecified).

The simplest form of an omlet is just the embedding of an external ob-
ject like an image as in Listing 20.4, where the data attribute points to
the private element in Listing 20.2. For presentation, e.g. as XHTML in
a modern browser, this would be transformed into an xhtml:object ele-
ment [Gro00], whose specific attributes are determined by the information
in the omlet element here and those data children of the private element
specified in the data attribute of the omlet that are chosen for presentation
in XHTML. If the action specified in the action attribute is impossible (e.g.

6 These latter two attributes are modeled after the XLink [DMOT01] attributes
show and actuate.

ext.tex 6784 2007-09-04 04:19:46Z kohlhase

20.2 Applets and External Objects in OMDoc 221

if the contents of the data target cannot be presented), then the content of
the omlet element is processed as a fallback.

Listing 20.4. An omlet for an Image

1 <omlet data=”#legacy” show=”embed”>A Fragment of Bourbaki’s Algebra</omlet>

In Listing 20.5 we present an example of a conventional Java applet in a
mathematical text: the data attribute points to a code element, which will be
executed (if the value of the action attribute were display, the code would
be displayed).

Listing 20.5. An omlet that Calls the Java Applet from Listing 20.3.

<omtext xml:id=”monp 1”>
<CMP>
<p>Let practice integration!</p>

4 <p><omlet data=”#callMint” action=”execute” style=”width:320;height:200”>
No plug−in found for callMint!

</omlet></p>
</CMP>

</omtext>

In this example, the Java applet did not need any parameters (compare
the documentation in the input element in Listing 20.3).

In the applet in Listing 20.6 we assume a code fragment or plug-in (in a
code element whose xml:id attribute has the value sendtoTP, which we have
not shown) that processes a set of named arguments (parameter passing with
keywords) and calls the theorem prover, e.g. via a web-service as described in
Chapter 9.

Listing 20.6. An omlet for Connecting to a Theorem Prover

<CMP> Let us prove it interactively:
2 <omlet data=”#sendtoTP” action=”display”>

<param name=”timeout” value=”30” valuetype=”data”/>
<param name=”performative” value=”prove”/>
<param name=”problem” value=”#ALGX0” valuetype=”object”/>
<param name=”description” value=”http://example.org/prob17.html” valuetype=”ref”/>

7 <param name=”instance”>
<OMOBJ>
<OMA><OMS name=”root” cd=”arith1”/>
<OMI>3</OMI><OMI>3</OMI>

</OMA>
12 </OMOBJ>

</param>
Sorry, no theorem prover available!

</omlet>
</CMP>

For parameter passing, we use the param elements which specify a set of param

values that may be required to process the object data by a plug-in at run-
time. Any number of param elements may appear in the content of an omlet

element. Their order does not carry any meaning. The param element carries
the attributes

ext.tex 6784 2007-09-04 04:19:46Z kohlhase

222 20 Auxiliary Elements

name This required attribute defines the name of a run-time parameter, as-
sumed to be known by the plug-in. Any two param children of an omlet

element must have different name values.
value This attribute specifies the value of a run-time parameter passed to the

plug-in for the key name. Property values have no meaning to OMDoc;
their meaning is determined by the plug-in in question.

valuetype This attribute specifies the type of the value attribute. The value
data (the default) means that the value of the value will be passed to
the plug-in as a string. The value ref specifies that the value of the value
attribute is to be interpreted as a URI reference that designates a resource
where run-time values are stored. Finally, the value object specifies that
the value value points to a private or code element that contains a
multi-format collection of data elements that carry the data.

If the param element does not have a value attribute, then it may contain
a list of mathematical objects encoded as om:OMOBJ, m:mathml, or legacy

elements.

quiz.tex 6154 2006-10-03 11:31:31Z

21

Exercises (Module QUIZ)

Exercises and study problems are vital parts of mathematical documents like
textbooks or exams, in particular, mathematical exercises contain mathemat-
ical vernacular and pose the same requirements on context like mathematical
statements. Therefore markup for exercises has to be tightly integrated into
the document format, so OMDoc provides a module for them.

Note that the functionality provided in this module is very limited, and
largely serves as a place-holder for more pedagogically informed developments
in the future (see Section 26.8 and [GMUC03] for an example in the OMDoc
framework).

Element Attributes D Content

Req. Optional C

exercise xml:id, class, style + CMP*,FMP*,hint?,(solution*|mc*)

hint xml:id, class, style + CMP*, FMP*

solution xml:id, for, class, style + 〈〈top-level element〉〉
mc xml:id, for, class, style – choice, hint?, answer

choice xml:id, class, style + CMP*, FMP*

answer verdict xml:id, class, style + CMP*, FMP*

Fig. 21.1. The OMDoc Auxiliary Elements for Exercises

The QUIZ module provides the top-level elements exercise, hint, and exercise

solution. The first one is used for exercises and assessments. The question
statement is represented in the multilingual CMP group followed by a multi-
logic FMP group. This information can be augmented by hints (using the hint

element) and a solution/assessment block (using the solution and mc ele-
ments).

The hint and solution elements can occur as children of exercise; or
outside, referencing it in their optional for attribute. This allows a flexible
positioning of the hints and solutions, e.g. in separate documents that can be
distributed separately from the exercise elements. The hint element con- hint

tains a CMP/FMP group for the hint text. The solution element can contain
solution

quiz.tex 6154 2006-10-03 11:31:31Z

224 21 Exercises

any number of OMDoc top-level elements to explain and justify the solution.
This is the case, where the question contains an assertion whose proof is not
displayed and left to the reader. Here, the solution contains a proof.

Listing 21.1. An Exercise from the TEXBook

<exercise xml:id=”TeXBook−18−22”>
<CMP>
<p>Sometimes the condition that defines a set is given as a fairly long

4 English description ; for example consider ‘{p|p and p+2 are prime}’. An
hbox would do the job:</p>

<p style=”display:block;font−family:fixed”>
$\{\,p\mid\hbox{$p$ and $p+2$ are prime}\,\}$

9 </p>

<p>but a long formula like this is troublesome in a paragraph, since an hbox cannot
be broken between lines, and since the glue inside the
<phrase style=”font−family:fixed”>\hbox</phrase> does not vary with the inter−word

14 glue in the line that contains it . Explain how the given formula could be
typeset with line breaks.</p>

</CMP> <hint>
<CMP>Go back and forth between math mode and horizontal mode.</CMP>

</hint>
19 <solution>

<CMP>
<phrase style=”font−family:fixed”>
$\{\,p\mid p$˜and $p+2$ are prime$\,\}$
</phrase>,

24 assuming that <phrase style=”font−family:fixed”>\mathsurround</phrase> is
zero. The more difficult alternative ’<phrase style=”font−family:fixed”>
$\{\,p\mid p\\ {\rm and}\ p+2\rm\ are\ prime\,\}$</phrase>’
is not a solution , because line breaks do not occur at
<phrase style=”font−family:fixed”>\ </phrase> (or at glue of any

29 kin) within math formulas. Of course it may be best to display a formula like
this , instead of breaking it between lines.

</CMP>
</solution>

</exercise>

Multiple-choice exercises (see Listing 21.2) are represented by a group of
mc elements inside an exercise element. An mc element represents a singlemc

choice in a multiple choice element. It contains the elements below (in this
order).

choice for the description of the choice (the text the user gets to see and
is asked to make a decision on). The choice element carries the xml:id,choice

style, and class attributes and contains a CMP/FMP group for the text.
hint (optional) for a hint to the user, see above for a description.
answer for the feedback to the user. This can be the correct answer, or some

other feedback (e.g. another hint, without revealing the correct answer).
The verdict attribute specifies the truth of the answer, it can have the
values true or false. This element is required, inside a mc, since the
verdict is needed. It can be empty if no feedback is available. Further-
more, the answer element carries the xml:id, style, and class attributesanswer

and contains a CMP/FMP group for the text.

quiz.tex 6154 2006-10-03 11:31:31Z

21 Exercises 225

Listing 21.2. A Multiple-Choice Exercise in OMDoc

<exercise for=”#ida.c6s1p4.l1” xml:id=”ida.c6s1p4.mc1”>
2 <CMP>

What is the unit element of the semi−group Q with operation a ∗ b = 3ab?
</CMP>
<mc>
<choice><FMP><OMOBJ><OMI>1</OMI></OMOBJ></FMP></choice>

7 <answer verdict=”false”><CMP>No, 1 ∗ 1 = 3 and not 1</CMP></answer>
</mc>
<mc>
<choice><CMP>1/3</CMP></choice>
<answer verdict=”true”></answer>

12 </mc>
<mc>
<choice><CMP>It has no unit.</CMP></choice>
<answer verdict=”false”><CMP>No, try another answer</CMP></answer>

</mc>
17 </exercise>

document-model.tex 8481 2009-08-11 05:41:59Z kohlhase

document-model.tex 8481 2009-08-11 05:41:59Z kohlhase

22

Document Models for OMDoc

In almost all XML applications, there is a tension between the document view
and the object view of data; after all, XML is a document-oriented interop-
erability framework for exchanging data objects. The question, which view is
the correct one for XML in general is hotly debated among XML theorists.
In OMDoc, actually both views make sense in various ways. Mathematical
documents are the objects we try to formalize, they contain knowledge about
mathematical objects that are encoded as formulae, and we arrive at content
markup for mathematical documents by treating knowledge fragments (state-
ments and theories) as objects in their own right that can be inspected and
reasoned about.

In Chapters 13 to 21, we have defined what OMDoc documents look like
and motivated this by the mathematical objects they encode. But we have
not really defined the properties of these documents as objects themselves
(we will speak of the OMDoc document object model (OMDOM)). To
get a feeling for the issues involved, let us take stock of what we mean by the
object view of data. In mathematics, when we define a class of mathematical
objects (e.g. vector spaces), we have to say which objects belong to this class,
and when they are to be considered equal (e.g. vector spaces are equal, iff
they are isomorphic). When defining the intended behavior of operations, we
need to care only about objects of this class, and we can only make use of
properties that are invariant under object equality. In particular, we cannot
use properties of a particular realization of a vector space that are not pre-
served under isomorphism. For document models, we do the same, only that
the objects are documents.

22.1 XML Document Models

XML supports the task of defining a particular class of documents (e.g. the
class of OMDoc documents) with formal grammars such as the document
type definition (DTD) or an XML schema, that can be used for mechanical

document-model.tex 8481 2009-08-11 05:41:59Z kohlhase

228 22 Document Models for OMDoc

document validation. Surprisingly, XML leaves the task of specifying doc-
ument equality to be clarified in the (informal) specifications, such as this
OMDoc specification. As a consequence, current practice for XML applica-
tions is quite varied. For instance, the OpenMath standard (see [BCC+04]
and Section 13.1) gives a mathematical object model for OpenMath objects
that is specified independently of the XML encoding. Other XML applica-
tions like e.g. presentation MathML [ABC+03a] or XHTML [Gro00] specify
models in form of the intended screen presentation, while still others like the
XSLT [XSL99] give the operational semantics.

For a formal definition let K be a set of documents. We take a docu-
ment model to be a partial equivalence relation1 X on documents, such
that {d|dXd} = K. In particular, a relation X is an equivalence relation on
K. For a given document model X , let us say that two documents d and d′

are X -equal, iff dXd′. We call a property p X -invariant, iff for all dXd′, p
holds on d whenever p holds on d′.

A possible source of confusion is that documents can admit more than one
document model (see [?] for an exploration of possible document models for
mathematics). Concretely, OMDoc documents admit the OMDoc document
model that we will specify in section Section 22.2 and also the following four
XML document models that can be restricted to OMDoc documents (as a
relation).2

The binary document model interprets files as sequences of bytes. Two doc-
uments are equal, iff they are equal as byte sequence. This is the most
concrete and fine-grained (and thus weakest) document model imaginable.

The lexical document model interprets binary files as sequences of Unicode
characters [Inc03] using an encoding table. Two files may be considered
equal by this document model even though they differ as binary files, if
they have different encodings that map the byte sequences to the same
sequence of Unicode characters.

The XML syntax document model interprets Unicode Files as sequences
consisting of an XML declaration, a DOCTYPE declaration, tags, entity
references, character references, CDATA sections, PCDATA comments,
and processing instructions. At this level, for instance, whitespace char-
acters between XML tags are irrelevant, and XML documents may be
considered the same, if they are different as Unicode sequences.

The XML structure document model interprets documents as XML trees of
elements, attributes, text nodes, processing instructions, and sometimes
comments. In this document model the order of attribute declarations in

1 A partial equivalence relation is a symmetric transitive relation. We will use [d]X
for the equivalence class of d, i.e. [d]X : = {e|dX e}

2 Here we follow Eliotte Rusty Harold’s classification of layers of XML processing
in [Har03], where he distinguishes the binary, lexical, sequence, structure, and
semantic layer, the latter being the document model of the XML application

document-model.tex 8481 2009-08-11 05:41:59Z kohlhase

22.1 XML Document Models 229

XML elements is immaterial, double and single quotes can be used inter-
changeably for strings, and XML comments (<!--. . . -->) are ignored.

Each of these document models, is suitable for different applications, for in-
stance the lexical document model is the appropriate one for Unicode-aware
editors that interpret the encoding string in the XML declaration and present
the appropriate glyphs to the user, while the binary document model would be
appropriate for a simple ASCII editor. Since the last three document models
are refinements of the XML document model, we will recap this in the next
section and define the OMDoc document model in Section 22.2.

To get a feeling for the issues involved, let us compare the OMDoc ele-
ments in Listings 22.1 to 22.3 below. For instance, the serialization in List-
ing 22.2 is XML-equal to the one in Listing 22.1, but not to the one in
Listing 22.3. BErr(81)

Listing 22.1. An OMDoc Definition

<definition xml:id=”comm−def” for=”comm”>
<CMP xml:lang=”en”>

3 An operation <OMOBJ id=”op”><OMV name=”op”/></OMOBJ>
is called commutative, iff
<OMOBJ id=”comm1”>
<OMA><OMS cd=”relation1” name=”eq”/>
<OMA><OMV name=”op”/><OMV name=”X”/><OMV name=”Y”/></OMA>

8 <OMA><OMV name=”op”/><OMV name=”Y”/><OMV name=”X”/></OMA>
</OMA>

</OMOBJ> for all <OMOBJ id=”x”><OMV name=”X”/></OMOBJ>
and <OMOBJ id=”y”><OMV name=”Y”/></OMOBJ>.

</CMP>
13 <CMP xml:lang=”de”>

Eine Operation <OMOBJ><OMR href=”#op”/></OMOBJ> heißt kommutativ, falls
<OMOBJ><OMR href=”#comm1”/></OMOBJ> für alle
<OMOBJ><OMR href=”#x”/></OMOBJ> und
<OMOBJ><OMR href=”#y”/></OMOBJ>.

18 </CMP>
</definition>

EErr(81)

BErr(82)Listing 22.2. An XML-equal serialization for Listing 22.1

1 <definition for=”comm” xml:id=”comm−def” >
. . .
<CMP xml:lang=’de’> <!−− Note the unabbreviated empty element −−>
Eine Operation <OMOBJ><OMR href=”#op”/></OMOBJ> heißt
kommutativ, falls <OMOBJ><OMR href=’comm1’/></OMOBJ> für alle

6 <OMOBJ><OMR href=”#x”/></OMOBJ> und
<OMOBJ><OMR href=’y’/></OMOBJ>.
</CMP>

</definition>

EErr(82)

81 Erratum: for attribute on definition should be of type NCNames
82 Erratum: for attribute on definition should be of type NCNames

document-model.tex 8481 2009-08-11 05:41:59Z kohlhase

230 22 Document Models for OMDoc

22.2 The OMDoc Document Model

The OMDoc document model extends the XML structure document model
in various ways. We will specify the equality relation in the table below, and
discuss a few general issues here.

The OMDoc document model is guided by the notion of content markup
for mathematical documents. Thus, two document fragments will only be con-
sidered equal, if they have the same abstract structure. For instance, the order
of CMP children of an omtext element is irrelevant, since they form a multilin-
gual group which form the base for multilingual text assembly. Other facets of
the OMDoc document model are motivated by presentation-independence,
for instance the distribution of whitespace is irrelevant even in text nodes,
to allow formatting and reflow in the source code, which is not considered to
change the information content of a text.BErr(83)

Listing 22.3. An OMDoc-Equal Representation for Listings 22.1 and 22.2

1 <definition xml:id=”comm−def” for=”comm”>
<CMP xml:lang=”de”>Eine Operation <OMOBJ><OMR href=”#op”/></OMOBJ>

heißt kommutativ, falls
<OMOBJ id=”comm1”>
<OMA><OMS cd=”relation1” name=”eq”/>

6 <OMA><OMV name=”op”/><OMV name=”X”/><OMV name=”Y”/></OMA>
<OMA><OMV name=”op”/><OMV name=”Y”/><OMV name=”X”/></OMA>

</OMA>
</OMOBJ> für alle <OMOBJ><OMR href=”#x”/></OMOBJ> und
<OMOBJ><OMR href=”#y”/></OMOBJ>.

11 </CMP>
<CMP xml:lang=”en”>

An operation <OMOBJ id=”op”><OMV name=”op”/></OMOBJ>
is called commutative, iff <OMOBJ><OMR href=”#comm1”/></OMOBJ>
for all <OMOBJ id=”x”><OMV name=”X”/></OMOBJ> and

16 <OMOBJ id=”y”><OMV name=”Y”/></OMOBJ>.
</CMP>

</definition>

EErr(83)
Compared to other document models, this is a rather weak (but general)

notion of equality. Note in particular, that the OMDoc document model does
not use mathematical equality here, which would make the formula X + Y =
Y +X (the om:OMOBJ with xml:id="comm1" in Listing 22.3 instantiated with
addition for op) mathematically equal to the trivial condition X+Y = X+Y ,
obtained by exchanging the right hand side Y +X of the equality by X + Y ,
which is mathematically equal (but not OMDoc-equal).

Let us now specify (part of) the equality relation by the rules in the table
in Figure 22.1. We have discussed a machine-readable form of these equality
constraints in the XML schema for OMDoc in [KA03].

The last rule in Figure 22.1 is probably the most interesting, as we have
seen in Chapter 11, OMDoc documents have both formal and informal as-
pects, they can contain narrative as well as narrative-structured information.
The latter kind of document contains a formalization of a mathematical the-
ory, as a reference for automated theorem proving systems. There, logical

83 Erratum: for attribute on definition should be of type NCNames

document-model.tex 8481 2009-08-11 05:41:59Z kohlhase

22.3 OMDoc Sub-Languages 231

Rule comment elements

1 unordered The order of children of this element is ir-
relevant (as far as permitted by the con-
tent model). For instance only the order of
obligation elements in the axiom-inclusion
element is arbitrary, since the others must
precede them in the content model.

adt axiom-inclusion
metadata symbol code
private presentation
omstyle

2 multi-
group

The order between siblings elements does not
matter, as long as the values of the key at-
tributes differ.

CMP FMP requation
dc:description sortdef
data dc:title solution

3 DAG en-
coding

Directed acyclic graphs built up using om:OMR
elements are equal, iff their tree expansions
are equal.

om:OMR ref

4 Dataset If the content of the dc:type element is
Dataset, then the order of the siblings of the
parent metadata element is irrelevant.

dc:type

Fig. 22.1. The OMDoc Document Model

dependencies play a much greater role than the order of serialization in math-
ematical objects. We call such documents content OMDoc and specify the
value Dataset in the dc:type element of the OMDoc metadata for such doc-
uments. On the other extreme we have human-oriented presentations of math-
ematical knowledge, e.g. for educational purposes, where didactic considera-
tions determine the order of presentation. We call such documents narrative-
structured and specify this by the value Text (also see the discussion in
Section 12.1)

22.3 OMDoc Sub-Languages

In the last chapters we have described the OMDoc modules. Together, they
make up the OMDoc document format, a very rich format for marking up
the content of a wide variety of mathematical documents. (see Part II for
some worked examples). Of course not all documents need the full breadth of
OMDoc functionality, and on the other hand, not all OMDoc applications
(see Part IV for examples) support the whole language.

One of the advantages of a modular language design is that it becomes
easy to address this situation by specifying sub-languages that only include
part of the functionality. We will discuss plausible OMDoc sub-languages
and their applications that can be obtained by dropping optional modules
from OMDoc. Figure 22.2 visualizes the sub-languages we will present in
this chapter. The full language OMDoc is at the top, at the bottom is a
minimal sub-language OMDoc Basic, which only contains the required mod-
ules (mathematical documents without them do not really make sense). The
arrows signify language inclusion and are marked with the modules acquired
in the extension.

document-model.tex 8481 2009-08-11 05:41:59Z kohlhase

232 22 Document Models for OMDoc

Basic (MOBJ, DOC, DC, MTXT, RT)

Content Dictionaries

MathWeb

Education

Specification

OMDoc

PRES, ST

EXT

QUIZ

CTH, DG, PF, ADT

CTH, DG, PF, ADT

EXT, QUIZ

Fig. 22.2. OMDoc Sub-Languages and Modules

The sub-language identifiers can be used as values of the modules attribute
on the omgroup and omdoc elements. Used there, they abbreviate the list of
modules these sub-languages contain.

22.3.1 Basic OMDoc

Basic OMDoc is sufficient for very simple mathematical documents that do
not introduce new symbols or concepts, or for early (and non-specific) stages
in the migration process from legacy representations of mathematical mate-
rial (see Section 4.2). This OMDoc sub-language consists of five modules:
we need module MOBJ for mathematical objects and formulae, which are
present in almost all mathematical documents. Module DOC provides the
document infrastructure, and in particular, the root element omdoc. We need
DC for titles, descriptions, and administrative metadata, and module MTXT
so we can state properties about the mathematical objects in omtext ele-
ment. Finally, module RT allows to structured text below the omtext level.
This module is not strictly needed for basic OMDoc, but we have included
it for convenience.

22.3.2 OMDoc Content Dictionaries

Content Dictionaries are used to define the meaning of symbols in the Open-
Math standard [BCC+04], they are the mathematical documents referred to
in the cd attribute of the om:OMS element. To express content dictionaries in
OMDoc, we need to add the module ST to Basic OMDoc. It provides the
possibility to specify the meaning of basic mathematical objects (symbols) by

document-model.tex 8481 2009-08-11 05:41:59Z kohlhase

22.3 OMDoc Sub-Languages 233

axioms and definitions together with the infrastructure for inheritance, and
grouping, and allows to reference the symbols defined via their home theory
(see the discussion in Section 15.6).

With this extension alone, OMDoc content dictionaries add support for
multilingual text, simple inheritance for theories, and document structure to
the functionality of OpenMath content dictionaries. Furthermore, OMDoc
content dictionaries allow the conceptual separation of mathematical proper-
ties into constitutive ones and logically redundant ones. The latter of these
are not strictly essential for content dictionaries, but enhance maintainabil-
ity and readability, they are included in OpenMath content dictionaries for
documentation and explanation.

The sub-language for OMDoc content dictionaries also allows the spec-
ification of notations for the introduced symbols (by module PRES). So the
resulting documents can be used for referencing (as in OpenMath) and as a
resource for deriving presentation information for the symbols defined here.
To get a feeling for this sub-language, see the example in the OMDoc vari-
ant of the OpenMath content dictionary arith1 in Chapter 5, which shows
that the OpenMath content dictionary format is (isomorphic to) a subset
of the OMDoc format. In fact, the OpenMath2 standard only presents the
content dictionary format used here as one of many encodings and specifies
abstract conditions on content dictionaries that the OMDoc encoding below
also meets. Thus OMDoc is a valid content dictionary encoding.

22.3.3 Specification OMDoc

OMDoc content dictionaries are still a relatively lightweight format for the
specification of meaning of mathematical symbols and objects. Large scale for-
mal specification efforts, e.g. for program verification need more structure to
be practical. Specification languages like Casl (Common Algebraic Specifica-
tion Language [CoF04]) offer the necessary infrastructure, but have a syntax
that is not integrated with web standards.

The Specification OMDoc sub-language adds the modules ADT and CTH
to the language of OMDoc content dictionaries. The resulting language is
equivalent to the Casl standard, see [AHMS00, Hut00, MAH06] for the nec-
essary theory.

The structured definition schemata from module ADT allow to specify
abstract data types, sets of objects that are inductively defined from con-
structor symbols. The development graph structure built on the theory mor-
phisms from module CTH allow to make inclusion assertions about theories
that structure fragments of mathematical developments and support a man-
agement of change.

document-model.tex 8481 2009-08-11 05:41:59Z kohlhase

234 22 Document Models for OMDoc

22.3.4 MathWeb OMDoc

OMDoc can be used as a content-oriented basis for web publishing of mathe-
matics. Documents for the web often contain images, applets, code fragments,
and other data, together with mathematical statements and theories.

The OMDoc sub-language MathWeb OMDoc extends the language for
OMDoc content dictionaries by the module EXT, which adds infrastructure
for images, applets, code fragments, and other data.

22.3.5 Educational OMDoc

OMDoc is currently used as a content-oriented basis for various systems for
mathematics education (see e.g. Chapter 8 for an example and discussion).
The OMDoc sub-language Educational OMDoc extends MathWeb OMDoc
by the module QUIZ, which adds infrastructure for exercises and assessments.

22.3.6 Reusing OMDoc modules in other formats

Another application of the modular language design is to share modules with
other XML applications. For instance, formats like DocBook [WM99] or
XHTML [Gro00] could be extended with the OMDoc statement level. In-
cluding modules MOBJ, DC, and (parts of) MTXT, but not RT and DOC
would result in content formats that mix the document-level structure of these
formats. Another example is the combination of XML-RPC envelopes and
OMDoc documents used for interoperability in Chapter 9.

partresources.tex 7975 2008-08-28 12:36:53Z kohlhase

Part IV

OMDoc Applications, Tools, and Projects

oIn this part we will address current applications, tools and projects using the
OMDoc format. We will first discuss the possibilities and tools of processing
documents in the OMDoc format via style sheets with the purpose of gener-
ating documents specialized for consumption by other mathematical software
systems, and by humans. Then we will present three projects descriptions that
use OMDoc at the core.

resources.tex 8011 2008-09-07 19:43:48Z kohlhase

resources.tex 8011 2008-09-07 19:43:48Z kohlhase

23

OMDoc resources

In this chapter we will describe various public resources for working with the
OMDoc format.

23.1 The OMDoc Web Site, Wiki, and Mailing List

The main web site for the OMDoc format is http://omdoc.org. It hosts
news about developments, applications, collaborators, and events, provides
access to an list of “frequently asked questions” (FAQ), and current and old
OMDoc specifications and provides pre-generated examples from the OM-
Doc distribution.

There are two mailing lists for discussion of the OMDoc format:

omdoc@omdoc.org is for announcements and discussions of the OMDoc for-
mat on the user level. Direct your questions to this list.

omdoc-dev@omdoc.org is for developer discussions.

For subscription and archiving details see the OMDoc resources page for
mailing lists [Koh08].

Finally, the OMDoc web site hosts a Wiki [OMDb] for user-driven docu-
mentation and discussion.

23.2 The OMDoc distribution

All resources on the OMDoc web site are available from the MathWeb Sub-
version repository [OMDa] for anonymous download. Subversion (svn) is
a collaborative version control system – to support a distributed community
of developers in accessing and developing the OMDoc format, software, and
documentation, see [Mat] for a general introduction to the setup. The head
revision of the OMDoc repository are accessible on the web at https://svn.
omdoc.org/repos/omdoc/trunk via a regular web browser. The svn server

http://omdoc.org
omdoc@omdoc.org
omdoc-dev@omdoc.org
https://svn.omdoc.org/repos/omdoc/trunk
https://svn.omdoc.org/repos/omdoc/trunk

resources.tex 8011 2008-09-07 19:43:48Z kohlhase

238 23 OMDoc resources

allows anonymous read access to the general public. To check out the OMDoc
distribution, use

svn co https://svn.omdoc.org/repos/omdoc/trunk

This will create a directory omdoc, with the sub-directories

directories content

bin, lib, oz,
thirdParty

programs and third-party software used in the admin-
istration and examples

css, xsl style sheets for displaying OMDoc documents on the
web, see Chapter 25 for a discussion.

doc The OMDoc documentation, including the specifica-
tion, papers about a the OMDoc format and tools.

dtd, rnc The OMDoc document type definition and the Re-
laxNG schemata for OMDoc

examples Various example documents in OMDoc format.

projects various contributed developments for OMDoc. Doc-
umentation is usually in their doc sub-directory

After the initial check out, the OMDoc distribution can be kept up to
date by the command svn -q update in the top-level directory from time to
time. To obtain write access contact svnadmin@omdoc.org.

23.3 The OMDoc bug tracker

MathWeb.org supplies a BugZilla bug-tracker [Bug05] at http://bugzilla.

mathweb.org:8000 to aid the development of the OMDoc format. BugZilla is
a server-based discussion forum and bug tracking system. We use it to track,
archive and discuss tasks, software bugs, and enhancements in our project.
Discussions are centered about threads called ”bugs” (which need not be soft-
ware bugs at all), which are numbered, can be searched, and can be referred to
by their URL. To use BugZilla, just open an account and visit the OMDoc
content by querying for the “product” OMDoc. For offline use of the bug-
tracker we recommend the excellent Deskzilla application [Des05], which is
free for open-source projects like OMDoc.

Further development of the OMDoc format will be public and driven by
the discussions on BugZilla, the OMDoc mailing list, and the OMDoc
Wiki (see Section 23.1).

23.4 An XML catalog for OMDoc

Many XML processes use system IDs (in practice URLs) to locate supporting
files like DTDs, schemata, style sheets. To make them more portable, OMDoc
documents will often reference the files on the omdoc.org web server, even in

svnadmin@omdoc.org
MathWeb.org
http://bugzilla.mathweb.org:8000
http://bugzilla.mathweb.org:8000
omdoc.org

resources.tex 8011 2008-09-07 19:43:48Z kohlhase

23.5 External Resources 239

situations, where they are accessible locally e.g. from the OMDoc distribu-
tion. This practice not only puts considerable load on this server, but also
slows down or even blocks document processing, since the XML processors
have to retrieve these files over the Internet.

Many processors can nowadays use XML catalogs to remap public iden-
tifiers and URLs as an alternative to explicit system identifiers. A catalog
can convert public IDs like the one for the OMDoc DTD (-//OMDoc//DTD
OMDoc V1.2//EN) into absolute URLs like http://omdoc.org/dtd/omdoc.

dtd. Moreover, it can replace remote URLs like this one with local URLs like
file:///home/kohlhase/omdoc/dtd/omdoc.dtd. This offers fast, reliable ac-
cess to the DTDs and schemata without making the documents less portable
across systems and networks.

To facilitate the use of catalogs, the OMDoc distribution provides a cat-
alog file lib/omdoc.cat. This catalog file can either be imported into the
system’s catalog1 using a nextCatalog element of the form

<nextCatalog xml:id=”omdoc.cat” catalog=”file:///home/kohlhase/omdoc/lib/omdoc.cat”/>

or by making it known directly to the XML processor by an application-
specific method. For instance for libxml2 based tools like xsltproc or
xmllint, it is sufficient to include the path to omdoc.cat in the value of the
XML CATALOG FILES environment variable (it contains a whitespace-separated
list of FILES).

23.5 External Resources

The OMDoc format has been used on a variety of projects. Chapter 26
gives an overview over some of the projects (use the project home pages
given there for details), a up to date list of links to OMDoc projects can
be found at http://omdoc.org/projects/. These projects have contributed
tools, code, and documentation to the OMDoc format, often stressing their
special vantage points and applications of the format.

1 This catalog is usually at file:///etc/xml/catalog on Unix systems; unfortu-
nately there is no default location for Windows machines.

http://omdoc.org/dtd/omdoc.dtd
http://omdoc.org/dtd/omdoc.dtd
file:///home/kohlhase/omdoc/dtd/omdoc.dtd
lib/omdoc.cat
http://omdoc.org/projects/
file:///etc/xml/catalog

validating.tex 8011 2008-09-07 19:43:48Z kohlhase

validating.tex 8011 2008-09-07 19:43:48Z kohlhase

24

Validating OMDoc Documents

In Chapter 1 we have briefly discussed the basics of validating XML docu-
ments by document type definitions (DTDs) and schemata. In this chapter,
we will instantiate this discussion with the particulars of validating OMDoc
documents.

Generally, DTDs and schemata are context-free grammars for trees1, that
can be used by a validating parser to reject XML documents that do not
conform to the constraints expressed in the OMDoc DTD or schemata dis-
cussed here.

Note that none of these grammars can enforce all constraints that the OM-
Doc specification in Part III of this book imposes on documents. Therefore
grammar-based validation is only a necessary condition for OMDoc-validity.
Still, OMDoc documents should be validated to ensure proper function of
OMDoc tools, such as the ones discussed in Chapters 25 and 26. Validation
against multiple grammars gives the best results. With the current state of val-
idation technology, there is no clear recommendation, which of the validation
approaches to prefer for OMDoc. DTD validation is currently best supported
by standard XML applications and supports default values for attributes.
This allows the author who writes OMDoc documents by hand to elide im-
plicit attributes and make the marked-up text more readable. XML- and Re-
laxNG schema validation have the advantage that they are namespace-aware
and support more syntactic constraints. Neither of these support mnemonic
XML entities, such as the ones used for Unicode characters in Presentation-
MathML, so that these have to be encoded as Unicode code points. Finally
RelaxNG schemata do not fully support default values for attributes, so that
OMDoc documents have to be normalized2 to be RelaxNG-valid.

1 Actually, a recent extension of the XML standard (XLink) also allows to express
graph structures, but the admissibility of graphs is not covered by DTD or current
schema formalisms.

2 An OMDoc document is called normalized, iff all required attributes are
present. Given a DTD or XML schema that specifies default values, there are

validating.tex 8011 2008-09-07 19:43:48Z kohlhase

242 24 Validating OMDoc Documents

We will now discuss the particulars of the respective validation formats.
As the RelaxNG schema is the most expressive and readable for humans
we consider it as the normative grammar formalism for OMDoc, and have
included it in Appendix D for reference.

24.1 Validation with Document Type Definitions

The OMDoc document type definition [Kohc] can be referenced by the public
identifier "-//OMDoc//DTD OMDoc V1.2//EN" (see Section 23.4). The DTD
driver file is omdoc.dtd, which calls various DTD modules.

DTD-validating XML parsers are included in almost all XML processors.
The author uses the open-source RXP [Tob] and xmllint [Veia] as stand-
alone tools. If required, one may validate OMDoc documents using an SGML
parser such as nsgmls, rather than a validating XML parser. In this case an
SGML declaration defining the constraints of XML applicable to an SGML
parser must be used (see [Cla97] for details).

To allow DTD-validation, OMDoc documents should contain a document
typedeclaration of the following form:

<!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc V1.2//EN”
”http://omdoc.org/dtd/omdoc.dtd”>

The URI may be changed to that of a local copy of the DTD if required, or
it can be dropped altogether if the processing application has access to an
XML catalog (see Section 23.4). Whether it is useful to include document
type declarations in documents in a production environment depends on the
application. If a document is known to be DTD- or even OMDoc-valid, then
the validation overhead a DOCTYPE declaration would incur from a validating
parser3 may be conserved by dropping it.

24.1.1 Parametrizing the DTD

The OMDoc DTD makes heavy use of parameter entities, so we will briefly
discuss them to make the discussion self-contained. Parameter entity declara-
tions are declarations of the form

<!ENTITY % assertiontype ”theorem|proposition|lemma|%otherassertiontype;”>

standard XML tools for XML-normalization that can be pipelined to allow Re-
laxNG validation, so this is not a grave restriction.

3 The XML specification requires a validating parser to perform validation if a
DOCTYPE declaration is present

omdoc.dtd

validating.tex 8011 2008-09-07 19:43:48Z kohlhase

24.1 Validation with Document Type Definitions 243

in the DTD. This one makes the abbreviation %assertiontype; available
for the string “theorem|proposition|lemma|observation” (in the DTD of
the document in Listing 24.1). Note that parameter entities must be fully
defined before they can be referenced, so recursion is not possible. If there
are multiple parameter entity declarations, the first one is relevant for the
computation of the replacement text; all later ones are discarded. The internal
subset of document type declaration is pre-pended to the external DTD, so
that parameter entity declarations in the internal subset overwrite the ones
in the external subset.

The (external) DTD specified in the DOCTYPE declaration can be enhanced
or modified by adding declarations in square brackets after the DTD URI.
This part of the DTD is called the internal subset of the DOCTYPE declaration,
see Listing 24.1 for an example, which modifies the parameter entity %other-

assertiontype; supplied by the OMDoc DTD to extend the possible values
of the type attribute in the assertion element for this document. As a con-
sequence, the assertion element with the non-standard value for the type

attribute is DTD-valid with the modified internal DTD subset.

Listing 24.1. A Document Type Declaration with Internal Subset

<!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc V1.2//EN”
”http://omdoc.org/omdoc.dtd”

[<!ENTITY % otherassertiontype ”observation”>]>
4 . . .

<assertion type=”observation”>. . .</assertion>
. . .

24.1.2 DTD-based Normalization

Note that if a OMDoc fragment is parsed without a DTD, i.e. as a well-
formed XML fragment, then the default attribute values will not be added
to the XML information set. So simply dropping the DOCTYPE declara-
tion may change the semantics of the document, and OMDoc documents
should be normalized4 first. Normalized OMDoc documents should carry
the standalone attribute in the XML processing instruction, so that a nor-
malized OMDoc document has the form given in Listing 24.2.

Listing 24.2. A normalized OMDoc document without DTD

<?xml version=”1.0” standalone=”yes”?>
<omdoc xml:id=”something” version=”1.2” xmlns=”http://www.mathweb.org/omdoc”>
. . .

4 </omdoc>

The attribute version and the namespace declaration xmlns are fixed by
the DTD, and need not be explicitly provided if the document has a DOCTYPE

declaration.

4 The process of DTD-normalization expands all parsed XML entities, and adds
all default attribute values

validating.tex 8011 2008-09-07 19:43:48Z kohlhase

244 24 Validating OMDoc Documents

24.1.3 Modularization

In OMDoc1.2 the DTD has been modularized according to the W3C con-
ventions for DTD modularization [Alt01]. This partitions the DTD into DTD
modules that correspond to the OMDoc modules discussed in Part III of
this book.

These DTD modules can be deselected from the OMDoc DTD by chang-
ing the module inclusion entities in the local subset of the document type
declaration. In the following declaration, the module PF (see Chapter 17) has
been deselected, presumably, as the document does not contain proofs.

1 <!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc V1.2//EN”
”http://omdoc.org/dtd/omdoc.dtd”

[<!ENTITY % omdoc.pf.module ”IGNORE”>]>

Module inclusion entities have the form %omdoc.〈〈ModId〉〉.module;, where
〈〈ModId〉〉 stands for the lower-cased module identifier. The OMDoc DTD
repository contains DTD driver files for all the sub-languages discussed in Sec-
tion 22.3, which contain the relevant module inclusion entity settings. These
are contained in the files omdoc-〈〈SlId〉〉.dtd, where 〈〈SlId〉〉 stands for the sub-
language identifier.

Except for their use in making the OMDoc DTD more manageable, DTD
modules also allow to include OMDoc functionality into other document
types, extending OMDoc with new functionality encapsulated into modules
or upgrading selected OMDoc modules individually. To aid this process, we
will briefly describe the module structure. Following [Alt01], DTD modules
come in two parts, since we have inter-module recursion. The problem is for
instance that the omlet element can occur in mathematical texts (mtext), but
also contains mtext, which is also needed in other modules. Thus the modules
cannot trivially be linearized. Therefore the DTD driver includes an entity
file 〈〈ModId〉〉.ent for each module 〈〈ModId〉〉, before it includes the grammar
rules in the element modules 〈〈ModId〉〉.mod themselves. The entity files set
up parameter entities for the qualified names and content models that are
needed in the grammar rules of other modules.

24.1.4 Namespace Prefixes for OMDoc elements

Document type definitions do not natively support XML namespaces. How-
ever, clever coding tricks allow them to simulate namespaces to a certain
extent. The OMDoc DTD follows the approach of [Alt01] that parametrizes
namespace prefixes in element names to deal gracefully with syntactic effects
of namespaced documents like we have in OMDoc.

Recall that element names are qualified names, i.e. pairs consisting of a
namespace URI and a local name. To save typing effort, XML allows to abbre-
viate qualified names by namespace declarations via xmlns pseudo-attribute:
the element and all its descendants are in this namespace, unless they have
a namespace attribute of their own or there is a namespace declaration in

validating.tex 8011 2008-09-07 19:43:48Z kohlhase

24.2 Validation with RelaxNG Schemata 245

a closer ancestor that overwrites it. Similarly, a namespace abbreviation can
be declared on any element by an attribute of the form xmlns:nsa="nsURI",
where nsa is a name space abbreviation, i.e. a simple name, and nsURI is the
URI of the namespace. In the scope of this declaration (in all descendants,
where it is not overwritten) a qualified name nsa:n denotes the qualified name
nsURI:n.

The mechanisms described in [Alt01] provide a way to allow for namespace
declarations even in the (namespace-agnostic) DTD setting simply by setting
a parameter entity. If NS.prefixed is declared to be INCLUDE, using a declara-
tion such as <!ENTITY % NS.prefixed "INCLUDE"> either in the local subset
of the DOCTYPE declaration, or in the DTD file that is including the OMDoc
DTD, or the DTD modules presented in this appendix, then all OMDoc
elements should be used with a prefix, for example <omdoc:definition>,
<omdoc:CMP>, etc. The prefix defaults to omdoc: but another prefix may be
declared by declaring in addition the parameter entity omdoc.prefix. For ex-
ample, <!ENTITY % omdoc.prefix "o"> would set the prefix for the OMDoc
namespace to o:.

Note that while the Namespaces Recommendation [Bra99] provides mech-
anisms to change the prefix at arbitrary points in the document, this flexibility
is not provided in this DTD (and is probably not possible to specify in any
DTD). Thus, if a namespace prefix is being used for OMDoc elements, so
that for example the root element is:

<omdoc:omdoc xmlns:omdoc=”http://www.mathweb.org/omdoc”>
2 . . .

</omdoc:omdoc>

then the prefix must be declared in the local subset of the DTD, as follows:

<!DOCTYPE omdoc:omdoc PUBLIC ”−//OMDoc//DTD OMDoc V1.2//EN”
2 ”http://omdoc.org/dtd/omdoc.dtd”

[<!ENTITY % NS.prefixed ”INCLUDE”><!ENTITY % omdoc.prefix ”omdoc”>]>

The OMDoc DTD references six namespaces:

language namespace prefix

MathML http://www.w3.org/1998/Math/MathML m:

OpenMath http://www.openmath.org/OpenMath om:

XSLT http://www.w3.org/1999/XSL/Transform xsl:

Dublin Core http://purl.org/dc/elements/1.1/ dc:

Creative Commons http://creativecommons.org/ns cc:

OMDoc http://www.mathweb.org/omdoc omdoc:

These prefixes can be changed just like the OMDoc prefix above.

24.2 Validation with RelaxNG Schemata

RelaxNG [Vli03] is a relatively young approach to validation developed out-
side the W3C, whose XML schema paradigm was deemed overburdened. As

http://www.w3.org/1998/Math/MathML
http://www.openmath.org/OpenMath
http://www.w3.org/1999/XSL/Transform
http://purl.org/dc/elements/1.1/
http://creativecommons.org/ns
http://www.mathweb.org/omdoc

validating.tex 8011 2008-09-07 19:43:48Z kohlhase

246 24 Validating OMDoc Documents

a consequence, RelaxNG only concerns itself with validation, and leaves out
typing, normalization, and entities. RelaxNG schemata come in two forms,
in XML syntax (file name extension .rng) and in compact syntax (file name
extension .rnc). We provide the RelaxNG schema [Kohd] as the normative
validation schema for OMDoc. As compact syntax is more readily under-
standable by humans, we have reprinted it as the normative grammar for
OMDoc documents in Appendix D. Just as in the case for the OMDoc
DTD, we provide schemata for the OMDoc sub-languages discussed in Sec-
tion 22.3. These are contained in the driver files omdoc-〈〈SlId〉〉.rnc, where
〈〈SlId〉〉 stands for the sub-language identifier.

There is currently no standard way to associate a RelaxNG schema with
an XML document5; thus validation tools (see http://relaxng.org for an
overview) have to be given a grammar as an explicit argument. One conse-
quence of this is that the information that an OMDoc document is intended
for an OMDoc sub-languages must be managed outside the document sepa-
rately from the document.

There are various validators for RelaxNG schemata, the author uses the
open-source xmllint [Veia] as a stand-alone tool, and the nXML mode [Cla05]
for the Emacs editor [Sta02] for editing XML files, as it provides powerful
RelaxNG-based editing support (validation, completion, etc.).

24.3 Validation with XML Schema

For validation6 with respect to XML schemata (see [XML]) we provide
an XML schema for OMDoc [Kohe], which is generated from the Re-
laxNG schema in Appendix D via the trang system described above. Again,
schemata for the sub-languages discussed in Section 22.3 are provided as
omdoc-〈〈SlId〉〉.rnc, where 〈〈SlId〉〉 stands for the sub-language identifier.

To associate an XML schema with an element, we need to decorate it with
an xsi:schemaLocation attribute and the namespace declaration for XML
schema instances. In Listing 24.3 we have done this for the top-level omdoc
element, and thus for the whole document. Note that this mechanism makes
mixing XML vocabularies much simpler than with DTDs, that can only be
associated with whole documents.

Listing 24.3. An XML document with an XML Schema.

<?xml version=”1.0”?>
2 <omdoc xml:id=”example.with.schema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xsi:schemaLocation=”http://www.mathweb.org/omdoc

http://omdoc.org/xsd/omdoc.xsd”>

5 In fact this is not an omission, but a conscious design decision on the part of the
RelaxNG developers.

6 There are many schema-validating XML parsers, the author uses the open-source
xmllint [Veia].

http://relaxng.org

validating.tex 8011 2008-09-07 19:43:48Z kohlhase

24.3 Validation with XML Schema 247

. . .
7 </omdoc>

processing.tex 6154 2006-10-03 11:31:31Z

processing.tex 6154 2006-10-03 11:31:31Z

25

Transforming OMDoc by XSLT Style Sheets

In the introduction we have stated that one of the design intentions behind
OMDoc is to separate content from presentation, and leave the latter to
the user. In this section, we will briefly touch upon presentation issues. The
technical side of this is simple: OMDoc documents are regular XML docu-
ments that can be processed by XSLT style sheets [XSL99] to produce the de-
sired output formats. There are several high-quality XSLT transformers freely
available including saxon [Kay], xalan [The], and xsltproc[Veib]. Moreover,
XSLT is natively supported by the newest versions of the browsers MS Inter-
net Explorer [Cor] and Mozilla [Org].

XSLT style sheets can be used for several tasks in maintaining OMDoc,
such as for instance converting other XML-based input formats into OM-
Doc (e.g. cd2omdoc.xsl for converting OpenMath content dictionaries into
OMDoc format), or migrating between different versions of OMDoc e.g. the
style sheet omdoc1.1adapt1.2.xsl that operationalizes all the syntax changes
from Version 1.1 of OMDoc to version 1.2 (see Appendix A for a tabulation).
We will now review a set of XSLT style sheets for OMDoc, they can be found
in the OMDoc distribution (see Section 23.2) or on the web at [Kohf].

25.1 Extracting and Linking XSLT Templates

One of the main goals of content markup for mathematical documents is to
be independent of the output format. In Chapter 19, we have specified the
conceptual infrastructure provided by the OMDoc language, in this section
we will discuss the software infrastructure needed to transform OMDoc doc-
uments into various formats.

The presentation elements for symbols in OpenMath or Content-
MathML formulae allow a declarative specification of the result of trans-
forming expressions involving these symbols into various formats. To use this
information in XSLT style sheets, the content of presentation elements
must be transformed into XSLT templates, and these must be linked into the

processing.tex 6154 2006-10-03 11:31:31Z

250 25 Transforming OMDoc

generic transformation style sheet. The OMDoc distribution provides two
meta-style-sheets for these tasks.

The first one — expres.xsl — compiles the content of the presentation
and omstyle elements in the source file into XSLT templates. The style sheet
takes the parameter report-errors, which is set to ’no’ by default; setting
it to ’yes’ will enable more verbose error reports. The OMDoc distribution
provides Unix Makefiles that specify the target 〈〈base〉〉-tmpl.xsl for each
OMDoc file 〈〈base〉〉.omdoc, so that the templates file can be generated by
typing make 〈〈base〉〉-tmpl.xsl. Note that expres.xsl follows the references
in the ref elements (it ref-normalizes the document see Section 11.5) before
it generates the templates1.

The second style sheet — exincl.xsl — generates link table for a
specific OMDoc document. This style sheet ref-normalizes the document
and outputs an XSLT style sheet that includes all the necessary template
files. expres.xsl takes two parameters: self is the name of the source file
name itself2. The Makefiles in the OMDoc distribution specify the target
〈〈base〉〉-incl.xsl, so that the link table can be generated by typing make

〈〈base〉〉-incl.xsl.
Let us now consider the example scenario in Figure 25.1: Given an OM-

Doc document 〈〈document〉〉.omdoc that uses symbols from theories a, b, c, d,
and e which are provided by the OMDoc documents 〈〈background〉〉.omdoc,
〈〈special〉〉.omdoc and 〈〈local〉〉.omdoc, we need to generate the template files
〈〈background〉〉-tmpl.xsl, 〈〈special〉〉-tmpl.xsl, and 〈〈local〉〉-tmpl.xsl (via
expres.xsl) as well as 〈〈document〉〉-incl.xsl (via exincl.xsl). Now it is
only necessary to include the link table 〈〈document〉〉-incl.xsl into a generic
transformation style sheet to specialize it with the notation information spec-
ified in the presentation elements in theories a, b, c, d, and e.

The transformation architecture based on the Makefiles provided with
the OMDoc distribution does the linking by creating a specialized style sheet
〈〈document〉〉2html.xsl that simply includes the generic OMDoc transfor-
mation style sheet omdoc2html.xsl (see Section 25.3), and the style sheet
〈〈document〉〉-incl.xsl. Changing this simple control style sheet allows to
add site- or language-specific templates (by adding them directly or including
respective style sheets). An analogous processing path leads 〈〈document〉〉.tex
using omdoc2tex.xsl and from there to PDF using tools like pdflatex.

1 In the current implementation, expres.xsl generates one large template that
combines the XSLT code for all target formats. This simplifies the treatment of
the default presentations as requested by the specification in Section 19.3, but
hampers mixing presentation information from multiple sources. An implemen-
tation based on modes would probably have advantages in this direction in the
long run.

2 For some reason XSLT processors do not provide access to this information
portably.

processing.tex 6154 2006-10-03 11:31:31Z

25.2 Interfaces for Systems 251

expres.xsl

compile XSL templates from
<presentation> elements

includes stylesheets
background−tmpl.xsl

special−tmpl.xsl

local−tmpl.xsl

document−incl.xsl

document2html.xsl

binds document−incl.xsl
and omdoc2html.xsl

omdoc2html.xsl

XSL templates for general
OMDoc elements

local.omdoc

<theory id="e">...</theory>

document.omdoc

<import from="a"/>

<import from="e"/>
...

...
<OMS cd="e" name="zz"/>

...
<OMS cd="a" name="xx"/>

background.omdoc

<theory id="b">...</theory>
<theory id="b">...</theory>

<theory id="c">...</theory>

special.omdoc

<theory id="d">...</theory>

background−tmpl.xsl

XSL−Templates for symbols
from theories a,b,c

special−tmpl.xsl

XSL−Templates for symbols
from theory d

local−tmpl.xsl

XSL−Templates for symbols
from theory e

exincl.xsl

compile XSL templates from
<presentation> elements

document2tex.xsl

binds document−incl.xsl
and omdoc2tex.xsl

omdoc2tex.xsl

XSL templates for general
OMDoc elements

document.tex

document.html

document.pdf
pdflatex

Fig. 25.1. The OMDoc presentation Process

Other processing architectures may be built up using on-demand technolo-
gies, e.g. servlets, mediators, or web services, but will be able to follow the
same general pattern as our simpleminded implementation in Makefiles.

We will make use of this general architecture based on extraction and
linking via XSLT style sheets in the transformation of OMDoc documents
below.

25.2 OMDoc Interfaces for Mathematical Software
Systems

One of the original goals of the OpenMath, Content-MathML and OMDoc
languages is to provide a communication language for mathematical software
systems. The main idea behind this is to supply systems with interfaces to a
universally accepted communication language standard (an interlingua), and
so achieve interoperability for n systems with only 2n translations instead of
n2. As we have seen in Section 2.1, OpenMath and Content-MathML pro-

processing.tex 6154 2006-10-03 11:31:31Z

252 25 Transforming OMDoc

vide a good solution at the level of mathematical objects, which is sufficient for
systems like computer algebra systems. OMDoc adds the level of mathemat-
ical statements and theories to add support for automated reasoning systems
and formal specification systems.

To make practical use of the OMDoc format as an interlingua, we have
to support building OMDoc interfaces. An XSLT style sheet is a simple way
to come up with (the input half) of an OMDoc interface. A more efficient
way would be to integrate an XML directly into the system (suitable XML
parsers are readily available for almost all programming languages nowadays).

Usually, the task of writing an XSLT style sheet for such a conversion is a
relatively simple task, since the input language of most mathematical software
system is isomorphic to a subset of OMDoc. This suggests the general strat-
egy of applying the necessary syntax transformations (this has to be supplied
by the style sheet author) on those OMDoc elements that carry system-
relevant information and transforming those that are not (e.g. Metadata and
CMP elements for most systems) into comments. Much of the functionality
is already supplied by the style sheet omdoc2sys.xsl, which need only be
adapted to know about the comment syntax.

The task of translating an OMDoc document into system-specific input
has two sub-tasks. We will discuss them using the concrete example of the
omdoc2pvs.xsl style sheet that transforms OMDoc documents to the input
language of the Pvs theorem prover [ORS92]: The first task is to translate
elements at the statement- and theory level to the input language this is hand-
coded by supplying suitable templates for the OMDoc statement and theory
elements in an extension of the omdoc2sys.xsl style sheet. The second task
is to translate the formulae to the input language. Here, the system usually
has a particular way of expressing complex formulae like function applications
and binding expressions; in the concrete case of Pvs, function application uses
a prefix function argument syntax, and n-ary binding expressions, where the
scope is separated by a colon from the variable list. This information must also
be encoded in respective templates for the om:OMA, om:OMBIND, om:OMV ele-
ments from OpenMath and the m:apply and m:ci from Content-MathML.
For the symbol elements, we have to distinguish two cases: the predefined sym-
bols of the system language and the object symbols that are introduced by
the user to formalize a certain problem. In both cases, the transformation pro-
cedure needs input on how these symbols are to be represented in the system
language. For the object symbols we assume that there are suitable theory

structures available, which declare them in symbol elements, thus we can as-
sume that these theory structures also contain use elements with appropriate
format attribute in the presentation elements for those symbols that need
special representations in the system language. For the predefined symbols of
the system language, we assume the same. To be able to transform an OM-
Doc document into system input, we need a language definition theory, i.e.
an OMDoc document that contains a theory which provides symbols for all
the predefined words of the system language. This theory must also contain

processing.tex 6154 2006-10-03 11:31:31Z

25.2 Interfaces for Systems 253

presentation elements with use children specialized the input formats of all
systems targeted for communication.

Listing 25.1. A symbol in a Language Definition Theory

<symbol name=”sigmatype”>
<metadata>

3 <dc:description>
The dependent function type constructor is a binding operator. The source type is
the type of the bound variable X, the target type is represented in the body.

</dc:description>
</metadata>

8 </symbol>

<presentation xml:id=”pr−sigmatype” for=”#sigmatype” role=”binding”>
<style format=”pvs”>
<text>[</text>

13 <recurse select=”∗[2]/∗”/><text> −> </text><recurse select=”∗[3]”/>
<text>]</text>

</style>
<style format=”nuprl”>
<recurse select=”∗[2]/∗”/><text> −> </text><recurse select=”∗[3]”/>

18 </style>
</presentation>

The other direction of the translation needed for communication is usu-
ally much more complicated, since it involves parsing the often idiosyncratic
output of these systems. A better approach is to write specialized output
generators for these systems that directly generate OMDoc representations.
This is usually a rather simple thing to do, if the systems have internal data
structures that provide all the information required in OMDoc. It is some-
times a problem with these systems that they only store the name of a symbol
(logical constant) and not its home theory. At other times, internal records
of proofs in theorem provers are optimized towards speed and not towards
expressivity, so that some of the information that had been discarded has to
be recomputed for OMDoc output.

One of the practical problems that remains to be solved for interfaces be-
tween mathematical software systems is that of semantic standardization of
input languages. For mathematical objects, this has been solved in princi-
ple by supplying a theory level in the form of OpenMath or OMDoc con-
tent dictionaries that define the necessary mathematical concepts. For sys-
tems like theorem provers or theory development environments we need to
do the same with the logics underlying these systems. For an effort to sys-
tematize logics into a hierarchy that fosters reuse and communication of sys-
tems, based on a series of experiments of interfacing with the theorem proving
systems Ωmega [BCF+97], InKa [HS96], Pvs [ORS92], λClam [RSG98b],
TPS [ABI+96] and CoQ [Tea] see Section 26.18

processing.tex 6154 2006-10-03 11:31:31Z

254 25 Transforming OMDoc

25.3 Presenting OMDoc to Humans

We will now discuss the software infrastructure needed to transform OM-
Doc documents into human-readable form in various formats. We speak of of
OMDoc presentation for this task.

Due to the complex nature of OMDoc presentation, only part of it can
actually be performed by XSLT style sheets. For instance, sub-tasks like rea-
soning about the prior knowledge of the user, or her experience with certain
proof techniques is clearly better left to specialized applications. Our process-
ing model is the following: presenting an OMDoc is a two-phase process.

The first phase is independent of the final output format (e.g. HTML,
MathML, or LATEX) and produces another OMDoc representation special-
ized to the respective user or audience, taking into account prior knowledge,
structural preferences, bandwidth and time constraints, etc. This phase usu-
ally generates a narrative-structured document from a knowledge-centered
one.

The second phase is a formatting process that can be extracted by XSLT
style sheets that transforms the resulting specialized document into the respec-
tive output format with notational- and layout preferences of the audience.
We will only discuss the second one and refer the reader for ideas about the
first process to systems like P.rex [Fie01a, FH01].

The presentation of the OMDoc document elements and statements is car-
ried out by the style sheets omdoc2html.xsl for XHTML, omdoc2html.xsl
for XHTML+MathML and omdoc2tex.xsl for LATEX. These style sheets are
divided into files according to the OMDoc modules and share a large com-
mon code base omdoc2share.xsl, basically the first two include the latter and
only redefine some format-specific options. For instance, omdoc2share.xsl

supplies an infrastructure for internationalization introduced in Section 14.1.
This allows to generate localized presentations of the OMDoc documents,
if enough information is present in the multilingual groups of CMP elements.
omdoc2share.xsl takes a parameter TargetLanguage, whose value can be a
whitespace-separated preference list of ISO 639 norm two-letter country codes.
If TargetLanguage consists of a single entry, then the result will only contain
this language with gaps where the source document contains no suitable CMP.
Longer TargetLanguage preference lists will generally result in more com-
plete, but multilingual documents. Apart from the language-specific elements
in the source document, localization also needs to know about the presenta-
tion of certain keywords used in OMDoc markup, e.g. the German “Lemma”
and the French “Lemme” for <assertion type="lemma">. This information
is kept in the keyword table lib/locale.xml in the OMDoc distribution,
which contains all the keywords necessary for presenting the OMDoc ele-
ments discussed so far. An alternative keyword table can be specified by the
parameter locale.

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26

OMDoc Applications and Projects

This chapter presents a variety of applications and projects that use the OM-
Doc format or are related to it in a substantive way.

Apart from the projects directly reported here, the OMDoc format is used
by the new research field of Mathematical Knowledge Management (mkm;
cf. http://www.mkm-ig.org/), which combines researchers in mathematics,
computer science, and library science. We refer the reader to the proceedings
of the annual mkm conference [BC01b, ABD03, ABT04, Koh05a, BF06].

26.1 Introduction

The text in the project descriptions has been contributed1 by the authors
marked in the section headings, for questions about the projects or systems,
please visit the web-sites given or contact the authors directly. Note that
the material discussed in this chapter is under continuous development, and
the account here only reflects the state of mid-2006, see http://omdoc.org/

projects/ for more and current information.

26.1.1 Overview

The OMDoc format as a whole and the applications mentioned above are
supported by a variety of tools for creating, manipulating, and communicating
OMDoc documents. We can distinguish four kinds of tools:

Interfaces for Mathematical Software Systems like automated theorem provers.
These system are usually add-ins that interpret the internal representa-
tion of formalized mathematical objects in their host systems and recur-
sively generate formal OMDoc documents as output and communication

1 If your OMDoc project is not represented here, please contact m.kohlhase@

jacobs-university.de to arrange for inclusion in later editions of this book.

http://www.mkm-ig.org/
http://omdoc.org/projects/
http://omdoc.org/projects/
m.kohlhase@jacobs-university.de
m.kohlhase@jacobs-university.de

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

256 26 Applications and Projects

streams. Some of these systems also have input filters for OMDoc like
the XeriFun described in Section 26.20, but most rely on the OMDoc
transformation to their native input syntax described in Section 25.2.

Invasive Editors i.e. are add-ins or modes that “invade” common general-
purpose editing systems and specialize them to deal with the OMDoc
format. The OMDoc mode for the Emacs editor presented in Sec-
tion 26.16, the CPoint add-in for MS PowerPoint (Section 26.14), the
Mathematica® notebook converter (Section 26.17), the Sentido plugin
for Mozilla-based browsers, and the plugin for TEXmacs (Section 26.19)
are examples for this kind of editor. They differ from simple output filter
in providing editing functionality for OMDoc specific information.

Human-Oriented Frontend Formats for instance the QMath project described
in Section 26.2 defines an interface language for a fragment of OMDoc,
that is simpler to type by hand, and less verbose than the OMDoc that
can be generated by the qmath parser. STEX defines a human-oriented
format for OMDoc by extending the TEX/LATEX with content markup
primitives, so that it can be transformed to OMDoc. See Section 26.15
for details.

Mathematical Knowledge Bases The MBase and Maya systems described in
Sections 26.4 and 26.12 are web-based mathematical knowledge bases that
offer the infrastructure for a universal, distributed repository of formalized
mathematics represented in the OMDoc format.

26.1.2 Application Roles of the OMDoc Format

The applications above support the utilization of the OMDoc format in sev-
eral roles. Generally, OMDoc can used of as a

Communication Standard between mechanized reasoning systems.
Data Format for Controlled Refinement from informal presentation to formal

specification of mathematical objects and theories. Basically, an informal
textual presentation can first be marked up, by making its structure ex-
plicit (classifying text fragments as definitions, theorems, proofs, linking
text, and their relations), and then formalizing the textually given mathe-
matical knowledge in logical formulae (by adding FMP elements; see Chap-
ter 14).

Document Preparation Language. The OMDoc format makes the large-scale
document- and conceptual structures explicit and facilitates maintenance
on this level. Individual documents can be encoded as lightweight narra-
tive structures, which can directly be transformed to e.g. XHTML+MathML
or LATEX, which can in turn be published on the Internet.

Basis for Individualized (Interactive) Documents. Personalized narrative struc-
tures can be generated from MBase content making use of the conceptual
structure encoded in MBase together with a user model. For instance,

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26.1 Introduction 257

the MMiSS, MathDox, and ActiveMath projects described in Sec-
tions 26.6 to 26.8 use the OMDoc infrastructure in an educational set-
ting. They make use of the content-orientation and the explicit structural
markup of the mathematical knowledge to generate on the fly special-
ized learning materials that are adapted to the students prior knowledge,
learning goals, and notational tastes.

Interface for Proof Presentation. As the proof part of OMDoc allows small-
grained interleaving of formal (FMP) and textual (CMP) presentations in
multiple languages (see e.g. [HF97, Fie99]).

main.tex 6251 2006-12-20 18:45:16Z

258 26 Applications and Projects

26.2 QMath: A Human-Oriented Language and Batch
Formatter for OMDoc

Project Home http://www.matracas.org/qmath/index.en.html

Authors Alberto González Palomo
Toledo, Spain2

QMath is a batch processor that produces an OMDoc file from a plain
Unicode text document, in a similar way to how TEX produces a DVI file
from a plain text source. Its purpose is to allow fast writing of mathematical
documents, using plain text and a straightforward syntax (like in computer
algebra systems) for mathematical expressions.

The “Q” was intended to mean “quick”, since QMath began in 1998 as
an abbreviated notation for MathML. The first version (0.1) just expanded
the formulas found enclosed by “$” signs, which were abbreviated forms of
the MathML element names, and added the extra markup such as <mrow>

and the like. The second (0.2) did the same thing, but this time allowing
an algebraic notation that was fixed in the source code. Finally, version 0.3
allowed the redefinition of symbols while parsing, but it was not capable of
expanding formulas embedded in XML documents like the previous ones did
until version 0.3.8.3 For a more detailed history see [GPb].

QMath is very simple: it just parses a text (UTF-8) file according to
a user-definable table of symbols, and builds an XML document from that.
The symbol definitions are grouped in files called “contexts”. The idea is that
when you declare a context, its file is loaded and from then on these symbol
definitions take precedence over any previous one, thus setting the context for
parsing of subsequent expressions.

The grouping of symbols in the context files is arbitrary. However, the ones
included with QMath follow the OpenMath Content Dictionaries hierarchy
so that, for instance, the English language syntax for the symbols in the
“arith1” CD is defined in the context “Mathematics/OpenMath/arith1”.

Figure 26.1 shows a minimal QMath document, and the OMDoc docu-
ment generated from it. The first line (”QMATH 0.3.8”) in the QMath docu-
ment is required for the parser to recognize the file. The lines beginning with
“:” are metadata items, the first of which, :en, declares the primary language
for the document, in this case English. Specifying the language is required,
as it sets the basic keywords accordingly, and there is no default (privileged)
language in QMath. For example, the English keyword “Context” is written
“Contexto” if the language is Spanish. (Similarly, the arithmetic context is
”Matemáticas/Aritmética”). Then, the “OMDoc” context is loaded, defin-
ing the XML elements to be produced by the metadata items and the different
kinds of paragraphs: plain text, theorem, definition, proof, example, etc.

2
The author is currently employed part-time in the ActiveMath project, developed by Saarland University and
the DFKI, but this work was done on his own, without their supervision or support.

3 This offers an alternative to the OQMath wrapper mentioned in Section 26.8.

http://www.matracas.org/qmath/index.en.html

main.tex 6251 2006-12-20 18:45:16Z

26.2 QMath Parser 259

QMATH 0.3.8
:en
Context: ”Mathematics/OMDoc”

:”Diary”
:W. Smith
:1984−04−04 18:43:00+00:00

Context: ”Mathematics/Arithmetic”

Theory:[<−thoughtcrime]

:”Down with Big Brother”
Freedom is the freedom to say $2+2=4$.
If that is granted, all else follows .

From contexts/en/Mathematics/OpenMath/arith1.qmath:

Symbol: plus OP PLUS ”arith1:plus”
Symbol: + OP PLUS ”arith1:plus”
Symbol: sum APPLICATION ”arith1:sum”
Symbol: Σ APPLICATION ”arith1:sum”
· · ·

From contexts/en/Mathematics/OpenMath/relation1.qmath:

Symbol: = OP EQ ”relation1:eq”
Symbol: neq OP EQ ”relation1:neq”
Symbol: ¬= OP EQ ”relation1:neq”
Symbol: 6= OP EQ ”relation1:neq”

· · ·

<?xml version=’1.0’ encoding=’UTF−8’ standalone=’no’?>
<!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc V1.2//EN”

” ../../../../ dtd/omdoc.dtd”>
<omdoc xmlns=’http://www.mathweb.org/omdoc’ version=’1.2’

xmlns:dc=’http://purl.org/dc/elements/1.1/’>
<metadata>
<dc:language>en</dc:language>
<dc:title>Diary</dc:title>
<dc:creator role=’aut’>W. Smith</dc:creator>
<dc:date>1984−04−04T18:43:00+00:00</dc:date>
</metadata>
<theory xml:id=’thoughtcrime’>
<imports from=”arith1”/>
<imports from=”relation1”/>
<omtext>
<metadata><dc:title>Down with Big Brother</dc:title></metadata>
<CMP>
Freedom is the freedom to say
<OMOBJ xmlns=’http://www.openmath.org/OpenMath’>
<OMA>
<OMS cd=’relation1’ name=’eq’/>
<OMA>
<OMS cd=’arith1’ name=’plus’/>
<OMI>2</OMI><OMI>2</OMI>
</OMA>
<OMI>4</OMI>
</OMA>
</OMOBJ>.
If that is granted, all else follows .
</CMP>
</omtext>
</theory>
</omdoc>

Fig. 26.1. A minimal QMath document (top left) and its OMDoc result (bottom).
Some symbol definitions are displayed in the top right.

After that setup come the document title, author name (one line for each
author), and date, which form the content of the OMDoc metadata element.

The document is composed of paragraphs (which can be nested) separated
by empty lines, and formulas are written enclosed by “$” signs.

contexts/en/Mathematics/OpenMath/arith1.qmath
contexts/en/Mathematics/OpenMath/relation1.qmath

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

260 26 Applications and Projects

There is an Emacs mode included in the source distribution, that provides
syntax highlighting and basic navigation based on element identifiers.

It is also possible to use it on an XML document for expanding only the
mathematical expressions. QMath will detect automatically the input format,
either QMath text or XML, and in the later case output everything verbatim
except for the QMath language fragments found inside the XML processing
instructions of the form <?QMath ... ?> and the mathematical expressions
between “$”.

<?xml version=’1.0’ encoding=’UTF−8’ standalone=’no’?>
<!DOCTYPE omdoc PUBLIC ”−//OMDoc//DTD OMDoc V1.2//EN”

” ../../../../ dtd/omdoc.dtd”>
<?QMath
:en
Context: ”Mathematics/Arithmetic”
?>
<omdoc xmlns=’http://www.mathweb.org/omdoc’ version=’1.2’

xmlns:dc=’http://purl.org/dc/elements/1.1/’>
<metadata>
<dc:language>en</dc:language>
<dc:title>Diary</dc:title>
<dc:creator role=’aut’>W. Smith</dc:creator>
<dc:date>1984−04−04T18:43:00</dc:date>
</metadata>
<theory xml:id=’thoughtcrime’>
<omtext>
<metadata><dc:title>Down with Big Brother</dc:title></metadata>
<CMP>
Freedom is the freedom to say $2+2=4$.
If that is granted, all else follows .
</CMP>
</omtext>
</theory>
</omdoc>

Fig. 26.2. The same example document, using QMath only for the formulas.

While QMath was a good improvement over manual typing of the OM-
Doc XML, it does not scale well: in real documents, with more than a couple
of nesting levels, it is difficult to keep track of where the current paragraph
belongs.

One solution is to use it only for the mathematical expressions, and rely on
some XML editor for the document navigation and organization, such as the
OMDoc mode for Emacs described in Section 26.16 or the OQmath mode
for jEdit in Section 26.9. Another is to use the Sentido browser/editor in
Section 26.3, which reimplements and extends QMath’s functionality.

QMath is Free Software distributed under the GNU General Public Li-
cense (GPL [Fre91]).

main.tex 6251 2006-12-20 18:45:16Z

26.3 Sentido Integrated Environment 261

26.3 Sentido: an Integrated Environment for OMDoc

Project Home http://www.matracas.org/sentido/index.en.html

Authors Alberto González Palomo
Toledo, Spain4

Sentido is an integrated environment for browsing, searching, and editing
collections of OMDoc documents. It is implemented as an extension for the
Mozilla/FireFox browsers to avoid the biggest problems found when using
QMath: the need to compile the program for installing, the batch mode of
interaction that made small corrections consume much of the author’s time,
and the lack of any support for document navigation and search.

Fig. 26.3. Sentido after indexing the OMDoc repository in the library (left) and
loading a document from it (center and right).

Figure 26.3 shows a typical session initiated by searching in the document
library (described below in more detail) and opening one of the results. The
context menu displays the options for browsing back and forward, viewing
the XML (OMDoc) source of the selected element, copying it to the sys-
tem clipboard, copying its MathML rendering or an XPath expression that
identifies it, and inserting new elements.

4
The author is currently employed part-time in the ActiveMath project, developed by Saarland University and
the DFKI, but this work was done on his own, without their supervision or support.

http://www.matracas.org/sentido/index.en.html

main.tex 6251 2006-12-20 18:45:16Z

262 26 Applications and Projects

26.3.1 The User Interface

The window is made to resemble the web browser, and consists of two main
panes: the smaller one on the left contains the interface for the “document
library”, and the right one the “document view” and associated information
like the document tree, element identifiers index, and context at the current
cursor position.

The document library is a knowledge base about documents, the theo-
ries defined in them, and people mentioned in their metadata as authors,
editors, translators, etc. It is implemented as an RDF store with the docu-
ments organized in collections called “volumes” with references to documents,
so that different volumes can have documents in common. The tabs labelled
“Documents”, “Theories” and “People” display different views of the library
content.

The bibliographic data for each document is stored using the Bibliographic
Record Schema [Len04], which includes FOAF5 entries for people.

The documents in the library are indexed by the search engine, which
stores their metadata entries and theory identifiers in an abridged inverted
index to speed up the searches to the point where “search as you type” be-
comes possible6. The search pattern accepts regular expression syntax, as
shown in Figure 26.4.

Fig. 26.4. Metadata Search in Sentido: tooltips show the content of the cropped
entries.

The document view is built using XHTML + MathML that can be edited
normally, with the changes being propagated to the internal OMDoc.

The view is built on demand (using XSLT) as the subparts of the doc-
ument are unfolded in the document navigation tree found in the right part
of the window. This has been found important in practice since many real

5 “Friend of a friend”, described in their web page http://www.foaf-project.org

as being “about creating a Web of machine-readable homepages describing people,
the links between them and the things they create and do.”

6 On the author’s 1 GHz laptop computer, the search times in a library of around
two thousand documents are usually between 100 and 200 milliseconds.

http://www.foaf-project.org

main.tex 6251 2006-12-20 18:45:16Z

26.3 Sentido Integrated Environment 263

uses of OMDoc involve documents that contain large lists of elements, like
exercises, that are largely independent of each other and thus do not usu-
ally require being viewed at the same time, and the biggest delay in opening
a medium to large sized document was by far the display of the XHTML
view. Another motivation for this approach is to progress towards handling
the source document more like a database, and customize its presentation for
the task at hand.

Sentido adds some options to the context menu in the browser, to allow
the user to open links to OMDoc files from web pages (see Figure 26.5).

Fig. 26.5. Mozilla’s Context Menu after Installing Sentido.

26.3.2 Formula Editing

Mathematical expressions are entered using a selectable linear syntax, trans-
lated by a new version of the QMath parser described in Section 26.2. This is
a much more capable implementation based on finite-state cascades [Abn96].

There are five grammars included in the install package, that are used
for translating back and forth between OpenMath and the linear syntax of
QMath and the Computer Algebra Systems Maxima, Yacas, Maple™ and
Mathematica®. More syntaxes can be added by writing new grammars,
with a format similar to QMath “context” files.

Fig. 26.6. The formula editor under the document view, with the input syntax
menu and the text field where the formula is typed, which updates continuously the
internal OpenMath representation and the MathML view.

main.tex 6251 2006-12-20 18:45:16Z

264 26 Applications and Projects

When the cursor enters a formula, the linear input field appears at the
bottom of the document view, as seen in Figure 26.6. It contains a text field
for editing, and a menu button for selecting the syntax, which can be done
at any moment: the linear expression is regenerated instantaneously from its
OpenMath form, so it is possible to enter a formula using, for instance,
Mathematica® syntax, then select another syntax such as Maple™, and
get the expression immediately translated, going through its OpenMath rep-
resentation (Figure 26.7).

Fig. 26.7. The formula is translated by Sentido each time the user selects another
syntax (left, the vertical line is the blinking caret), and it is possible to view the
parse tree (right), updated as the input is modified.

Insertion of formulae is achieved by typing the dollar symbol “$”, which
produces an empty formula readily editable so that the sequence of keystrokes
is similar to typing TEX or QMath text: one can type $e^(pi*i)+1=0$ and
get eπi+1 = 0 without having to look at the formula editor or use the mouse.
The changes as the formula is being modified are stored, and the display
updated from the OpenMath form, at each point when there is a complete
parse of the formula. This gives immediate feedback on how the program
understands the input.

An important difference is that there is no need to care about “context
files” any more. In QMath, specifying a “context” had a double function:
putting symbols in scope for disambiguation, and selecting a notation style
for them. Those aspects are separated in Sentido: the in-scope symbols are
automatically determined from the enclosing theory and those imported from
it (recursively), and the notation is selectable by the user.

Note that the parser allows any characters supported by the browser ren-
dering engine of Mozilla/FireFox (a big subset of Unicode), not just
ASCII. For example, the number 3.14159265... can be entered either as π
or with an ASCII form depending on the selected syntax: “pi” for QMath,
“%pi” for Maxima, or “Pi” for Yacas, Maple™ and Mathematica®.

26.3.3 Future Work and Availability

Sentido is a long term personal project that has been in development for
several years (since 2004), entirely in the author’s spare time and using his

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26.3 Sentido Integrated Environment 265

own computing resources, based on experiments7 and notes collected during
the development of QMath. Therefore, we expect it to continue developing
during the foreseeable future unless a better application appears that makes
it redundant.

Its components are designed to be reusable, which is tested from time to
time by producing spin-off applications that use subsets of its functionality
in a self-contained way. One example is the small Computer Algebra System
called Algebra [GPa], that contains parts of Sentido such as the new parser
combined with specific ones like the function plotter and the term rewriting
engine.

Future developments will focus on what we consider the two main tasks for
a development environment for semantic encoding of mathematical content:

• Ease the tedium of writing all the details needed for an unambiguous
encoding of the content. This is where the flexible input parser comes into
play: having a syntax redefinable at any point in the content simplifies the
expression input, as the syntax can be adapted to the context in which an
expression occurs.

• Provide some benefit once we have the semantic encoding which would
not be present with an ambiguous encoding such as TEX. Here we need to
implement detailed checking and strong search capabilities. A next step
would be to assist the writing process by inferring new content and in-
forming the input interface about the context as mentioned above.

Some planned improvements in Sentido are:

• Make the browser open OMDoc documents linked from normal pages
directly in Sentido, by implementing a stream handler for the MIME type
application/omdoc+xml.

• Integrate Algebra into Sentido, to add automated symbolic manipula-
tion to the document editing process.

• Extend the checking being done on the theories: at the time of writing
these lines, only the theory import relations are checked for loops and
unknown theory references, which was already enough to locate several
mistyped theory identifiers in the OMDoc repository.

• Implement useful features found in other projects such as Theorema [PB04].
This is strongly related to the two points above since Theorema imple-
ments many features needed for the task of content checking which are still
missing in Sentido, and some of them are available in proof-of-concept
form in Algebra.

Sentido is Free Software distributed under the GNU General Public Li-
cense (GPL [Fre91]).

7 Some of those early experiments with Mozilla inspired work done on adapt-
ing OpenOffice and TEXmacs for OMDoc in collaboration with George
Goguadze [GGP03]

main.tex 6238 2006-12-12 14:22:03Z

266 26 Applications and Projects

26.4 MBase, an Open Mathematical Knowledge Base

Project Home http://www.mathweb.org/mbase

Authors Andreas Franke1, Michael Kohlhase2

1 Computer Science, Saarland University
2 School of Engineering and Science, International
University Bremen

We describe the MBase system, a web-based mathematical knowledge
base. It offers the infrastructure for a universal, distributed repository of for-
malized mathematics. Since it is independent of a particular deduction system
and particular logic, the MBase system can be seen as an attempt to revive
the Qed initiative [[QED96]]84

a from an infrastructure viewpoint. See [KF01]Err(84)
for the logical issues related to supporting multiple logical languages while
keeping a consistent overall semantics. The system is realized as a math-
ematical service in the MathWeb system [FK99, Zim04], an agent-based
implementation of a mathematical software bus for distributed mathemati-
cal computation and knowledge sharing. The content language of MBase is
OMDoc.

We will start with a description of the system from the implementation
point of view (we have described the data model and logical issues in [KF01]).

The MBase system is realized as a distributed set of MBase servers (see
figure 26.8). Each MBase server consists of a Relational Data Base Manage-
ment System (RDBMS) connected to a mOZart process (yielding a Math-
Web service) via a standard data base interface. For browsing the MBase
content, any MBase server provides an http server (see [MBa] for an ex-
ample) that dynamically generates presentations based on HTML or XML
forms.

This architecture combines the storage facilities of the RDBMS with the
flexibility of the concurrent, logic-based programming language Oz [Smo95], of
which mOZart (see [Moz]) is a distributed implementation. Most importantly
for MBase, mOZart offers a mechanism called pickling, which allows for a
limited form of persistence: mOZart objects can be efficiently transformed
into a so-called pickled form, which is a binary representation of the (possi-
bly cyclic) data structure. This can be stored in a byte-string and efficiently
read by the mOZart application effectively restoring the object. This feature
makes it possible to represent complex objects (e.g. logical formulae) as Oz
data structures, manipulate them in the mOZart engine, but at the same time
store them as strings in the RDBMS. Moreover, the availability of “Ozlets”
(mOZart functors) gives MBase great flexibility, since the functionality of
MBase can be enhanced at run-time by loading remote functors. For instance
complex data base queries can be compiled by a specialized MBase client,
sent (via the Internet) to the MBase server and applied to the local data e.g.

84 Erratum! reference to QED (added text)

http://www.mathweb.org/mbase

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26.4 MBase 267

for specialized searching (see [Duc98] for a related system and the origin of
this idea).

Fig. 26.8. System Architecture

MBase supports transparent distribution of data among several MBase
servers (see [KF01] for details). In particular, an object O residing on an
MBase server S can refer to (or depend on) an object O′ residing on a server
S′; a query to O that needs information about O′ will be delegated to a
suitable query to the server S′. We distinguish two kinds of MBase servers
depending on the data they contain: archive servers contain data that is re-
ferred to by other MBases, and scratch-pad MBases that are not referred to.
To facilitate caching protocols, MBase forces archive servers to be conserva-
tive, i.e. only such changes to the data are allowed, that the induced change
on the corresponding logical theory is a conservative extension. This require-
ment is not a grave restriction: in this model errors are corrected by creating
new theories (with similar presentations) shadowing the erroneous ones. Note
that this restriction does not apply to the non-logical data, such as presenta-
tion or description information, or to scratchpad MBases making them ideal
repositories for private development of mathematical theories, which can be
submitted and moved to archive MBases once they have stabilized.

main.tex 6161 2006-10-03 13:04:46Z

268 26 Applications and Projects

26.5 A Search Engine for Mathematical Formulae

Project Home http://search.mathweb.org/

Authors Ioan Sucan, Michael Kohlhase
Computer Science, International University Bremen

As the world of information technology grows, being able to quickly search
data of interest becomes one of the most important tasks in any kind of envi-
ronment, be it academic or not. We present a search engine for mathematical
formulae. The MathWebSearch system harvests the web for content rep-
resentations of formulae (currently MathML and OpenMath) and indexes
them with substitution tree indexing, a technique originally developed for ac-
cessing intermediate results in automated theorem provers. For querying, we
present a generic language extension approach that allows to construct queries
by minimally annotating existing representations.

Generally, searching for mathematical formulae is a non-trivial problem
— especially if we want to be able to search occurrences of the query term as
sub-formulae — for the following reasons:

1. Mathematical notation is context-dependent . For instance, binomial coef-
ficients can come in a variety of notations depending on the context:

(
n
k

)
,

nC
k, Cnk , and Ckn all mean the same thing: n!

k!(n−k)! . In a formula search

we would like to retrieve all forms irrespective of the notations.
2. Identical presentations can stand for multiple distinct mathematical ob-

jects, e.g. an integral expression of the form
∫
f(x)dx can mean a Rie-

mann Integral, a Lebesgue Integral, or any other of the 10 to 15 known
anti-derivative operators. We would like to be able to restrict the search
to the particular integral type we are interested in at the moment.

3. Certain variations of notations are widely considered irrelevant , for in-
stance

∫
f(x)dx means the same as

∫
f(y)dy (modulo α-equivalence), so

we would like to find both, even if we only query for one of them.

To solve this formula search problem, we concentrate on content representa-
tions of mathematical formulae, since they are presentation-independent and
disambiguate mathematical notions.

A Running Example: The Power of a Signal

A standard use case for MathWebSearch is that of an engineer trying to
solve a mathematical problem such as finding the power of a given signal s(t).
Of course our engineer is well-versed in signal processing and remembers that
a signal’s power has something to do with integrating its square, but has for-
gotten the details of how to compute the necessary integrals. He will therefore

call up MathWebSearch to search for something that looks like
∫ ?

?
s2(t)dt

(for the concrete syntax of the query see Listing 26.1 in Section 26.5). Math-
WebSearch finds a document about Parseval’s Theorem, more specifically

http://search.mathweb.org/

main.tex 6161 2006-10-03 13:04:46Z

26.5 A Search Engine for Mathematical Formulae 269

1
T

∫ T
0
s2(t)dt = Σ∞k=−∞ | ck |2 where ck are the Fourier coefficients of the sig-

nal. In short, our engineer found the exact formula he was looking for (he had
missed the factor in front and the integration limits) and moreover a theorem
he may be able to use.

Indexing Mathematical Formulae

For indexing mathematical formulae on the web, we will interpret them as
first-order terms. This allows us to use a technique from automated reasoning
called term indexing [Gra96]. This is the process by which a set of terms is
stored in a special purpose data structure (the index) where common parts
of the terms are potentially shared, so as to minimize access time and stor-
age. The indexing technique we work with is a form of tree-based indexing
called substitution-tree indexing . A substitution tree, as the name suggests, is
simply a tree where substitutions are the nodes. A term is constructed by suc-
cessively applying substitutions along a path in the tree, the leaves represent
the terms stored in the index. Internal nodes of the tree are generic terms
and represent similarities between terms.

The main advantage of substitution tree indexing is that we only store
substitutions, not the actual terms, and this leads to a small memory foot-
print. Adding data to an existing index is simple and fast, querying the data
structure is reduced to performing a walk down the tree. Index building is
done in similar fashion to [Gra96]. Once the index is built, we keep the actual
term instead of the substitution at each node, so we do not have to recompute
it with every search. At first glance this may seem to be against the idea of
indexing, as we would store all the terms again, not only the substitutions.
However, due to the tree-like structure of the terms, we can in fact store only
a pool of (sub)terms and define the terms in our index using pointers to el-
ements of the pool (which are simply other terms). To each of the indexed
terms, a data string is attached — a string that represents the exact location
of the term. We use XPointer [GMMW03] to specify this.

Unfortunately, substitution tree indexing does not support subterm search
in an elegant fashion, so when adding a term to the index, we add all its
subterms as well. This simple trick works well: the increase in index size
remains manageable and it greatly simplifies the implementation.

A Query Language for Content Mathematics

When designing a query language for mathematical formulae, we have to
satisfy a couple of conflicting constraints. The language should be content-
oriented and familiar, but it should not be specialized to a given content
representation format. Our approach to this problem is to use a simple, generic
extension mechanism for XML-based representation formats rather than a
genuine query language itself. The query extension is very simple, it adds two
new attributes to the respective languages: mq:generic and mq:anyorder,

main.tex 6161 2006-10-03 13:04:46Z

270 26 Applications and Projects

where the prefix mq: abbreviates the namespace URI http://mathweb.org/
MathQuery/ for MathWebSearch.

In this way, the user need not master a new representation language,
and we can generate queries by copy and paste and then make parts of the
formulae generic by simply adding suitable attributes. We will use Content
MathML [ABC+03a] in the example, but MathWebSearch also supports
OpenMath and a shorthand notation that resembles the internal representa-
tion we are using for terms (prefix notation). The mq:generic attribute takes
string values and can be specified for any element in the query, making it into
a (named) query variable: its contents are ignored and it matches any term
in the search process.

While of searching expressions of the form A = B, we might like to find
occurrences of B = A as well. At this point the mq:anyorder attribute comes
in. Inside an apply tag, the first child defines the function to be applied; if
this child has the attribute mq:anyorder defined with the value “yes”, the
order of the subsequent children is ignored. If we do not want to specify the
function name, we can use the mq:generic attribute again, but this time for
the first child of an apply tag. Given the above, the query of our running
example has the form presented in Listing 26.1. Note that we do not know
the integration limits or whether the formula is complete or not.

Listing 26.1. Query for Signal Power

<math xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:mq=”http://mathweb.org/MathQuery”>

<apply><int/>
<domainofapplication mq:generic=”domain”/>
<bvar> <ci mq:generic=”time”/> </bvar>
<apply><power/>
<apply><ci mq:generic=”fun”></ci><ci mq:generic=”time”/></apply>
<cn>2</cn>

</apply>
</apply>

</math>

Input Processing

MathWebSearch can process any kind of XML representation for content
mathematics. The system is modular and provides an interface which allows
to add XML-to-index-term transformers. . We will discuss input processing
for Content-MathML.

1) Mathematical
expression:
f(x) = y

3) Term
representation:
eq(f(x), y)

2) Content MathML:
<apply><eq/>
<apply>
<ci>f</ci>
<ci>x</ci>

</apply>
<ci>y</ci>

</apply>

Given an XML docu-
ment, we create an index
term for each of its math el-
ements. Consider the exam-
ple on the right: We have the
standard mathematical nota-
tion of an equation (1), its

http://mathweb.org/MathQuery/
http://mathweb.org/MathQuery/

main.tex 6161 2006-10-03 13:04:46Z

26.5 A Search Engine for Mathematical Formulae 271

Content MathML represen-
tation (2), and the term we
extract for indexing (3). As previously stated, any mathematical construct
can be represented in a similar fashion.

Search modulo α-renaming becomes available via a very simple input pro-
cessing trick: during input processing, we add a mq:generic attribute to every
bound variable (but with distinct strings for different variables). Therefore in
our running example the query variable t (@time in Listing 26.1) in the query∫ ?

?
s2(t)dt is made generic, therefore the query would also find the variant

1
T

∫ T
0
s2(x)dx = Σ∞k=−∞ | ck |2.

Result reporting

For a search engine for mathematical formulae we need to augment the set
of result items (usually page title, description, and page link) reported to
the user for each hit. As typical pages contain multiple formulae, we need to
report the exact occurrence of the hit in the page. We do this by supplying
an XPointer reference where possible. Concretely, we group all occurrences
into one page item that can be expanded on demand and within this we order
the groups by number of contained references. For any given result, a detailed
view is available. This view shows the exact term that was matched (using
Presentation MathML) and the used substitution (a mapping from the query
variables specified by the mq:generic attributes to certain subterms) to match
that specific term.

Case Studies and Results

We have tested our implementation on the content repository of the ConneX-
ions Project, available via the OAI protocol [OAI02]. This gives us a set of over
3,200 articles with mathematical expressions to work on. The number of terms
represented in these documents is approximately 53,000 (77,000 including sub-
terms). The average term depth is 3.6 and the maximal one is 14. Typical
query execution times on this index are in the range of milliseconds. The search
in our running example takes 14 ms for instance. There are, however, com-
plex searches (e.g. using the mq:anyorder attribute) that internally call the
searching routine multiple times and take up to 200 ms but for realistic exam-
ples execution time is below 50 ms. We are currently building an index of the
86,000 Content MathML formulae from http://functions.wolfram.com.
Here, term depths are much larger (average term depth 5.7, maximally around
50) resulting in a much larger index: it is just short of 2 million formulae. First
experiments indicate that search times are largely unchanged by the increase
in index size.

In the long run, it would be interesting to interface MathWebSearch
with a regular web search engine and create a powerful, specialized, full-feature

http://functions.wolfram.com

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

272 26 Applications and Projects

application. This would resolve the main disadvantage our implementation has
– it cannot search for simple text. A simple socket-based search API allows to
integrate MathWebSearch into other content-based mathematical software
systems.

mmiss.tex 6161 2006-10-03 13:04:46Z

26.6 Semantic Interrelation and Change Management 273

26.6 Semantic Interrelation and Change Management

Project Home http://www.mmiss.de

Authors Bernd Krieg-Brückner, Achim Mahnke
Computer Science, University of Bremen, Germany

The corpus of electronically available mathematical knowledge increases rapidly.
Usually, mathematical objects are embedded in and related to different kinds
of documents like articles, books, or lecture material, the domain of which can
be different from mathematics, e.g., engineering or computer science. There-
fore, maintaining high-quality mathematical knowledge becomes a non-trivial
engineering task for teams of authors.

In this scenario, sharing and reuse is the key to efficient development.
Unfortunately, while there has been a large body of research concerning the
sharing and reuse of program developments, sharing and reuse of documents
has until now been mainly done by little more than cut and paste. However,
to ensure sustainable development, i.e. continuous long-term usability of the
contents, sharing and reuse needs to be supported by tools and methods taking
into account the semantic structure of the document. In developing these
methods and tools we can benefit from the experience in and associated
support tools.

We address this problem by providing a methodology to specify coher-
ence and consistency of documents by interrelation of semantic terms and
structural entities, supported by a tool for fine-grained version control and
configuration management including change management. Semantic interre-
lation explicates the meaning lying behind the textual content, and relates
the semantic concepts within and across documents by means of an ontology.
To allow change management, each document is structured in-the-small. Each
document corresponds to a package, and packages may be structured in-the-
large using folders and import relations. The ideas and methods explained
here have been developed in the MMiSS project which aimed at the con-
struction of a multi-media Internet-based adaptive educational system (see
[?, KBLL+04, KBKB+04]).

26.6.1 Semantic Interrelation Via Ontologies

Ontologies provide the means for establishing a semantic structure. An ontol-
ogy is a formal explicit description of concepts in a domain of discourse. The
MMiSSLATEX package for ontologies provides a set of easy-to-use macros for
the declaration of ontologies in LATEX documents. They are used to declare
the ontology of semantic terms used in a document, in a prelude up front.
This specification of the document contains at least a rigorous hierarchical
structure of the terminology (a taxonomy, the signature of the document),
and may be seen as an elaborate index structure. Moreover, relations between
terms may be defined for more semantic interrelation.

http://www.mmiss.de

mmiss.tex 6161 2006-10-03 13:04:46Z

274 26 Applications and Projects

refines

livesIn

proves

contains

contains

contains

contains

imports

contains

Section

Package

Unit

Proof Atom

Theorem

Theory

variantOf

variantOf

variantOf

MMiSS−LaTeX

OWL−DL CASL

CASL−DL

Fig. 26.9. (a) Parts of the System’s Ontology (b) Formalism variants

The ontology serves a dual purpose — just as the specification of an ab-
stract data type in program development: it specifies the content to be ex-
pected in the body of the document in an abstract, yet precise, manner —
the content developers requirement specification; and it specifies the content
for reference from the outside — the user’s perspective, who may then view
the body of the document as a black box. The content developer will use the
MMiSSLATEX Def command to specify the defining occurrence of a promised
term, as for an index. Using the structuring in-the-large facilities via packages,
the external user may then refer between documents using various kinds of
reference commands, as the content developer may within a document.

The next section will show, how we can explore this domain ontology —
supplied by the author — in order to capture semantic relations between doc-
ument parts and use these relations for supporting a management of change
for mathematical documents.

26.6.2 Change Management

The notion of change management is used for the maintenance and preserva-
tion of consistency and completeness of a development during its evolution.
More precisely, we want to have a consistent configuration in which all versions
are compatible and there are no cyclic definitions or proofs. At the same time,
it should be a complete configuration: there should be no dangling forward
references.

Such notions are well-known for formal languages. In contrast, natural
language used for writing teaching material does not usually possess a well-
defined semantics, and the notion of consistency is arguable. Different authors
may postulate different requirements on the material in order to regard it as
being consistent. The existence of a user-defined ontology helps a great deal
to check references. However, we can make even better use of the information
contained in the ontology.

mmiss.tex 6161 2006-10-03 13:04:46Z

26.6 Semantic Interrelation and Change Management 275

The System’s Ontology

The aim is to allow change management with regard to consistency and com-
pleteness requirements defined by the user in terms of an ontology. In order to
unify this approach with the structural consistency and completeness proper-
ties introduced above, we express the document structure, originally defined
by a document type definition, as an ontology, the so-called System’s Ontology
(see Fig. 26.9a). It defines the following relations between structural elements
of documents:

comprises An obvious structuring mechanism is nesting of individual parts
of a document, leading to the contains relation. The contains relation is
part of a family of comprises relations that share common properties.

reliesOn A family of reliesOn relations reflects the various dependencies
between different parts of a document. For example, a theorem lives in a
theory, or proof proves a theorem.

pointsTo The family of pointsTo relations is very similar, and relates refer-
ences with the defining occurrence of a semantic term.

variantOf Another structuring relation is introduced by variants. Parts of a
document may e.g. be written in various languages which gives rise to a
variantOf relation between these document parts and their constituents;
it is an equivalence relation.

It is now rather straightforward to formulate consistency and completeness
rules in terms of invariants of these relations. Formulating these invariants
as formal rules will enable us to implement a generic and flexible change
management that keeps track of the invariants and informs the user about
violations when a previously consistent document has been revised, leading to
various kinds of error (e.g. for reliesOn relations) or warning messages (e.g.
for pointsTo relations).

Properties of Interactions between Structuring Mechanisms.

This approach also allows us to lift relations to structuring mechanisms allow-
ing more modular and localized change management. For example, relating
the comprises and reliesOn relations allows us to formalize invariants re-
garding the closure of document parts with respect to the reliesOn relation:
We can require that there is a proof for each theorem in a package. Fur-
thermore, if two structural entities are related by reliesOn, their relation is
propagated along the comprises relation towards the root of the hierarchy of
nested structural entities, such that (for a theorem T a proof P , and sections
A,B):

B contains P & A contains T & P proves T ⇒ B reliesOn A.

If the user changes section A, the repository will only need to check all
sections that A relies on (such as B here) for invariants, and not the whole

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

276 26 Applications and Projects

document. However, in contrast to formal developments as in e.g. the MAYA
system [AH05], there is no rigorous requirement that a document should obey
all the rules. There may be good reasons, for instance, to present first a ”light-
weight” introduction to all notions introduced in a section before giving the
detailed definitions. In this particular case, one would want to introduce for-
ward pointers to the definitions rather than making the definitions rely on the
introduction; thus the rules are covered.

In any case, the more structure there is, the better the chances are for
preserving consistency and completeness; any investment in introducing more
reliesOn relations, for example, will pay off eventually. The change manage-
ment will observe whether revisions by the user will affect these relations and,
depending on the user’s preferences, emit corresponding warnings.

The aim is to allow users to specify individual notions of consistency by
formulating the rules that the relations should obey. This should be possible
for the relations between the particular (predefined) structuring mechanisms,
but also in general between semantic terms of the user’s own ontology. Our
work in this direction will rely on the methods and tools provided by the
Hets system (see Section 26.13).

26.6.3 Variants

The concept of variants adds a new dimension to hierarchically structured
documents. The idea is to maintain and manage different variants of structural
entities (document subtrees) which represent the same information in different
ways — variants are meant to glue them together.

Managing different natural language variants in parallel is an obvious ex-
ample. Another one is the formalism variant which denotes the particular
formalism in which a formal content part like a theorem or a definition is ex-
pressed. Considering ontology development itself, for example, we propose to
use variants to maintain different formal representations for the same seman-
tic concept together with its documentation. Figure 26.9b shows the possible
variants for declaring ontology components (see [MTea04] for details).

The MMiSS repository provides functions to store and retrieve these struc-
tural variants by means of specifications for selecting particular variants for
editing or presentation.

26.6.4 Relations to OMDoc

OMDoc provides modules for marking up the knowledge structure and the
narrative structure of mathematical documents. MMiSS combines these two
viewpoints by giving means for structuring the document contents (which con-
stitutes the narrative structure) and for specifying the incorporated knowledge
by use of ontologies. Therefore, we have implemented an export of MMiSS
documents to (content and narrative) OMDoc documents and vice versa.

mathdox2.tex 7525 2008-04-28 06:26:48Z kohlhase

26.7 MathDox 277

26.7 MathDox: Mathematical Documents on the Web

Project Home http://www.mathdox.org

Authors A.M. Cohen, H. Cuypers, E. Reinaldo Barreiro
Department of Mathematics and Computer Science,
Eindhoven University of Technology

Abstract

The MathDox system provides an infrastructure for interactive mathemati-
cal documents that make use of the World Wide Web. These documents take
input from various sources, users, and mathematical services. Communication
between these different entities can be realized using OpenMath. But, such
communication and the interactivity inside the mathematical document take
place in a specific, dynamic context. In this paper we discuss our approach
to such a dynamic mathematical context: MathDox. It consists of both an
XML-based markup language for interactive mathematical contents and a set
of software tools realizing the interactivity. cl

26.7.1 Introduction

Although the notion of an interactive mathematical document has been
around for several years, cf. [CM98], its realization is nowhere near the fi-
nal stage. For instance, recent progress in web technologies has enabled a
much smoother communication of mathematics than ever before. The use of
an interactive mathematical document (IMD) can provide a window to the
world of mathematical services on the Internet, and a mathematical service
on the Internet can be created by the building of an interactive mathematical
document. MathDox is an ensemble of software tools for creating IMDs, it
includes

1. an XML based language that offers markup support for the source texts
of IMDs;

2. a document server, rendering interactive mathematical documents from
source text and interactively obtained information;

3. mathematical services, providing connections with CASs like Mathematica®

and GAP via OpenMath phrasebooks (cf. [OM]).

The creation of MathDox is a project at the Technische Universiteit
Eindhoven (the RIACA institute). Several people at RIACA have helped cre-
ating it; here we mention Manfred Riem, Olga Caprotti, Hans Sterk, Henny
Wilbrink, Mark Spanbroek, Dorina Jibetean. The system is mainly built with
Java and related technology. The products are available via the project web
site and will be licensed under the Lesser Gnu Public License [Fre99].

http://www.mathdox.org

mathdox2.tex 7525 2008-04-28 06:26:48Z kohlhase

278 26 Applications and Projects

26.7.2 The Language

The MathDox source is an XML document. We have derived our own docu-
ment type definitions (DTD) for these source texts. We have been influenced
by both DocBook [WM99] and OMDoc. The former is a fairly general stan-
dard for electronic books, the latter is a very rich, and strongly logic-oriented
standard for mathematical documents—the main subject of this book. Both
OMDoc and MathDox use OpenMath [BCC+04], the difference being that
OMDoc focuses on representing mathematical knowledge whereas MathDox
focuses on interactivity. The connections with both DocBook and OMDoc
are of importance to us because we expect several authoring tools for it to
emerge in the coming few years, and we want to profit from their presence.

The mathematics in the MathDox source is given by means of Open-
Math objects. This feature has clear advantages in terms of portability. The
DocBook type grammar sees to it that there are natural scopes, where math-
ematical objects ‘live’. For instance, when a chapter begins with “Let F be
a field”, the scope of the variable F is assumed to be the whole chapter (al-
though, somewhere further down the hierarchy, say in a section of the chapter,
this assignment can be overridden).

Interactivity in MathDox is taken care of by XML tags representing
various programming constructs as well as queries to external mathematical
services. These actions take place within part of the context, which fixes the
precise semantics of the objects involved. Further constructs are available for
handling context and user input. Our notion of context is based on [FHJ+99b].
Context is divided into static and dynamic context. The static context may be
defined as the set of all XML sources from which a interactive document can
be prepared for use. Two extreme forms are OpenMath Content Dictionaries
and a chapter of an ordinary book. The dynamic context behaves more like the
state of a CAS. It keeps track of the variables introduced, their properties,
their values, and their scopes. The MathDox language has constructs for
storing and changing this information. For example, the field F introduced at
the beginning of a chapter may be specified to be a finite field of five elements
in the context of a particular section of the chapter.

Although semantics is the primary target, some features for presentation
have been built into the language. In order to have a flexible presentation,
we use presentation-annotated OpenMath. In MathDox we allow style at-
tributes inside OpenMath objects. By discarding these style attributes, reg-
ular OpenMath is obtained. For instance, by providing the appropriate value
for the style attribute, the author has a choice between a slash and a fraction

display. In 3/4+2/3
5 we have used them both.

Another way of solving presentation issues is illustrated by the statement:
3, 4 ∈ Z. The corresponding OpenMath expression would be the equivalent
of 3 ∈ Z ∧ 4 ∈ Z, but our OpenMath statement reads that the sequence
3, 4 belongs to Z. So here, the semantics of the element-of symbol has been
stretched so as to help out presentation.

mathdox2.tex 7525 2008-04-28 06:26:48Z kohlhase

26.7 MathDox 279

26.7.3 The MathDox System

An essential component of the MathDox software is its document server. It
provides a view to the client of the content and manages both the static and
the dynamic context. The usage of the MathDox document server is shown
in Figure 26.10. We explain in some detail the main components shown in this
picture.

Fig. 26.10. The MathDox software

1. The client. The client is realized by a math-enabled web browser. It will
present views of the documents served to the user, interact with the user,
and communicate user input to the document server.
The communication between client and server takes place via the HTTP
request/response mechanism. The responsibility for interaction is mostly
on the server side.

2. The document server . This server caters for presentation, communication,
and context. It supports a wide range of actions ranging from handling
queries to searching within documents for mathematical content and from
placing (and retrieving) objects into the context, to rendering documents
in different views.
The document server is realized as a Java enhanced web application [JSP]
inside a web server. It is not a monolithic entity. As shown in Figure 26.10,
it is formed by the system parts. The document manager serves views to
the client. IMDs can be thought of as programs (scripts) encoding the pro-
duction of a response. In generating the response, they can make use of the

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

280 26 Applications and Projects

information contained in the static context, and in the dynamic context
(scopes and variables), the user input communicated along with request,
and the results of computations carried on by one or more mathematical
services.
Another part is the static context manager which is responsible for man-
aging a repository of MathDox mathematical theories.
The final (third) part is the dynamic context manager which is responsible
for the dynamic information.

3. mathematical services. Mathematical services can be very diverse: some
may serve as general interfaces to CAS or to Theorem Provers. The Math-
Dox software provides ways to access these services via standard pro-
tocols, among which those developed under the MONET project [Mon].
The mechanism extends the phrasebook set-up for OpenMath [CCC+00,
CCR00]. For constructing specific OpenMath services, we employ our
Java OpenMath library ROML [ROM].

26.7.4 Conclusion

Now that MathDox is close to a complete working version, trial applications
are in the make. We mention

• a server for providing designs of experiments on command to statisticians,
• an exercise repository for the EU funded LeActiveMath project,
• a mathematics course on calculus, with automated natural language pro-

duction from a formal-mathematical source for the EU funded project
WebALT,

• interactive lecture notes (the successor of [CCS99]) for an Abstract Algebra
course within a mathematically oriented Bachelor curriculum,

• educational material for highschool mathematics in the Netherlands.

main.tex 6161 2006-10-03 13:04:46Z

26.8 ActiveMath 281

26.8 OMDoc in ActiveMath

Project Home http://www.activemath.org/

Authors The ActiveMath group: Erica Melis, Giorgi
Goguadse, Alberto Gonzales-Palomo, Adrian
Frischauf, Martin Homik, Paul Libbrecht, Carsten
Ullrich
DFKI GmbH and Universität des Saarlandes

ActiveMath is a mature web-based intelligent learning environment for
mathematics that has been developed since 2000 at the University of Saarland
and at the German Research Institute of Artificial Intelligence (Intelligent
Learning Environments Group headed by Erica Melis). Its learning objects
are encoded in an extension of OMDoc.

26.8.1 The ActiveMath System

In addition to presenting pre-defined interactive materials, it adaptively gener-
ates courses according to the learner’s goals, learning scenarios, competencies,
and preferences. For this, Tutorial Component requests learningobjects 8,
related to the learning goal to be retrieved from several repositories. The re-
trieval of object-IDs is realized by a mediator taking into account structures
and meta data of learning objects, and then the Tutorial Component assem-
bles them to a course skeleton depending on a Learner Model. For details
see [Ull05, Ull04].

In several stages a Presentation Component fills and transforms this
skeleton to a material in the requested output format. In the interactive
browser formats dummies can represent Learning Objects that can be in-
stantiated dynamically — depending on the learning progress or on requests
by the user.

This Learner Model stores the learning history, the user’s profile and pref-
erences, and a set of beliefs that the systems holds about the cognitive and
meta-cognitive competencies and the motivational state of the learner. The
domain model that underlies the structure of the learner model is inferred from
the content for that domain and its meta data represented in the OMDoc
source.

ActiveMath is internationalized and ’speaks’ German, English, French,
Spanish, Russian, and Chinese by now. Its mathematical notation rendering
can as well be adapted to national’ standards.

To realize a smooth and efficient cooperation of all components and in
order to integrate further internal and external services, ActiveMath has
adopted a modular service-oriented architecture displayed in Figure 26.11. It

8 Following the classical definitions, learning objects are any resources that are used
the learning activity. When in OMDoc, learning objects considered are such as
a definition, an omtext or an interactive exercise.

http://www.activemath.org/

main.tex 6161 2006-10-03 13:04:46Z

282 26 Applications and Projects

includes the XML-RPC web communication protocol for its simplicity and
support. In addition, an event framework enables the asynchronous messaging
for any changes.

OMDoc fragments,
notations

tutorial
component

next-best
suggestor

ActiveMath
front end

content
manager

MBase

web-service request

mediator

tutorial course
generator

assembling
tool

concept-
map tool

Dialogue
console

Controller

olm
contr.

tc. contr.

learner
model

service
relayspre-recorded books

browser
windows

vie
ws

book & dico
contr.

controllers:

book

search

Tutorial
comp.

open
learner-
model

exercise

search
index

CAS

presentation
system rendercreate or

change book

open learner
model

assessment
tool

dialogue
manager

domain
reasoner dialogue

console

client

content flow

browser
windows

CAS exercise
repository

domain
reasoner

exercise
system

...

Fig. 26.11. The Components, Services and Information Flow in ActiveMath

A complex subsystem in its own right is ActiveMath’s exercise subsys-
tem [GGPM05] that plays interactive exercises, computes diagnoses and pro-
vides feedback to the learner in a highly personalized way. It reports events
to inform the other components about the user‘s actions.

In 2005, large educational contents exist in ActiveMath’s repositories for
Fractions (German), Differential Calculus (German, English, Spanish) at high
school and first year university level, operations research (Russian, English),
Methods of Optimization (Russian), Statistics and Probability Calculus (Ger-
man), Matheführerschein (German), and a Calculus course from University
of Westminster in London.

ActiveMath’s Service-Approach

The encoding of content in OMDoc is an advantage for ActiveMath’s Web-
service approach. If available, the services – including Web repositories – can
communicate more semantic information than just meta data. However, the
interoperability of the content encoding is only one side of the Semantic Web

main.tex 6161 2006-10-03 13:04:46Z

26.8 ActiveMath 283

coin. Hence, the developments for ActiveMath also include the reuse and
interoperability of components and tools [MGH+05].

External services that are being connected currently are the Siette as-
sessment tool [CGM+04] and one or more repository of interactive exercises
and interactive content.

26.8.2 OMDoc Extensions for ActiveMath

The ActiveMath DTD extends the OMDoc DTD version 1.1 in several
directions:

• new types of items such as misconceptions, additional types of items such
as types of exercises (MCQ, FIB, map, problem),

• additional several relations with types such as for or prerequisite-of,
• other additional meta data such as difficulty, competency, or field,
• additional infrastructure as, e.g., in exercises, additional structure such as

content packages [GUM+04].

The metadata and relation extensions are compliant with the Learning Meta-
data Standards IEEE and IMS LOM [IEE02, Con01]. Most of the extensions
are pedagogically/educationally motivated. Some details follow.

The educational metadata include competency and competencylevel that
are used for assessment, evaluation, and for adaptive suggestions of exam-
ples and exercises in course generation. As for competencies, ActiveMath
supports Bloom’s taxonomy of learning goal levels [Blo56] and the more
recent taxonomy from the Program for International Student Assessment
(PISA) [KAB+04] and National Council of Teachers of Mathematics (NCTM).

ActiveMath educational metadata include learning context which
was in first versions of LOM. Metadata values, such as difficulty, abstract-
ness, and “typical learning time” have been annotated with the corresponding
learning context (allowing to say that an example is hard for an undergraduate
but not for a higher class). The ActiveMath DTD introduced some educa-
tional relation types which facilitate adaptive course generation and concept
map exercises, among others.

The OMDoc format has been refactored in ActiveMath in order to
represent metadata in a form that is separable from the representation of
the knowledge item. For example, some metadata represented in form of at-
tributes of an item is moved inside the metadata element. The purpose of such
a separation is to facilitate the management of learning materials in Active-
Math. Components such as Tutorial Component and Learner Model do not
deal with the content of the knowledge items but rather with their metadata
only and hence it is convenient to have a way to extract metadata records
from the content.

For the internationalization each OMDoc item may have sub-elements in
several languages since ActiveMath does not translate learning objects on
the fly.

main.tex 6161 2006-10-03 13:04:46Z

284 26 Applications and Projects

ActiveMath extends the OMDoc example element. A detailed expla-
nation can be found in [MG04]. In case of a worked-out example, the micro-
structure of this element is enriched with a solution that has a structure
similar to a proof in OMDoc. It differs from the proof element since the so-
lution might not only prove a statement, but also calculate the value of some
expression or explore the properties of a particular structure (e.g. curve dis-
cussion). This representation allows for different presentations, and serves as
a basis for the automatic generation of exercises by fading some parts of the
structure of a worked-out example (see [MG04]).

The new exercise representation of ActiveMath was the basis for extend-
ing the Math QTI standard [MGP04]. Even though its origin can be traced to
OMDoc originally not much is left from the QUIZ representation of OMDoc
which supports only very limited types of exercises and did not have enough
infrastructure. The micro-structure of an interactive exercise has to allow for
different kinds of interactivity, checking the correctness of the answer, pro-
viding feedback, etc. This interaction graph can be automatically filled with
information by the exercise subsystem components that can communicate
with external systems in order to generate feedback to the user.

A description of ActiveMath language for exercises can be found in [GGPM05].

26.8.3 Usage of Semantic Representation in ActiveMath

The fact that the Tutorial Component employs metadata to search for appro-
priate learning objects and assemble them has been sketched above. In addi-
tion, other tools and components of ActiveMath make use of the semantics
of OpenMath, the ActiveMath metadata and OMDoc more generally.

Computer Algebra Services

Computer algebra system (CAS) — currently Yacas [Yac], Maxima [Max],
and Wiris [Wir] — are integrated as external services. Via a broker, a CAS
receives queries (partially Monet queries) to evaluate OpenMath expressions.
This enables the exercise system to evaluate user input, e.g., for numerical or
semantic equivalence with a particular expression. The service CAS has to
translate in- and output via phrasebooks.

Presentation Component

The naive approach to rendering OMDoc documents would be to fetch the
items from a data base, assemble them (or parts of them) and then run several
style-sheets on the resulting sequence; Those style-sheets would depend on the
requested output format (HTML+ Unicode, XHTML+ MathML, PDF via
LATEX, svg, or slides), the target browser (we support Mozilla, FireFox,
Internet Explorer) and the personalization.

main.tex 6161 2006-10-03 13:04:46Z

26.8 ActiveMath 285

This approach turned out to be infeasible for complex, real-world applica-
tions. Therefore ActiveMath includes a multi-stage presentation process as
described in [ULWM04]. It has many advantages, among them a much better
performance and even better perceived performance through multiple caching,
a clear separation of different concerns which provides more flexibility for the
various adaptivity dimensions that ActiveMath supports, including selec-
tion of learning objects, link annotations language, specific presentations of
pages, exercises etc, and of mathematical expressions, target output format,
browser.

The final rendering maintains the references to mathematical symbols but
renders them invisible. This information can then be used by copy-and-paste
and for tool tips that indicate the name of a symbol on the page.

For an even more specialized presentation of mathematical notation which
is often requested by authors and users we developed a complex presentation
tag representation and an authoring facility for it [?]. These special presenta-
tions are integrated into the presentation process upon request.

Copy and Paste

The rendering includes an invisible reference to the unique identifier of math-
ematical symbols and expressions. This provides a basis for copying the ref-
erence to an OpenMath expression, i.e., the semantics of the expression to
a computer algebra system, to the input editor (in dictionary and exercises),
and into exercise blanks. The actual transfer mechanism is, because of security
limitations and because of resource management, a drag-and-drop operation
which allows immediate negotiation between the recipient and source. This
allows to transform to the appropriate encoding on demand. Alternate encod-
ings include OpenMath with a restricted set of content-dictionaries, HTML
with embedded presentation and content MathML. Reference to OMDoc
items and to pages of a book in ActiveMath are exchangeable using the
same paradigm.

Interactive Concept Map Tool icmap

icmap utilizes the OMDoc encoding and relations for generating feedback to
users’ inputs [MKH05]. The tool visualizes (parts of) a domain and relations
between concepts and between concepts and satellites.

Semantic Search

ActiveMath’s search facility has been upgraded to enable not only approx-
imate search results but also to search semantically for (OpenMath) math-
ematical expressions, for certain types of learning objects and objects with
particular metadata. The implementation of the search uses Jakarta Lucene
with its high-performance and easy deployment.

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

286 26 Applications and Projects

OMDoc-Related Components and Tools of ActiveMath

Many of the tools described above have not been sufficient for the purposes of
a complex and mature educational application such as ActiveMath. There-
fore, we had to improve them or implement some from scratch. In particular,
these include authoring tools (for which improvement is still ongoing), trans-
formation tools, validation tools, and style sheets. Moreover, new tools have
been developed or integrated into ActiveMath, e.g., an input editor that
returns OpenMath.

The conversion of OMDoc source to presentation code is done using
XSLT style sheets. We started with the style sheets available in OMDoc
repository and added to them the ActiveMath linking schemata. These
style sheets needed more polishing since they were too big and the manage-
ment of notations was not feasible. Moreover, the TEX oriented style sheets
had to be refurbished in order to work well with big documents.

Further tools have been realized within the authoring tools which are cov-
ered in Section 26.9.

authoring.tex 6161 2006-10-03 13:04:46Z

26.9 Authoring Tools for ActiveMath 287

26.9 Authoring Tools for ActiveMath

Project Home http://www.activemath.org/projects/jEditOQMath

Authors Paul Libbrecht
DFKI GmbH and Universität des Saarlandes

The OMDoc content to be delivered by ActiveMath are OMDoc doc-
uments with OpenMath formulae. Experience has shown that writing the
XML-source by hand is feasible and even preferred if the author wants to fol-
low the evolution of content’s structure. It is similar to HTML editing. How-
ever, the complexity of XML makes it hard to keep an overview when writing
mathematical expressions. Therefore, the OQMath processor has been im-
plemented: it uses QMath for formulae and leaves the rest of the OMDoc
written as usual XML.

OQMath has been integrated in a supporting XML-editor, jEdit. This
editor provides structural support at writing XML-documents. Authors, even
with no XML-knowledge, can easily write valid document jEditOQMath.
This package includes, in a one-click installer, QMath, OQMath, jEdit, and
Ant-scripts for publication of the content in ActiveMath knowledge bases.
These scripts validate the references in the content. These scripts also provide
authors with short cycles edit-in-jEditOQMath-and-test-in-ActiveMath.
More about jEditOQMath can be seen from http://www.activemath.org/

projects/jEditOQMath at [Lib04]
jEditOQMath provides search facilities as well as contextual drops from

items presented in an ActiveMath window. This way the testing of content
in the target environment and the authoring experience are bound tighter
together, thus making jEditOQMath closer to the WYSIWYG paradigm
without being limited to its simple visual incarnation.

To date, more than 10′000 items of OMDoc content has been written
using these authoring tools in Algebra and Calculus. This experience with
authors considerably improved our understanding of what today’s authors
need and what different classes of authors can cope with.

Among the greatest difficulties of authoring content for ActiveMath was
the art of properly choosing mathematical semantic encoding: the mathemat-
ical discourse is made of very fine notation rules along with subtle digressions
to these rules... formalizing them, as is needed when writing OpenMath or
the QMath formulae for them, turns out to often be overwhelming. The us-
age of the ellipsis in such a formula as 1, . . . , k, . . . , n is a simple example of
semantic encoding challenge. The knowledge organization of OMDoc that
makes it possible to define one’s own OpenMath symbols has been a key
ingredient to facing this challenge.

Among the features most requested by authors, which we have tried to
answer as much as possible, are a short edit-and-test cycle and validation
facilities taking in account the overall content.

http://www.activemath.org/projects/jEditOQMath
http://www.activemath.org/projects/jEditOQMath
http://www.activemath.org/projects/jEditOQMath

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

288 26 Applications and Projects

Validation Tools

Automated validation of OMDoc content has many facets. XML-validation
with a DTD and Schema is a first step. However there are still many structure
rules mentioned only as human readable forms in the OMDoc specifications.
References between OMDoc items is another important facet which has been
answered by ActiveMath knowledge bases and publishing scripts. Experi-
ence has proved that ignoring such errors has lead repeatedly to authors com-
plaining about the weirdest behaviours of the overall learning environment.
Many other simple validations could be done in order to support the author,
for example the validation of a picture embedding, or of fine grained typing
of relations (for example, that a definition should only be for a symbol).

Further validation tools are being investigated, for example, those tuned
to particular pedagogical scenarios.

Further Authoring Tools for ActiveMath

jEditOQMath clearly remains for users who feel comfortable with source
editing. Experience has shown that authors having written HTML or TEX
earlier did not find this paradigm problematic. It is, however, a steep learning
slope for beginner authors. A more visual component is being worked upon,
able to display and edit visually the children of a CMP, including formulae.9

This component, along with forms and summaries for metadata, should pro-
vide a visual environment to edit OMDoc content for ActiveMath in a
relatively accessible way.

Another area where source editing has shown difficulties is in the process
of authoring exercises with many steps... the rich structure of the exercises,
along with the non-neglect able space taken by the display of XML-source has
challenged several authors, having difficulties to overview such sources as 600
Kb of OQMath source for a single exercise. A web-based visual authoring
environment is under work within the ActiveMath group.

9 More about the component for OMDoc micro-structure can be read from http:

//www.activemath.org/projects/OmdocJdomAuthoring/.

http://www.activemath.org/projects/OmdocJdomAuthoring/
http://www.activemath.org/projects/OmdocJdomAuthoring/

main.tex 6161 2006-10-03 13:04:46Z

26.10 SWiM – An OMDoc-based Semantic Wiki 289

26.10 SWiM – An OMDoc-based Semantic Wiki

Project Home http://kwarc.eecs.iu-bremen.de/projects/swim

Authors Christoph Lange, Michael Kohlhase
Computer Science, International University Bremen

SWiM is a semantic wiki for collaboratively building, editing and brows-
ing a mathematical knowledge base of OMDoc theories. Our long-term ob-
jective is to develop a software that facilitates the creation of a shared, public
collection of mathematical knowledge and serves work groups of mathemati-
cians as a tool for collaborative development of new theories. Even though
the work reported here was initially motivated by solving the MKM author’s
dilemma [KK04], we contend that the new application area MKM can also
contribute to the development of semantic wikis.

Technically, SWiM is based on the semantic wiki engine IkeWiki [Sch06],
which was chosen because of its modular design, its rich semantic web in-
frastructure, its user assistance for annotations, and its orientation towards
learning [SBB+06].

26.10.1 Semantic Wikis

A wiki [LC01] is a web server application that allows users to browse, cre-
ate, and edit hyperlinked pages in a web browser, usually using a simple text
syntax. In contrast to most content management systems, wiki pages are acces-
sible via an URL containing their title. A new page can be created by linking
from an existent page to the page to be created. This link will then lead to an
edit form. Usually, anyone is allowed to edit pages on a wiki, but access can
be restricted. Other characteristics of wikis include permanent storage of old
page versions (with facilities to display differences between two versions and
to restore a certain version), notification about recent changes, and full-text
search.

Semantic wikis [VKS+07, TS06] enhance wikis by Semantic Web tech-
nologies, such as RDF [LS99] or ontologies. Usually one page represents one
concept from a real-world domain, which has a type, possibly some metadata,
and typed links to other concepts. For example, a link from a wiki page about
“Life, the Universe and Everything” to another page about Douglas Adams
could be typed as “is author of”. In terms of RDF, this can be expressed by
the following subject–predicate–object triple,

(“Douglas Adams”, isAuthorOf, “Life, the Universe and Everything”)

where the isAuthorOf relation would be defined in an ontology. These links
are usually displayed in a navigation box next to the page contents. Semantic
wikis only deal with wiki text, not with mathematics, though some allow to
embed mathematical formulae as presentational-only TEX.

http://kwarc.eecs.iu-bremen.de/projects/swim

main.tex 6161 2006-10-03 13:04:46Z

290 26 Applications and Projects

SWiM encourages users to collaborate: Non-mathematicians can collab-
orate in creating a “Wikipedia of mathematics” by compiling the knowledge
available so far, while scientists can collaboratively develop new theories. Users
get an immediate reward for many of their contributions: Once they specify
the type of a page or relations of one page to another, this information will be
displayed in a box of navigation links. We intend to make the data created in
SWiM usable for external services by offering an export facility for OMDoc
documents and by integrating them into SWiM. Mathematicians developing
theories will be assisted to retain an overview of theory dependencies in order
not to break them. Social software services will further utilize the semantic
information available from the theories and from tracking the user interac-
tion log (“Who did what on which page when?”). User feedback to pages can
be extended to social bookmarking, which is “the practice of saving book-
marks [of Internet resources] to a public web site and ‘tagging’ them with
keywords.” [Lom05] The more users tag a certain resource, the higher a social
bookmarking service will rank it.

The enhancements of the data model semantic wikis bring along — com-
pared to traditional wikis — are already present in the OMDoc format, so
that an OMDoc-based wiki only needs to operationalize their underlying
meaning. For example, typed links, which are implemented via an extension
to the wiki syntax in Semantic MediaWiki [VKV+06] or editable through a
separate editor in IkeWiki [Sch06], are implemented by means of the for at-
tribute to OMDoc’s elements (e.g. <example for="#id-of-assertion">).
SWiM makes them editable easily and visualizes them adequately. A semantic
wiki targeted at mathematics must ensure that dependencies between concepts
are preserved. Results in this area will be interesting for non-mathematical
semantic wikis as well, especially when they support higher levels of formal-
ization such as ontologies.

26.10.2 Design of SWiM

Concepts and Relations

The smallest unit that can be displayed, edited, linked to, or archived in
a wiki is a page. In a semantic wiki, it usually describes one concept , in-
cluding its properties and its relations to other concepts. While standalone
OMDoc documents can contain more than one theory, is is important to
keep pages small in a wiki to improve the effectivity of usage. Furthermore,
usual semantic wikis only store and display metadata and typed links per
page; SWiM does too.10 Users are strongly encouraged to define at most one
theory per wiki page and to roll out non-constitutive statements (see Sec-
tion 15.1) to separate pages, referencing their context theory. As constitutive

10 Semantic information will only be considered on the theory and statement levels
of OMDoc — directly or through reasoning in the case of transitive closures —,
not on the object level.

main.tex 6161 2006-10-03 13:04:46Z

26.10 SWiM – An OMDoc-based Semantic Wiki 291

statements cannot exist without an enclosing theory, but as, on the other
hand, we want each wiki page to form a valid document, we introduced a new
element swim:page, which can be a child of an omdoc element and which has
the same content model as a theory element — in particular, it can hold sev-
eral theory-constitutive statements and connect them to their context theory.

theory

statement

definition

assertion proof

example

imports
context for

is a

is a is a

is a

proves

exemplifies

exemplifies

Fig. 26.12. Subset of OMDoc’s system ontology

OMDoc’s system on-
tology has been partly
coded in OWL-DL and
imported to the wiki’s
RDF store, which is
implemented using the
Jena Semantic Web
Framework for Java [JEN08].
Theories as well as
statements of any type
form concepts, and the
most important rela-
tions between those
concepts are extracted
from the OMDoc pages
on saving and then
stored as RDF triples.
These relations include:

• The import relation between theories
• The relation of a statement to its context theory
• The relation of an example to the statement it exemplifies
• The relation of a proof to the assertion it proves

It is planned to also take relations given by user interaction into consideration,
such as “Who edited which page when?”, and to combine ontology-defined re-
lations and user relations. For example, a metric estimating the degree of
difficulty of a page, calculated by counting the questions on the discussion
page, could be implemented. Furthermore, the user can specify taxonomic
relations, which cannot be stated explicitly in OMDoc, such as (“all differ-
entiable functions are continuous”), as annotations in an ontology language
like RDF Schema or Owl.

User Interface and Interaction Model

Pages can be rendered to XHTML plus presentational MathML using the
transformations described in Chapter 25. There is also a browsable source
code view, which is useful for documents that are not written in textbook
style.

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

292 26 Applications and Projects

Not only will the user be able to navigate along the dependency graph,
she will also be able to interact with the system: she will be asked whether
she wants to explore the theories required as dependencies in further detail.

Suppose that the user is currently reading the page containing the the-
ory ring from the elementary algebra example from Chapter 7. In this case
the wiki will not only display navigation links to the direct dependencies
group and monoid, but it will also provide unobtrusive buttons that allow
the user to give one of the commands in Figure 26.13. Not only the last case
will be recorded — the others are interesting as well for social bookmarking.
For example, if many users requested a theory t to be explained, the system
could default to display not only the direct dependencies but also the level-
two dependencies, for it seems that t is too difficult for only being explained
shallowly.

No, thanks! “I already know group and monoid.”
Explain “Please show me group and monoid, I want

to learn about ring’s prerequisites.” — group and
monoid will be displayed.

Explore “Please show me all prerequisites for ring.” —
group, monoid, and semigroup, are opened in sepa-
rate windows or serialized into one page.

Suspend “I want to know about group and monoid, but
only later.” — SWiM keeps a notice in the user’s
profile that she wants to read group and monoid
sometime. Reminder links to suspended theories are
shown on a separate navigation bar.

Fig. 26.13. The command buttons to navigate along the dependencies

Further work

Further work on SWiM will concentrate on integrating a lightweight manage-
ment of change process. Second, while the wiki is yet a user-friendly browser,
there is still a demand for assisting users to edit OMDoc. To this end, the
QMath preprocessor (see Section 26.2) will be integrated into SWiM. Math-
ematical objects entered as QMath will be kept in this syntax for display
in the edit form, but they will be converted to OMDoc for rendering for
presentation and when pages are exported to another application.

main.tex 6161 2006-10-03 13:04:46Z

26.11 Induction Challenge Problems 293

26.11 Induction Challenge OMDoc Manager (ICOM)

Project Home http://www.cs.nott.ac.uk/~lad/research/

challenges/challenge_manager.html

Authors Thomas D. Attfield, Monica C. Duarte, Lin Li, Ho-
Ying Mak, Adam M. Neal, Lewis M. Toft, Zixuan
Wang, Louise A. Dennis
School of Computer Science and Information Tech-
nology, University of Nottingham

We describe work in progress to create a system for organising and present-
ing a set of challenge problems collected by the Induction Theorem Proving
community. These challenge problems come from a number of sources and are
presented in different logics using different presentation conventions.

The intention is to provide a system which will allow these problems to
be stored in a unified format and will support the collection, browsing and
extraction of the problems.

OMDoc is an obvious choice for representing such problems and the sys-
tem is able to take advantage of much existing work on the manipulation of
XML documents.

26.11.1 The Induction Challenge Problems

Inductive Theorem proving is a small field. The main theorem provers
within this field are NqThm [BM79] (now re-engineered as ACL2 [KM96]),
InKa [AHMS99], the Clam series [BvHHS90, RSG98a] and rrl [KZ95].
Twelf [PS99] also looks at the automation of inductive proof in the con-
text of logical frameworks. Within the field it is hard to assess claims for the
superiority of any given system since there is naturally a tendency to report
“successes” – difficult or challenging problems automatically proved. There
is also a desire within the community to develop a store of shared knowl-
edge about the challenges that face the automation of proof by mathematical
induction.

TPTP (Thousands of Problems for Theorem Proverss) [SS98] is a library
of test problems for first-order ATP systems. They provide the ATP com-
munity with a comprehensive library complete with unambiguous names and
references. All the problems are stated in a standardised formulation of first-
order logic and are widely used to benchmark first-order systems. They are
also used as the test set for the CASC competition [Sut01] which compares
such systems. One of the benefits of the TPTP library to the ATP community
is the existence of a common set of problems by which comparisons can be
made.

It is not practical for inductive theorem provers to follow the pattern
of the TPTP library. Various attempts have been made to build a similar
corpus of problems requiring inductive reasoning. The most mature of these

http://www.cs.nott.ac.uk/~lad/research/challenges/challenge_manager.html
http://www.cs.nott.ac.uk/~lad/research/challenges/challenge_manager.html

main.tex 6161 2006-10-03 13:04:46Z

294 26 Applications and Projects

was based on the Boyer-Moore [BM79] corpus11. This corpus was unpopular
partly because there was repetition within the problem set and partly because
many problems depended on a few particular function definitions. But the
major objection was that induction theorem provers use a number of different
logics, some of which are typed and some of which are not, which made it
difficult to agree on a standard format. The use of other logics also raised
translation issues and a fully automated process for converting the theorems,
even into an agreed typed language was never produced.

A group of researchers within the community12 agreed that instead of a
large set of benchmarks in a standard logic they would each put forward a
number of “Challenge Problems”. These should present interesting challenges
to the automation of inductive proof or illustrate important features which
an inductive prover should be able to handle. A set of these problems would
be collected which would remain sufficiently small that an individual could
represent them within their own theorem proving system as they saw fit13.
These challenge problems are currently described in a high-level way and
written up in an ad hoc fashion. The descriptions contain both mathematical
notation and commentary. They are difficult to read, navigate or use in any
particular system.

OMDoc seems ideally suited as a format for representing these challenge
problems: it can represent both text and formulae; it is not tied to any par-
ticular logic and it supports the extraction of data into a number of different
formats. As an added benefit its hyper-text features would potentially allow
definitions to be stored separately and shared between problems. Individual
theorem provers can then concentrate on translations between OpenMath
content dictionariesnd their own logics and individuals submitting problems
can specify the appropriate content dictionary for the problem.

26.11.2 System Description

The Induction Challenge OMDoc Manager (ICOM) is designed to be a sys-
tem which will ease the submission and extraction process for the problems.
Our intention is to provide a submission interface that will create a simple
OMDoc markup for the problems which can subsequently be edited by a user
and to provide browsing and extraction capabilities.

Each challenge problem description contains six distinct sections (e.g.
Summary, Definitions, Comments). Currently a user who wishes to enter a
problem into our system is presented with the form shown on the right with
a field for each section.

11 This has become known as the Dmac corpus after David McAllester who trans-
lated a fragment of the NqThm corpus into a simpler language.

12 At the 2000 CADE Workshop on the Automation of Proof by Mathematical
Induction.

13 The current set can be found at http://www.cs.nott.ac.uk/~lad/research/

challenges.

http://www.cs.nott.ac.uk/~lad/research/challenges
http://www.cs.nott.ac.uk/~lad/research/challenges

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26.11 Induction Challenge Problems 295

Each section, once entered by a user,
is placed in a CMP tag. These tagged frag-
ments are wrapped in standard OMDoc
headers and footers to produce a valid
OMDoc. This completed document is
then written to disk and stored. We are
currently working on a simple parser to
translate equations into om:OMOBJ struc-
tures which a user will then be able to
edit (for instance to specify the appro-
priate content dictionaries). We hope this
will be easier than adding all the Open-
Math tags by hand.

An existing document can be displayed as a tree and from this tree the
document can be directly manipulated. This tree display also allows the user
to see the structure of the document more clearly. It is also possible to extract
an HTML view of the contents of the document so it can be displayed in a
web browser and read by a human.

Our implementation language is JAVA
and we use its JAXP DOM API.
DOM [DOM] is a W3C standard which
uses a tree-based model (storing data in
hierarchies of nodes). This means that
once an OMDoc has been created or
opened all the document’s data is in
memory and so data can be accessed
rapidly. DOM also enables simple modi-
fication of documents by adding or delet-
ing nodes. Although Sax (an alternative
model) achieves better performance and
less memory overhead than DOM, it is
easier to traverse and modify XML docu-
ments using a DOM tree structure. Since
we anticipate that users may wish to modify the initial OMDoc produced by
our system we adopted the DOM model instead.

26.11.3 Further Work

ICOM is still in the early stages of development. Currently our most pressing
aim is to provide improved support for entering equations. Once this is in
place we hope to add searching facilities and provide better mechanisms for
links to be created between challenge problems. We would also like to experi-
ment with the automatic extraction of problems into a theorem prover via an
MBase [KF00] and a MathWeb [FHJ+99a].

main.tex 6161 2006-10-03 13:04:46Z

296 26 Applications and Projects

26.12 Maya: Maintaining Structured Developments

Project Home www.dfki.de/~inka/maya.html

Authors Serge Autexier1, Dieter Hutter1, Till Mossakowski2,
Axel Schairer1

1 DKFI GmbH, Stuhlsatzenhausweg 3, D 66123
Saarbrücken
2 Computer Science, University of Bremen, Germany

26.12.1 Overview

The Maya-system was originally designed to maintain and utilize the struc-
turing mechanisms incorporated in various specification languages when evolv-
ing and verifying formal software developments. In this setting, a software sys-
tem as well as their requirement specifications are formalised in a textual man-
ner in some specification language like Casl [CoF04] or VSE-SL [AHL+00].
All these specification languages provide constructs similar to those of OM-
Doc to structure the textual specifications and thus ease the reuse of compo-
nents. Exploiting this structure, e.g. by identifying shared components in the
system specification and the requirement specification, can result in a drastic
reduction of the proof obligations, and hence of the development time which
again reduces the overall project costs.

However, the logical formalisation of software systems is error-prone. Since
even the verification of small-sized industrial developments requires several
person months, specification errors revealed in late verification phases pose
an incalculable risk for the overall project costs. An evolutionary formal de-
velopment approach is absolutely indispensable. In all applications so far de-
velopment steps turned out to be flawed and errors had to be corrected. The
search for formally correct software and the corresponding proofs is more like
a formal reflection of partial developments rather than just a way to assure
and prove more or less evident facts.

The Maya-system supports an evolutionary formal development since
it allows users to specify and verify developments in a structured man-
ner, incorporates a uniform mechanism for verification in-the-large to ex-
ploit the structure of the specification, and maintains the verification work
already done when changing the specification. Maya relies on development
graphs [AH05, Hut00] as a uniform (and institution independent14) repre-
sentation of structured specifications, and which provide the logical basis for
the Complex theories and Development graphs of OMDoc15. Relying on de-
velopment graphs enables Maya to support the use of various (structured)
specification languages like OMDoc, Casl [CoF04], and VSE-SL [AHL+00]

14 This includes, for instance, that it does not require a particular logic (see
e.g. [MAH06] for more details).

15 These are the modules CTH and DG, respectively.

www.dfki.de/~inka/maya.html

main.tex 6161 2006-10-03 13:04:46Z

26.12 Maya 297

to formalise mathematical theories or formal software developments. To this
end Maya provides a generic interface to plug in additional parsers for the
support of other specification languages. Moreover, Maya allows the integra-
tion of different theorem provers to deal with the actual proof obligations
arising from the specification, i.e. to perform verification in-the-small .

Textual specifications are translated into a structured logical representa-
tion called a development graph, which is based on the notions of consequence
relations and morphisms and makes arising proof obligations explicit. The user
can tackle these proof obligations with the help of theorem provers connected
to Maya like Isabelle [Pau94] or InKa [AHMS99].

A failure to prove one of these obligations usually gives rise to modifica-
tions of the underlying specification. Maya supports this evolutionary process
as it calculates minimal changes to the logical representation readjusting it
to a modified specification while preserving as much verification work as pos-
sible. If necessary it also adjusts the database of the interconnected theorem
prover. Furthermore, Maya communicates explicit information how the ax-
iomatization has changed and also makes available proofs of the same problem
(invalidated by the changes) to allow for a reuse of proofs inside the theorem
provers. In turn, information about a proof provided by the theorem provers
is used to optimise the maintenance of the proof during the evolutionary de-
velopment process.

26.12.2 From Textual to Logical Representation

The specification of a formal development in Maya is always done in a tex-
tual way using specification languages like Casl , OMDoc or VSE-SL.
Maya incorporates parsers to translate such specifications into the Maya-
internal specification language Dgrl (“Development Graph Representation
Language”). Dgrl provides a simply-typed λ-calculus to specify the local
axiomatization of a theory in a higher-order logic. While unstructured spec-
ifications are solely represented as a signature together with a set of logical
formulas, the structuring operations of the specification languages are trans-
lated into the structure of a development graph. Each node of this graph
corresponds to a theory. The axiomatization of this theory is split into a local
part which is attached to the node as a set of higher-order formulas and into
global parts, denoted by ingoing definition links, which import the axiomati-
zation of other nodes via some consequence morphisms (such as the imports

element in OMDoc). While a local link imports only the local part of the
axiomatization of the source node of a link, global links are used to import
the entire axiomatization of a source node (including all the imported ax-
iomatization of other nodes). In the same way local and global theorem links
are used to postulate relations between nodes (see [AH05] for details) which
correspond to OMDoc’s theory-inclusion and axiom-inclusion elements.

On the left hand side, Figure 26.14 shows the graphical user interface
of Maya. The right hand side shows the development graph in Maya for a

main.tex 6161 2006-10-03 13:04:46Z

298 26 Applications and Projects

Fig. 26.14. The graphical user interface of Maya & the development graph for the
OMDoc Representation of Groups in MBase

formalisation of groups. The formalisation was given in OMDoc and imported
into Maya from the OMDoc database MBase (see [KF01] and Section 26.4).

26.12.3 Verification In-the-large

The development graph is the central data-structure to store and maintain the
formal (structured) specification, the arising proof obligations and the status
of the corresponding verification effort (proofs) during a formal development.

Maya distinguishes between proof obligations postulating properties be-
tween different theories (like the theory-inclusion and axiom-inclusion

elements in OMDoc) and lemmata postulated within a single theory (like
assertion in OMDoc). As theories correspond to subgraphs within the de-
velopment graph, a relation between different theories, represented by a global
theorem link, corresponds to a relation between two subgraphs. Each change
of these subgraphs can affect this relation and would invalidate previous proofs
of this relation. Therefore, Maya decomposes relations between different the-
ories into individual relations between the local axiomatization of a node and
a theory (denoted by a local theorem link). Each of these relations decomposes
again into a set of proof obligations postulating that each local axiom of the
node is a theorem in the target theory with respect to the morphism attached
to the link.

While definition links establish relations between theories, theorem links
denote lemmata postulated about such relations. Thus, the reachability be-
tween two nodes establishes a formal relation between the connected nodes
(i.e. the theory of the source node is part of the theory of the target node wrt.
the morphisms attached to the connecting links). Maya uses this property

main.tex 6161 2006-10-03 13:04:46Z

26.12 Maya 299

to prove relations between theories by searching for paths between the corre-
sponding nodes (instead of decomposing the corresponding proof obligation
in the first place).

26.12.4 Verification In-the-small

When verifying a local theorem link or proving speculated lemmata, the con-
jectures have to be tackled by some interconnected theorem prover. In both
cases the proofs are done within a specific theory. Thus, conceptually each
theory may include its own theorem prover. In principle, there is a large vari-
ety of integration types. The tightest integration consists of having a theorem
prover for each node wrt. which theory conjectures must be proven, and the
theorem prover returns a proof object generated during the proof of a conjec-
ture. Those are stored together with the conjecture and can be used by Maya
to establish the validity of the conjecture if the specification is changed. The
loosest integration consists in having a single generic theorem prover, which
is requested to prove a conjecture within some theory and is provided with
the axiomatization of this theory. The theorem prover only returns whether it
could prove a conjecture or not, without any information about axioms used
during the proof. For a detailed discussion of the advantages and drawbacks
of the different integration scenarios see [AM02].

Currently, Maya supports two integration types: One where information
about used axioms is provided by the theorem prover, and one where no such
information is provided. In the first case, Maya stores the proof information
and the axioms used during the proof. In the second case, Maya assumes
there is a proof for the proof obligation, as there is no information about the
proof. In both scenarios, Maya makes use of generic theorem provers which
are provided with the axiomatization of the current theory. Currently Maya
provides all axioms and lemmata located at theories that are imported from
the actual theory by definition links to the prover. Switching between different
proof obligations may cause a change of the current underlying theory and
thus a change of the underlying axiomatization. Maya provides a generic
interface to plug in theorem provers (based on an XML-RPC protocol) that
allows for an incremental update of the database of the prover.

26.12.5 Evolution of Developments

The user executes changes to specifications in their textual representation.
Parsing a modified specification results in a modified Dgrl-specification. In
order to support a management of change, Maya computes the differences
of both Dgrl-specifications and compiles them into a sequence of basic op-
erations in order to transform the development graph corresponding to the
original Dgrl-specification to a new one corresponding to the modified Dgrl-
specification. Examples of such basic operations are the insertion or deletion
of a node or a link, the change of the annotated morphism of a link, or the

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

300 26 Applications and Projects

change of the local axiomatization of a node. As there is currently no optimal
solution to the problem of computing differences between two specifications,
Maya uses heuristics based on names and types of individual objects to guide
the process of mapping corresponding parts of old and new specification. Since
the differences of two specifications are computed on the basis of the internal
Dgrl-representation, new specification languages can easily be incorporated
into Maya by providing a parser for this language and a translator into Dgrl.

The development graph is always synthesised or manipulated with the help
of the previously mentioned basic operations (insertion/deletion/change of
nodes/links/axiomatization) and Maya incorporates sophisticated techniques
to analyse how these operations will affect proof obligations or proofs stored
within the development graph. They incorporate a notion of monotonicity of
theories and morphisms, and take into account the sequence in which objects
are inserted into the development graph. Furthermore, the information about
the decomposition and subsumption of global theorem links obtained during
the verification in-the-large is explicitly maintained and exploited to adjust
them once the development graph is altered. Finally, the knowledge about
proofs, e.g. the used axioms, provided by the interconnected theorem provers
during the verification in-the-small is used to preserve or invalidate the proofs.

26.12.6 Conclusion and System Availability

The Maya-system is mostly implemented in Common Lisp while parts of the
GUI, shared with the Ωmega-system [SHB+99], are written in Mozart. The
Casl-parser is provided by the CoFI-group in Bremen (see Section 26.13). The
Maya-system is available from the Maya-web-page at http://www.dfki.de/

~inka/maya.html.
The Heterogeneous Tool Set (Hets, see Section 26.13) extends Maya with

a treatment of hiding [MAH06], and a uniform treatment of different logics
based on the notion of heterogeneous development graphs [Mos02]. Further-
more, it is planned to extend this with the maintenance of theory-specific con-
trol information for theorem provers. The latter comprises a management for
building up the database of theorem provers by demand rather than providing
all available axioms and lemmata at once and it comprise the management of
meta-level information, like tactics or proof plans, inside Maya.

http://www.dfki.de/~inka/maya.html
http://www.dfki.de/~inka/maya.html

main.tex 6161 2006-10-03 13:04:46Z

26.13 Hets 301

26.13 Hets: The Heterogeneous Tool Set

Project Home www.tzi.de/cofi/hets

Authors Till Mossakowski, Christian Maeder, Klaus Lüttich
Computer Science, University of Bremen, Germany

26.13.1 Motivation

“There is a population explosion among the logical systems used in com-
puter science. Examples include first order logic, equational logic, Horn
clause logic, higher order logic, infinitary logic, dynamic logic, intuitionistic
logic, order-sorted logic, and temporal logic; moreover, there is a tendency
for each theorem prover to have its own idiosyncratic logical system. We
introduce the concept of institution to formalize the informal notion of
‘logical system’.” [GB92]

In the area of formal specification and logics used in computer science,
numerous logics are in use:

• logics for specification of data types,
• process calculi and logics for the description of concurrent and reactive

behaviour,
• logics for specifying security requirements and policies,
• logics for reasoning about space and time,
• description logics for knowledge bases in artificial intelligence and for the

Semantic Web,
• logics capturing the control of name spaces and administrative domains

(e.g. the ambient calculus), etc.

Indeed, at present, it is not imaginable that a combination of all these
(and other) logics would be feasible or even desirable — even if it existed, the
combined formalism would lack manageability, if not become inconsistent.
Often, even if a combined logic exists, for efficiency reasons, it is desirable to
single out sublogics and study translations between these (cf. e.g. [Sch04]).
Moreover, the occasional use of a more complex formalism should not destroy
the benefits of mainly using a simpler formalism.

This means that for the specification of large systems, heterogeneous multi-
logic specifications are needed, since complex problems have different aspects
that are best specified in different logics. Moreover, heterogeneous specifica-
tions additionally have the benefit that different approaches being developed
at different sites can be related, i.e. there is a formal interoperability among
languages and tools. In many cases, specialized languages and tools often have
their strengths in particular aspects. Using heterogeneous specification, these
strengths can be combined with comparably small effort.

OMDoc deliberately refrains from a full formalization of mathematical
knowledge: it gains its flexibility through avoiding the specification of a for-
mal semantics of the logic(s) involved. By contrast, the Heterogeneous Tool

www.tzi.de/cofi/hets

main.tex 6161 2006-10-03 13:04:46Z

302 26 Applications and Projects

Set (Hets, [MMLW]) is based on a rigorous formal semantics. Hets gains
its flexibility by providing formal interoperability, i.e. integration of different
formalisms on a clear semantic basis. Hence, Hets is a both flexible, multi-
lateral and formal (i.e. based on a mathematical semantics) integration tool.
Unlike other tools, it treats logic translations (e.g. codings between logics) as
first-class citizens.

26.13.2 Institutions, Entailment Systems and Logics

Heterogeneous specification is based on individual (homogeneous) logics and
logic translations [Mos05]. To be definite, the terms ‘logic’ and ‘logic transla-
tion’ need to be formalized in a precise mathematical sense. We here use the
notions of institution [GB92] and entailment system [Mes89], and of comor-
phism [GR02] between these.

Logical theories are usually formulated over some (user-defined) vocabu-
lary, hence it is assumed that an institution provides a notion of signature.
Especially for modular specification, it is important to be able to relate sig-
natures, which is done by signature morphisms. These can be composed, and
hence form a category of signatures and signature morphisms.

Furthermore, an institution provides notions of sentences and models (over
a given signature Σ). Models and sentences are related by a satisfaction rela-
tion, which determines when a given sentence holds in a model. An entailment
system also provides an entailment (provability) relation, which allows to infer
sentences (conclusions) from given sets of sentences (premises, or axioms).

Finally, it is assumed that each signature morphism leads to translations
of sentences and models that preserve satisfaction and entailment.

A institution comorphism is a translation between two institutions. It maps
signatures to signatures, sentences to sentences and models to models, such
that satisfaction is preserved (where models are mapped contravariantly, i.e.
against the direction of the comorphism).

We refer the reader to the literature [GB92, Mes89, MGDT05] for for-
mal details of institutions and comorphisms. Subsequently, we use the terms
“institution” and “logic” interchangeably, as well as the terms “institution
comorphism” and “logic translation”.

26.13.3 The Architecture of the Hets System

Hets is a tool for parsing, static analysis and proof management combin-
ing various such tools for individual specification languages, thus providing a
tool for heterogeneous multi-logic specification (see Fig. 26.15). The graph of
currently supported logics and logic translations is shown in Fig. 26.16. How-
ever, syntax and semantics of heterogeneous specifications as well as their
implementation in Hets is parametrized over an arbitrary such logic graph.
Indeed, the Hets modules implementing the logic graph can be compiled in-
dependently of the Hets modules implementing heterogeneous specification,

main.tex 6161 2006-10-03 13:04:46Z

26.13 Hets 303
Architecture of the heterogeneous tool set Hets

Text

Parser

Abstract syntax

Static Analysis

(Signature, Sentences)

XML, Aterm

Interfaces

Tools for specific logics

Conservativity and

Model checkers

Tools for heterogeneous
specifications

Text

Parser

Abstract syntax

Static Analysis

Global Environment

XML, Aterms

Interfaces

Maya
Development graph

Heterogeneous proof trees

Logic graph

Grothendieck logic

(Flattened logic graph)

CSP-CASL

ModalCASL

WWW, GUI

VSE-SL

HasCASL

CASL

OWL-DL

CoCASL

CASL-DLConstraintCASL

Heterogeneous inference engine
Decomposition of proof obligations
Management of proofs & change

Theorem provers

Rewriters

HaskellHaskell TLA+
MDL

Sublogics

Fig. 26.15. Architecture of the heterogeneous tool set

and this separation of concerns is essential to keep the tool manageable from
a software engineering point of view.

Heterogeneous Casl (HetCasl; see [Mos04]) includes the structuring con-
structs of Casl, such as union and translation. A key feature of Casl is that
syntax and semantics of these constructs are formulated over an arbitrary in-
stitution (i.e. also for institutions that are possibly completely different from
first-order logic resp. the Casl institution). HetCasl extends this with con-
structs for the translation of specifications along logic translations.

Like Maya (see Section 26.12), Hets provides a representation of struc-
tured specifications which are the logical basis for the Complex theories and
Development graphs of OMDoc16.

For proof management, Maya’s calculus of development graphs has been
extended with hiding and adapted to heterogeneous specification. Develop-
ment graphs provide an overview of the (heterogeneous) specification module
hierarchy and the current proof state, and thus may be used for monitoring
the overall correctness of a heterogeneous development.

Hets also provides a translation of Casl to and from a subset of OM-
Doc (namely some formal first-order subset). Future work aims at a deeper
integration of Hets and OMDoc that provides a translation to and from
OMDoc for each of the logics integrated in Hets. Moreover, OMDoc itself
will become a “logic” (but only with syntax, without model theory) within

16 These are the modules CTH and DG, respectively.

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

304 26 Applications and Projects

2*CoCASL2CoPCFOL

OWL_DL CspCASLCASL_DL

Modal

CoCASL HasCASL SPASS

CASL

Haskell

4*

Isabelle

Fig. 26.16. Graph of logics currently supported by Hets. The more an ellipse is
filled, the more stable is the implementation of the logic.

Hets, such that also informal OMDoc documents (or formal OMDoc docu-
ments written in a logic currently not available in Hets) will be manageable
for Hets. In this way, the data formats of OMDoc and Hets will converge,
such that tools e.g. for searching, versioning or management of change can be
implemented uniformly for both.

cpoint.tex 8062 2008-09-24 11:57:53Z kohlhase

26.14 CPoint 305

26.14 CPoint: An OMDoc Editor in MS PowerPoint

Project Home http://kwarc.eecs.iu-bremen.de/software/CPoint/

Authors Andrea Kohlhase
Digital Media in Education (DiMeB), Dept. of Math-
ematics and Computer Science, University Bremen

CPoint is an invasive, semantic OMDoc editor in MS PowerPoint (with
an OMDoc outlet) that enables a user to distinguish between form and con-
tent in a document. As such it can be viewed as an authoring tool for OMDoc
documents with a focus on their presentational potential. It enables a user to
make implicit knowledge explicit. Moreover, it provides several added-value
services to a content author in order to alleviate the short term costs of se-
mantic mark up in contrast to its long term gains.

26.14.1 The CPoint Approach

CPoint started out as a part of the Course Capsules Project (CCaps) at
Carnegie Mellon University (2001 — 2004), has been subsequently supported
by the International University Bremen (2004) and is now developed further
at the ’Digital Media in Education’ group at Bremen University. CPoint is
distributed under the Gnu Lesser General Public License (LGPL) [Fre99]. The
newest version can be downloaded from the project homepage.

PowerPoint (PPT) slides address exclusively the issue of presentation —
the placement of text, symbols, and images on the screen, carefully sequenced
and possibly animated or embellished by sound. This directly leads to the
question: What exactly is the content in a PPT presentation?

Obviously, the text and the pictures carry content as does the textual,
presentational, and placeholder structure. For instance the ordering of infor-
mation by writing it in list form, grouping information bubbles in one slide,
or marking text as title by putting it into a ’title’ placeholder can be mapped
directly onto the OMDoc omgroup and metadata elements. Unfortunately
though, this content exploits neither OMDoc’s theory level nor the state-
ment or formula level in more than a very superficial way.

The ’real’ content is hidden beneath the presentation form: the authors,
lecturers, and audience know or learn this real content by categorizing what
they see, and combining it with what they already know and presently hear.
CPoint stands for ’Content in PowerPoint’. It models this by providing the
author with a tool to explicitly store the additional implicit knowledge with
the PPT show itself and from within the PPT environment without de-
stroying the presentational aspects of the PPT document. Moreover, CPoint
converts the additional content to the appropriate OMDoc levels, so that
the resulting OMDoc document captures all content. For an author the se-
mantic markup process is a long-term investment. In order to alleviate the
author’s costs, CPoint has implemented several added-value services.

http://kwarc.eecs.iu-bremen.de/software/CPoint/

cpoint.tex 8062 2008-09-24 11:57:53Z kohlhase

306 26 Applications and Projects

26.14.2 The CPoint Application

CPoint extends PPT’s presentational functionalities by semantic ones to get
a handle on its visible and invisible content. As an invasive editor (see [?])
CPoint makes these semantic authoring tools available through a toolbar in
the PPT menu (see Figure 26.17) where they are available whenever PPT
is running. CPoint is written in Visual Basic for Applications and can be
distributed as a PPT add-in.

Fig. 26.17. The CPoint Menu Bar

The top-level structure of a PPT presentation is given by slides. Each slide
contains PPT objects, e.g. text boxes, shapes, images, or tables. These ob-
jects carry certain properties like text structure (e.g. ordered lists), document
structure (e.g. being a title in the text hierarchy), or presentational structure
(e.g. color, bold font, italic font, or symbol font). CPoint enables the author to
attach additional information to each PPT object. In particular, the author
is empowered to transform implicit into explicit knowledge by categorizing,
combining and enhancing these objects semantically.

Categorizing

The semantic annotation process typically starts with understanding an ob-
ject’s role in the to be transmitted knowledge and a subsequent categorization.
The author selects the respective PPT object and assigns a suitable (didactic)
role and category from a pre-defined list ranging from hard core mathemati-
cal categories like “Theory”, “Definition”, or “Assertion” to didactic elements
like “Question” or “Comment”. If a PPT object is part of a multi-part pre-
sentation (e.g. ranging over multiple slides) of a semantic entity, it can be
marked as a sequel and inherits all information from previous parts. This way
the PPT dependant linearity of the objects can be overcome.

Combining

For categorized PPT objects the author can input category specific content
via the respective details form (see Figure 26.18 as an example for a PPT
group categorized as “Axiom”). In particular, PPT objects can be assigned a
relation via CPoint’s reference system. For instance, the axiom in Figure 26.18
sits in the theory called ‘taxonomy of shapes’. A more sophisticated example
would be a proof for an assertion that is constructed out of several, individual
proof steps succeeding one another. Frequently, an author wants to reference
implicit knowledge (e.g. theories can comprise entire concepts and as such are
typically not explicitly presented in a lecture). Here, she can use CPoint to

cpoint.tex 8062 2008-09-24 11:57:53Z kohlhase

26.14 CPoint 307

create abstract PPT objects called abstract objects that are invisible in
the actual PPT show but can be dealt with like all other PPT objects.

Fig. 26.18. The CPoint Content Form for an Axiom Object

The information annotated in these processes can be exploited for added-
value services.

OMDoc Conversion

The heart of CPoint is the functionality for converting a fully (CPoint-
)edited presentation into a valid OMDoc document. This generated OMDoc
document can for instance be read into computer-supported education systems
like ActiveMath (see [MBA+01] and Section 26.8).

Added-Value Services

As author support is essential for the motivation doing the semantic markup
process, CPoint offers the following added-value services:

Content Search and Navigation CPoint’s GoTo facility makes use of
the additional semantic quality of PPT objects by offering content search.
For instance if an author remembers the existence of a definition of “equiv-
alence” in some (older) PPT presentation, she might look up all PPT
objects in a collection of several PPT presentations that are categorized
as “Definition” and whose title contain the word “equivalence”. The au-
thor is offered a list of all these objects and by selecting one she is directed
to the specific PPT object.

Dependency Graphs CPointGraphs enables the user to view graph based
presentations of the annotated knowledge on distinct detail levels.

Semantics-Induced Presentation The module CPointAuthor offers the
presentation of the underlying semantics. Whenever the author selects a

cpoint.tex 8062 2008-09-24 11:57:53Z kohlhase

308 26 Applications and Projects

PPT object basic semantic information (like category, title, and main ref-
erences) is presented to her. With CPoint’s Visualize Mode semantic
labels for annotated PPT objects are generated.

Creation of Pre-Categorized PPT Objects Based on an individually
designed CSS style sheet categorized, styled PPT objects can be cre-
ated with CPointAuthor. The layout is determined in the CSS file by
the respective category (e.g. proposition) or superordinate classification
(e.g. assertion, content, general).

Math Glyphs in PPT Based on the PPT add-in TexPoint, the CMath
functionalities empower an author to define individual symbol presen-
tations. CPoint introduces a mathematical user interface, which fully
integrates mathematical symbols into PowerPoint presentations based on
the semantics of the underlying objects rather than simply generating ap-
propriate ink marks. For instance, the author might categorize a PPT
object as a symbol with the name ’reals’ for the real numbers. The spe-
cific Unicode character to represent the real numbers can be declared with
CPoint. Subsequently, whenever the author writes the text ’\reals’ and
activates the math mode, then this sequence of characters is replaced by
the previously declared presentation. The symbol presentation may also
be given in LATEX form so that TexPoint can transform the LATEX code
into PPT glyphs. Note that this feature is not limited to math glyphs
but can be used for handy abbreviations (macros) as well.

Editorial Notes Treating PPT presentations as content documents requires
more editing, therefore CPointNotes add editorial functionalities like
grouped editorial notes and navigation within these.

OMDoc To PPT The CPointImport module enables the import of OM-
Doc documents into the PPT application. According to an individual
underlying CSS style sheet PPT objects in a newly created PPT presen-
tation are generated.

ActiveMath Integrated development environment for ActiveMath content
and specific ActiveMath book creation for a selected PPT object.

26.14.3 Future Work

In the future the addition of other added-value services for users is planned.
We want to shift the focus from the authoring role to the recipient role of a
PPT presentation, e.g. in form of a CPointStudent module in accordance
with the CPointAuthor module. Furthermore, a new, more basic and there-
fore more user-friendly interface for CPoint novices will be implemented. This
CPointBasic module will try to overcome the heavily form-oriented format
of CPoint. In a next step the growing of a CPoint user will be supported by
offering advanced CPoint utilities that will extend CPointBasic. Addition-
ally, the success of “social software” under the Web 2.0 paradigm like “social
bookmarking” gives rise to the idea of a new personal and sharable PPT ob-
jects management where the predefined categories in CPoint are replaced by

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26.14 CPoint 309

“social tags”. Another CPoint project is its extension for usage by teachers in
school, which usefulness has already been established in [Koh06]. The newest
project at the International University of Bremen is the implementation of a
CPoint-like editor for MS Word.

main.tex 6238 2006-12-12 14:22:03Z

310 26 Applications and Projects

26.15 STEX: A LATEX-Based Workflow for OMDoc
BErr(85)

Project Home http://kwarc.iu-bremen.de/projects/stex/

Authors Michael Kohlhase
Computer Science, International University Bremen

EErr(85)
One of the reasons why OMDoc has not been widely employed for repre-

senting mathematics on the web and in scientific publications, may be that the
technical communities that need high-quality methods for publishing mathe-
matics already have an established method which yields excellent results —
the TEX/LATEX system. A large part of mathematical knowledge is prepared
in the form of TEX/LATEX documents.

We present STEX (Semantic TEX) a collection of macro packages for
TEX/LATEX together with a transformation engine that transforms STEX docu-
ments to the OMDoc format. STEX extends the familiar and time-tried LATEX
workflow until the last step of Internet publication of the material: documents
can be authored and maintained in STEX using a simple text editor, a process
most technical authors are well familiar with. Only the last (publishing) step
(which is fully automatic) transforms the document into the unfamiliar XML
world. Thus, STEX can serve as a conceptual interface between the document
author and OMDoc-based systems: Technically, STEX documents are trans-
formed into OMDoc, but conceptually, the ability to semantically annotate
the source document is sufficient.

26.15.1 Recap of the TEX/LATEX System

TEX [Knu84] is a document presentation format that combines complex page-
description primitives with a powerful macro-expansion facility, which is uti-
lized in LATEX (essentially a set of TEX macro packages, see [Lam94]) to achieve
more content-oriented markup that can be adapted to particular tastes via
specialized document styles. It is safe to say that LATEX largely restricts con-
tent markup to the document structure17, and graphics, leaving the user with
the presentational TEX primitives for mathematical formulae. Therefore, even
though LATEX goes a great step into the direction of a content/context markup
format, it lacks infrastructure for marking up the functional structure of for-
mulae and mathematical statements, and their dependence on and contribu-
tion to the mathematical context.

But the adaptable syntax of TEX/LATEX and their tightly integrated pro-
gramming features have distinct advantages on the authoring side:

• The TEX/LATEX syntax is much more compact than OMDoc, and if
needed, the community develops LATEX packages that supply new func-
tionality with a succinct and intuitive syntax.

85 Erratum: The domain is kwarc.eecs.iu-bremen.de
17 supplying macros e.g. for sections, paragraphs, theorems, definitions, etc.

http://kwarc.iu-bremen.de/projects/stex/

main.tex 6238 2006-12-12 14:22:03Z

26.15 STEX: A LATEX-Based Workflow for OMDoc 311

• The user can define ad-hoc abbreviations and bind them to new control
sequences to structure the source code.

• The TEX/LATEX community has a vast collection of language extensions
and best practice examples for every conceivable publication purpose. Ad-
ditionally, there is an established and very active developer community
that maintains these.

• A host of software systems are centered around the TEX/LATEX language
that make authoring content easier: many editors have special modes for
LATEX, there are spelling/style/grammar checkers, transformers to other
markup formats, etc.

In other words, the technical community is heavily invested in the whole
workflow, and technical know-how about the format permeates the commu-
nity. Since all of this would need to be re-established for an OMDoc-based
workflow, the community is slow to take up OMDoc over TEX/LATEX, even
in light of the advantages detailed in this book.

26.15.2 A LATEX-based Workflow for XML-based Mathematical
Documents

An elegant way of sidestepping most of the problems inherent in transitioning
from a LATEX-based to an XML-based workflow is to combine both and take
advantage of the respective values.

The key ingredient in this approach is a system that can transform
TEX/LATEX documents to their corresponding XML-based counterparts. That
way, XML-documents can be authored and prototyped in the LATEX workflow,
and transformed to XML for publication and added-value services.

There are various attempts to solve the TEX/LATEX to XML transforma-
tion problem; the most mature is probably Bruce Miller’s LaTeXML sys-
tem [Mil07]. It consists of two parts: a re-implementation of the TEX analyzer
with all of its intricacies, and an extensible XML emitter (the component that
assembles the output of the parser). Since LATEX style files are (ultimately)
programmed in TEX, the TEX analyzer can handle all TEX extensions18, in-
cluding all of LATEX. Thus the LaTeXML parser can handle all of TEX/LATEX,
if the emitter is extensible, which is guaranteed by the LaTeXML binding
language: To transform a TEX/LATEX document to a given XML format, all
TEX extensions must have “LaTeXML bindings”, i.e. directives to the La-
TeXML emitter that specify the target representation in XML.

The STEX system that we present here supplies a set of TEX/LATEX pack-
ages and the respective LaTeXML bindings that allow to add enough struc-
tural information in the TEX/LATEX sources, so that the LaTeXML system
can transform them into documents in OMDoc format.

18 i.e. all macros, environments, and syntax extensions used int the source document

main.tex 6238 2006-12-12 14:22:03Z

312 26 Applications and Projects

26.15.3 Content Markup of Mathematical Formulae in TEX/LATEX

The main problem here is that run-of-the-mill TEX/LATEX only specifies the
presentation (i.e. what formulae look like) and not their content (their func-
tional structure). Unfortunately, there are no universal methods (yet) to infer
the latter from the former. Consider for instance the following “standard no-
tations”19 for binomial coefficients:

(
n
k

)
, nC

k, Cnk , and Ckn all mean the same

thing: n!
k!(n−k)! . This shows that we cannot hope to reliably recover the func-

tional structure (in our case the fact that the expression is constructed by
applying the binomial function to the arguments n and k) from the presenta-
tion alone short of understanding the underlying mathematics.

The apparent solution to this problem is to dump the extra work on the
author (after all she knows what she is talking about) and give her the chance
to specify the intended structure. The markup infrastructure supplied by the

STEX collection lets the author do this without changing the visual appear-
ance, so that the LATEX workflow is not disrupted. We speak of semantic
preloading for this process. For instance, we can now write

\CSum{k}1\infty{\Cexp{x}k} instead of \sum_{k=1}^\infty x^k (26.1)

for the mathematical expression
∑∞
k=1 x

k. In the first form, we specify that we
are applying a function (CSumLimits =̂ sum with limits) to four arguments:
(i) the bound variable k (ii) the number 1 (iii) ∞ (iv) \Cexp{x}k (i.e. x to
the power k). In the second form, we merely specify hat LATEX should draw a
capital sigma character (Σ) whose subscript is the equation k = 1 and whose
superscript is ∞. Then it should place next to it an x with an upper index k.

Of course human readers (who understand the math) can infer the con-
tent structure from the expression

∑∞
k=1 x

k of the right-hand representation
in (26.1), but a computer program (who does not understand the math or
know the context in which it was encountered) cannot. However, a converter
like LaTeXML can infer this from the left-hand LATEX structure with the
help of the curly braces that indicate the argument structure. This technique
is nothing new in the TEX/LATEX world, we use the term “semantic macro”
for a macro whose expansion stands for a mathematical object. The STEX
collection provides semantic macros for all Content-MathML elements to-
gether with LaTeXML bindings that allow to convert STEX formulae into
MathML.

26.15.4 Theories and Inheritance of Semantic Macros

Semantic macros are traditionally used to make TEX/LATEX code more portable.
However, the TEX/LATEX scoping model (macro definitions are scoped either

19 The first one is standard e.g. in Germany and the US, the third one in France,
and the last one in Russia

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26.15 STEX: A LATEX-Based Workflow for OMDoc 313

in the local group or to the end of the document), does not mirror mathemat-
ical practice, where notations are scoped by mathematical environments like
statements, theories, or such (see [Koh05b] for a discussion and examples).
Therefore the STEX collection provides an infrastructure to define, scope, and
inherit semantic macros.

In a nutshell, the STEX symdef macro is a variant of the usual newcommand,
only that it is scoped differently: The visibility of the defined macros is ex-
plicitly specified by the module environment that corresponds to the OMDoc
theory element. For this the module environment takes the optional KeyVal
arguments id for specifying the theory name and uses for the semantic in-
heritance relation. For instance a module that begins with

\begin{module}[id=foo,uses={bar,baz}]

restricts the scope of the semantic macros defined by the \symdef form to the
end of this module given by the corresponding \end{module}, and to any other
module environment that has [uses={...,foo,...}] in its declaration. In
our example the semantic macros from the modules bar and baz are inherited
as well as the ones that are inherited by these modules.

We will use a simple module for natural number arithmetics as an example.
It declares a new semantic macro for summation while drawing on the basic
operations like + and − from LATEX. \Sumfromto allows us to express an
expression like [

∑n
i=1 2i − 1]86

r as \Sumfromto{i}1n{2i-1}. In this example Err(86)
we have also made use of a local semantic symbol for n, which is treated as
an arbitrary (but fixed) symbol (compare with the use of \arbitraryn below,
which is a new — semantically different — symbol).

\begin{module}[id=arith]
\symdef{Sumfromto}[4]{\sum {#1=#2}ˆ{#3}{#4}}
\symdef[local]{arbitraryn}{n}

4 What is the sum of the first \arbitraryn odd numbers, i.e.
$\Sumfromto{i}1\arbitraryn{2i−1}?$
\end{module}

is formatted by STEX to

What is the sum of the first n odd numbers, i.e.
∑n
i=1 2i− 1?

Moreover, the semantic macro Sumfromto can be used in all module envi-
ronments that import it via its uses keyword. Thus STEX provides sufficient
functionality to mark up OMDoc theories with their scoping rules in a very
direct and natural manner. The rest of the OMDoc elements can be modeled
by LATEX environments and macros in a straightforward manner.

The STEX macro packages have been validated together with a case
study [Koh05b], where we semantically preloaded the course materials for a
two-semester course “General Computer Science I&II” at International Uni-
versity Bremen and transform them to the OMDoc, so that they can be used
in the ActiveMath system (see Section 26.8).

86 Erratum! correct example given (original text was: “
∑n

i=1 x
i”)

report.tex 6161 2006-10-03 13:04:46Z

314 26 Applications and Projects

26.16 An Emacs mode for editing OMDoc Documents

Project Home http://www.cs.cmu.edu/~ccaps

Authors Peter Jansen
School of Computer Science, Carnegie Mellon Uni-
versity

We describe an Emacs major mode for editing OMDoc documents, de-
veloped by the Course Capsules project group at the CMU School of Com-
puter Science. This mode extends the Emacs editor [Sta02] with functionality
intended to help visualize, edit, and create documents written in OMDoc for-
mat.

The mode is part of the OMDoc distribution (see Section 23.2), it is pro-
vided under the conditions specified in the Library Gnu Public License [Fre99].

26.16.1 Introduction

The CCaps project has developed tools to convert legacy materials written in
a variety of formats (PowerPoint, Mathematica®, etc.) into the OMDoc
format (see Sections 26.14 and 26.17). In many cases the output generated by
such tools needs to be post-processed or otherwise modified.

To this end, a user must open the file, read and understand its contents
and perform the appropriate modifications. Though an OMDoc document is
a regular text file, most of its content consists of markup, which is hard to
read and tedious to type. It is therefore important to support the user with
tools that make a document easier to read and modify, either in the form of
a separate editor, or as an extension of an existing editor.

One approach to this is to build a visual OMDoc editor , which presents
the document in a form resembling conventional mathematical documents
(i.e., without showing the markup explicitly, and with appropriate formatting
for mathematical formulae), and offers the user functionality to modify or
annotate its content.

While this is ideal for user understanding of document content, it pre-
supposes consistent syntactic correctness, makes it more difficult to inspect
or change markup directly, and may present challenges as to resolving user
action ambiguities.

We have taken this approach in the CPoint and Mathematica® add-
ins (see Sections 26.14 and 26.17). But we also wanted a tool that would
maintain full control of all the textual information, while offering support
for readability and editing functionality. We chose for this tool to extend the
Emacs editor [Sta02], which lends itself very well to this task (as well as being
the editor for general use for several of our group).

26.16.2 OMDoc mode functionality

We now look at the different categories of functionality in slightly more detail.

http://www.cs.cmu.edu/~ccaps

report.tex 6161 2006-10-03 13:04:46Z

26.16 An Emacs mode for editing OMDoc Documents 315

Visualization

is currently provided by the use of the Emacs font-lock mechanism to give
different categories of tags and content different fonts and colors to make them
easily recognizable. Element categories currently recognized correspond to the
OMDoc 1.2 modules: Document structure, Math, Theories, Auxiliaries, Pre-
sentation, OpenMath, and the Dublin Core elements.

A customizable indentation function allows for intelligible layout, which is
helpful both in hand-coding and the editing of the output of a legacy transfor-
mation process. There are key bindings for line, region, and enclosing element
indentation.

Editing

Functionality consists mainly of automated insertion of templates for each
of the OMDoc elements, both via mode-dependent menu options and key
bindings, grouped by element category (the same categories as given above).

The template insertion mechanism is based on tempo.el, which allows for
the maintenance of a list of insertion points the user can navigate in between
to supply or change the values of certain attributes.

The main function currently available for completing incomplete elements
is the equivalent of the standard electric-/ function. We are planning to
add several other completion functions in the near future (for tags, tag sets,
attribute names, and symbol and theory names).

The mode also provides for validation: either internally (as a simple local
syntax check to check well-formedness) or externally (via an external xml vali-
dation validation engine). Internal validation builds an abbreviated parse tree,
and highlights discrepancies, suggesting possible modifications of insertions of
element opening or closing tags. External validation runs an external xml val-
idation engine (RXP or nsgmls, depending on the configuration variables),
and shows the output in a separate buffer.

Document creation

is supported by automatic insertion of a basic OMDoc skeleton in new buffers
as well as a time-stamp updating mechanism and some smaller functions that
extract information from the user’s environment variables to supply informa-
tion for some of the metadata slots (see the example in Figure 26.19 below).

26.16.3 Examples

We illustrate some of the above by means of a few screen shots. The example
in Figure 26.20 is taken while editing a document that was semi-automatically
generated from part of a Mathematica® notebook ([Sut06]). Here, the user
has already run an automated indentation function, for example by activating

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

316 26 Applications and Projects

Fig. 26.19. Opening a new Buffer in OMDoc Mode

Fig. 26.20. Editing an OMDoc Document

omdoc-indent-enclosing-main by typing C-c C-q, and is now about to use
the OMDoc menu to enter a new construct.

After this operation, which could also have been performed by typing the
key sequence C-c C-t a), Emacs inserts the following text at the point (i.e.
cursor position).

<axiom−inclusion xml:id=”” to=””> </axiom−inclusion>

The second example shows the skeleton template that is automatically
inserted when the user opens a new file: Figure 26.19. Note that the file name
has been used as id and title automatically, and the user’s address appears
in the Author field. Timestamps are inserted in Date fields for both creation

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26.16 An Emacs mode for editing OMDoc Documents 317

and update, and the latter is adjusted automatically every time changes are
saved to the file.

nb2omdoc.tex 6161 2006-10-03 13:04:46Z

318 26 Applications and Projects

26.17 Converting Mathematica Notebooks to OMDoc

Project Home http://www.cs.cmu.edu/~ccaps

Authors Klaus Sutner
School of Computer Science, Carnegie Mellon Uni-
versity

We describe a tool that converts Mathematica® notebooks to OMDoc.
The program is implemented entirely in Mathematica® and easily extensi-
ble.

Creating an editor for general mathematical documents is notoriously diffi-
cult, in particular when input methods are required that mimic the traditional
two-dimensional layout of many formulae. Thus, it seems natural to use an
existing high-quality system such as the Mathematica® notebook front end
as an authoring tool for mathematical documents. A considerable amount of
effort has gone into the design of this front end, see for example [Wol00], re-
sulting in a surprisingly versatile system. The notebook front end provides a
rich set of palettes that allow inexperienced users to construct complicated
expressions almost instantaneously. For more advanced users there is a well-
thought-out set of keyboard operations that make it possible to create, nav-
igate and edit two-dimensional expressions with relative ease and without
recourse to time-consuming mouse-based operations. Unlike with TEX, the
results are immediately visible and corrections are easy to make. Nonethe-
less, the quality of the typeset expression approaches that of TEX. Last, but
not least, the Mathematica® kernel can be used to generate complicated
expressions and even whole notebooks automatically.

Mathematica® provides significant support for import, export and ma-
nipulation of XML documents and expressions, see [Wol02]. Thus, one can
export a notebook in MathML format, or in a special NotebookML for-
mat. Unfortunately, these export mechanisms cannot be modified directly to
produce highly marked-up documents in OMDoc format.

The nb2omdoc converter uses a recursive descent parser, that scans the
given notebook document and generates corresponding OMDoc. As far as
structured text is concerned this is a fairly straightforward operation. How-
ever, special care needs to be taken to deal with mathematical text elements,
such as definitions, theorems, proofs and such like, and mathematical expres-
sions, in inline format as textual elements as well as in evaluatable format (as
input for the Mathematica® kernel). We comment on both issues in turn.

Mathematica® notebooks provide reasonable support for the creation
of well-structured documents, but enforce no particular discipline. A fragment
of a typical notebook, showing some section headers and a bit of text with
inline mathematical formulae is shown in Figure 26.21.

In order to facilitate the translation process it is advisable to front-load
the process: the author of the notebook is encouraged to use a special note-
book stylesheet, OMDocStyle.nb, that defines a number of syntactic categories

http://www.cs.cmu.edu/~ccaps

nb2omdoc.tex 6161 2006-10-03 13:04:46Z

26.17 Converting Mathematica Notebooks to OMDoc 319

Fig. 26.21. A Mathematica® Notebook

normally absent in a notebook. These categories are implemented as a combi-
nation of the cell types and cell labels. As a typical example, consider a proof
of some assertion such as a theorem. Ordinarily, a sequence of plain text cells
would be used to express a proof since none of the standard Mathematica®

stylesheets provide a special proof style–though some have a theorem style.
The elements defined in OMDocStyle.nb are easily accessible via pulldown
menus or via keyboard shortcuts in the notebook front end. Moreover, the
special styles are color-coded in the notebook, so that it is easy for the author
to see which elements are present and which might be missing.

The conversion of mathematical expressions in the notebook is accom-
plished in a two-step procedure. First, we use the built-in Mathematica®

operation ExpressionToSymbolicMathML that produces a symbolic expres-
sion representing a MathML term that corresponds to the original notebook
expression. In a second, post-processing step this expression is then trans-
formed into an OpenMath expression. The post-processing relies heavily on
the sophisticated pattern matching mechanism in Mathematica® and uses a
special collection of rewrite rules. The rules are based on fairly simple-minded
heuristics but do produce adequate results so long as the starting expression
is not too complicated. As an example, consider the simple polynomial ex-
pression ax2 + bx+ c whose internal representation in Mathematica® looks
like so (we assume here the expression appears inline within a block of text,
the situation for an input expression is entirely similar):

Cell [BoxData[FormBox[RowBox[{
RowBox[{”a”, ” ”, SuperscriptBox[”x”, ”2”]}], ”+”, ” ”,
RowBox[{”b”, ” ”, ”x”}], ” ”, ”+”, ” ”, ”c”}],

4 TraditionalForm]]]

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

320 26 Applications and Projects

The first conversion step produces the following Mathematica® expression,
shortened here to save space:

1 XMLElement[”math”,
{”xmlns” −>”http://www.w3.org/1998/Math/MathML”},
{XMLElement[”apply”, {}, {XMLElement[”plus”, {}, {}],
XMLElement[”apply”, {}, {XMLElement[”times”, {}, {}],

XMLElement[”ci”, {}, {”a”}],
6 XMLElement[”apply”, {}, {XMLElement[”power”, {}, {}],

XMLElement[”ci”, {}, {”x”}],
XMLElement[”cn”, {”type”−>”integer”}, {”2”}]}]}], ... }]}]

The post-processing finally yields the following expression, again shown only
in part.

XMLElement[”OMOBJ”, {}, {XMLElement[”OMA”, {},
2 {XMLElement[”OMS”,

{”cd”−>”arith1”, ”name”−>”plus”}, {}],
XMLElement[”OMA”, {}, {XMLElement[”OMS”,
{”cd”−>”arith1”, ”name”−>”times”}, {}],

XMLElement[”OMV”, {”name”−>”a”}, {}],
7 XMLElement[”OMA”, {}, {XMLElement[”OMS”,

{”cd”−>”arith1”, ”name”−>”power”}, {}], ...}]}]}]}]

The content dictionary was properly guessed in this instance. Judging from
the limited experiments we have undertaken so far, it seems reasonable to
expect that a fair amount of the translation can be automated given that the
field of discourse is limited, and that the author is willing to customize the
rewrite rules that control the post-processing step. Fortuitously, very little
knowledge of Mathematica® programming beyond some basic syntax is
necessary for the creation of these rules; mathematicians are likely to find
these rules fairly intuitive and natural.

At present, the conversion program is somewhat limited in its ability to
deal with arbitrarily structured notebooks. It works well with a suite of note-
books developed specifically for the OMDocStyle.nb, but requires modification
for other types of notebooks. While it is not our goal to provide a truly gen-
eral conversion tool with a scope comparable to, say, the built-in conversion
to MathML, some generalizations are still needed at this point.

Another crucial issue is the extension of the rewrite rules used in the post-
processing step leading from MathML to OpenMath. No effort has been
made so far to systematically generate a set of rules suitable for a large class
of documents. At the very least, an extension mechanism is needed that makes
it easy for non-expert users to create the necessary rule tables.

Lastly, it is desirable to create a Mathematica® palette-based tool that
focuses more narrowly on the authoring and conversion of mathematical ex-
pressions only rather than whole notebooks. The generated raw OpenMath
expressions can be fed directly into a low-level editor such as emacs using the
special OMDoc mode created as part of the CCaps project, see elsewhere in
this volume for a description.

main.tex 8011 2008-09-07 19:43:48Z kohlhase

26.18 Standardizing Context in System Interoperability 321

26.18 Standardizing Context in System Interoperability

Project Home http://omdoc.org/examples/logics

Authors Michael Kohlhase
Computer Science, International University Bremen

In this project the OMDoc format is used as a content language for the
protocol-based integration of mathematical software systems, where the sys-
tems offer mathematical services by publishing service descriptions and inter-
operate by exchanging computation requests and results. The mechanics of
the communication and domain-independent part of meaning of these mes-
sages is given by a standardized ’interlingua’ (which will not concern us here),
a possible implementation of the transport layer we have seen in Chapter 9.
Here we are interested in the mathematical objects contained in the messages

OMDoc can help with the task of making mathematical objects in-
teroperable, as we have seen in series of experiments of connecting the
theorem proving systems Ωmega [BCF+97], InKa [HS96], Pvs [ORS92],
λClam [RSG98b], TPS [ABI+96], and CoQ [Tea] to the MBase system by
equipping them with an OMDoc interface. As expected, OpenMath and
Content-MathML solve the problem of syntactically standardizing the rep-
resentation of mathematical objects. For a semantic interoperability we also
need to capture their context. This is not a problem for Content-MathML,
as the context is already standardized in the MathML recommendation. For
OpenMath, the context is given by the set of content dictionaries in use
for representing the mathematical objects. Nevertheless mathematical soft-
ware systems — such as computer algebra systems, visualization systems,
and automated theorem provers — come with different conceptualizations of
the mathematical objects (see [?] for a discussion). This has been in prin-
ciple solved by supplying a flexible and structured theory level in the form
of OMDoc content dictionaries that define necessary mathematical concepts
(see Subsection 26.18.1 for practical considerations). For systems like theorem
provers or theory development environments, where the mathematical objects
are axioms, definitions, assertions, and proofs there is another problem: that of
standardizing the logical language, which we will discuss in Subsection 26.18.2.

26.18.1 Context Interoperability via Theory Morphisms

As an example for the integration of two mathematical software systems we
look at the task of integrating the Pvs and Ωmega set theory libraries. This
is simpler than e.g. integrating the computer algebra systems Maple™ and
Mathematica®, since all the conceptualizations and assumptions are explic-
itly given, but gives an intuition for the difficulties involved. We summarize
the situation in Figure 26.22, where we compare symbol names for set theory
concepts in the two systems. The general problem in such an integration
of mathematical software systems consists in their independent growth over

http://omdoc.org/examples/logics

main.tex 8011 2008-09-07 19:43:48Z kohlhase

322 26 Applications and Projects

PVS Ωmega PVS Ωmega

set subset? subset

member in subset2

empty? empty strict subset? proper-subset

emptyset emptyset superset

nonempty? not-empty union union

full? union2

fullset union-over-collection

singleton? singleton intersection intersection

singleton intersection-over-coll.

complement set-complement disjoint? misses

difference setminus meets

symmetric difference add add-one

exclunion remove

Fig. 26.22. Set Theories in Ωmega and Pvs

time, leading to differing names, definitions, theory boundaries, and possibly
conceptualizations. Most of these particulars are artefacts of constraints im-
posed by the system (e.g. file lengths). In this situation theory interpretations
suggest themselves as a means for theory integration: We can use theory in-
terpretations to establish inclusion into a suitably constructed integration
theory. In Figure 26.23 we have executed this for the set theory libraries of
the systems Pvs, Ωmega, TPS, and Imps; we provide an ‘integration theory’
mbase:sets — it provides rationally reconstructed versions of all concepts
encountered in the system’s libraries — and a set of theory inclusions ρ∗
that interpret the system concepts in terms of mbase:sets. Note that since
the ρ∗ are monomorphisms, we can factor any existing theory inclusion (e.g.
pvs:sets to pvs:funcs highlighted in Figure 26.22) via the integration the-
ory, using the partial inverse ρ−1

∗ of ρ∗. For an integration of a set of software
systems this refactoring process is repeated recursively from terminal- to ini-
tial nodes in the imports relation.

pvs:sets omega:typed-set tps:GWFF317.ABBRV imps:set . . .

mbase:sets
ρp

ρo ρt

ρi

pvs:funcs omega:functions tps:GWFF334.ABBRV imps:fun . . .

ρ−1
p

ρ−1
o ρ−1

t

ρ−1
i

Fig. 26.23. Theory Translations for System Integration

Note that technically we do not need to change the interface language
of the mathematical software systems20, we only rationally reconstruct their

20 This is important if we want to integrate proprietary software systems, where we
have no control over the interfaces.

main.tex 8011 2008-09-07 19:43:48Z kohlhase

26.18 Standardizing Context in System Interoperability 323

meaning in terms of the new integration theory, which can act as a gold stan-
dard for the integration. Socially the existence of the new standard theory
may prompt a migration to the nomenclature and coverage of the integration
theory. Note furthermore, that we have only treated the simple case, where
the mathematical conceptualizations underlying the software systems are al-
ready explicitly given in a library. For many mathematical software systems
the underlying conceptualizations and assumptions are only documented in
scientific papers, user manuals, or inscribed into the code. For such systems,
interface theories that make them explicit have to be developed to pursue
the integration strategy presented above. Of course, this process needs a lot
of manual labor, but leads to true interoperability of mathematical software
systems, which can now re-use the work of others.

Finally note that the integration only works as smoothly as in our scenario,
if the systems involved make assumptions about mathematical objects that are
compatible with each other. In most cases, incompatibilities can be resolved
by renaming concepts apart, e.g. one system considers set union to be a binary
operation, while the other considers it as n-ary. Here, the integration theory
would supply two distinct (though possibly semantically related) concepts;
The theory-based integration approach allows to explicitly disambiguate the
concepts and thus prevent confusion and translation errors. In very few cases,
systems are truly incompatible e.g. if one assumes an axiom which the other
rejects. In this case the theory based integration approach breaks down —
indeed a meaningful integration seems impossible and unnecessary.

26.18.2 A Hierarchy of Logical Languages

In the example above we made use of the fact that theorem proving systems
are simpler to deal with than other mathematical software systems, since they
encode the underlying assumptions explicitly into mathematical libraries. Un-
fortunately though, this is only partially true the underlying base logics are
usually not treated in this way. Fortunately, logical concepts are treated in
OMDoc just like ordinary ones: by content markup in Content-MathML
or OpenMath, so that there is no fundamental barrier to treating them as
the theory contexts above; we only have to come up with interface theories
for them. We have done just that when we equipped various logic-based sys-
tems with OMDoc interfaces observing that even though the systems are of
relatively different origin, their representation languages share many features:

• TPS and Pvs are based on a simply typed λ-calculus and only use type
polymorphism in the parsing stage, whereas Ωmega and λClam allow
ML-style type polymorphism.

• Ωmega, InKa and Pvs share a higher sort concept, where sorts are basi-
cally unary predicates that structure the typed universe.

• Pvs and CoQ allow dependent- and record types as basic representational
features.

main.tex 8011 2008-09-07 19:43:48Z kohlhase

324 26 Applications and Projects

but also differ on many others: for instance InKa, Pvs, and CoQ explic-
itly support inductive definitions, but by very different mechanisms and on
differing levels. CoQ uses a constructive base logic, whereas the other sys-
tems are classical. The similarities are not that surprising, all of these sys-
tems come from similar theoretical assumptions (most notably the Automath
project [dB80]), and inherit the basic setup (typed λ-calculus) from it. The
differences can be explained by differing intuitions in the system design and
in the intended applications.

truthval

pl0

skl0

ind

pl1

undef

skl1 partial1

subst

lambda-calc

simple-types

dep-types

stlc

sthol

records

IMPS PVSOMEGA

Fig. 26.24. A Hierarchy of Logical Languages

We have started to provide a standardized, well-documented set of content
dictionaries for logical languages in the OMDoc distribution. These are or-
ganized hierarchically, as depicted in Figure 26.24. In essence, the structured
theory mechanism in OMDoc is used to create a language hierarchy that
inter-relates the various representation formats of existing theorem provers.
For instance the simply typed λ-calculus can be factored out (and thus shared)
of the representation languages of all theorem proving systems above. This
makes the exchange of logical formulae via the OMDoc format very simple,
if they happen to be in a suitable common fragment: In this case, the common
(OpenMath/OMDoc) syntax is sufficient for communication.

26.18.3 Logic Interoperability via Logic Morphisms

In theoretical accounts of the integration of logical languages, one finds cat-
egorical accounts like the one described in Section 26.13 or proof-theoretic
ones based on definitions like the one below. Both mesh well with the OM-
Doc representation format and its theory level; we will show this for the
proof-theoretic account here.

Definition 26.1. A logical system S = (L, C) consists of a language L
(i.e. a set of well-formed formulae) and a calculus C (i.e. a set of inference
rules). A calculus gives us a notion of a C-derivation of A from H, which

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26.18 Standardizing Context in System Interoperability 325

we will denote by D:H `C A. Let S and S ′ be logical systems, then a logic
morphism F :S → S ′ consists of a language morphism FL:L → L′ and a
calculus morphism FD from C-derivations to C′-derivations, such that for
any C-derivation D:H `C A we have FD(D):FL(H) `C′ FL(A).

The intuition behind this is that logic morphisms transport proofs between
logical systems. Logic morphisms come in all shapes and sizes, a well-known
one is the relativization morphism from sorted logics to unsorted ones, for
instance the morphism R from sorted first-order logic (SFOL) to unsorted
first-order logic (FOL). For every sorted constant R introduces an axiom e.g.
R([+:N→ N→ N]) = ∀X,Y.N(X) ∧N(Y)⇒ N(X + Y). On formulae sorted
quantifications are translated into unsorted ones guarded by sort predicates,
e.g. R(∀XB.A) = ∀X.B(X) ⇒ R(A). Finally, for proofs we have the corre-
spondence given in Figure 26.25, where A,B, . . . are sort symbols.

R

(
A:B→ C B:B

AB:C

)
=

∀X.B(X)⇒ C(AX)

B(B)⇒ C(AB) B(B)

C(AB)

R

(
∀XB.A B:B

[B/X]A

)
=

∀X.B(X)⇒R(A)

B(R(B))⇒R([B/X]A) B(B)

R([B/X]A)

Fig. 26.25. Relativization Morphism on Proofs

In Definition 26.1 a logical system is a two-partite object consisting of
a language and a calculus. In the ontologically promiscuous OMDoc format
both parts are represented largely like ordinary mathematically concepts. The
notable exception is that proofs have a slightly dual representation, but infer-
ence rules of a calculus are still represented as symbols via the Curry-Howard
isomorphism (see Chapter 17). Thus a logical system can be represented as
an OMDoc theory as we did above, moreover, the logic morphism R can
simply be encoded as a theory inclusion from SFOL to FOL mapping SFOL
constants for inference rules to FOL terms for proofs. The condition on the
form of derivations in Definition 26.1 now simply takes on the form of a type
compatibility condition.

main.tex 6161 2006-10-03 13:04:46Z

326 26 Applications and Projects

26.19 Integrating Proof Assistants as Plugins in a
Scientific Editor

Project Home http://www.ags.uni-sb.de/~omega/projects/

verimathdoc

Authors Serge Autexier, Christoph Benzmüller, Armin
Fiedler, and Henri Lesourd
Computer Science, Saarland University,
Saarbrücken, Germany

In contrast to computer algebra systems (CASs), mathematical proof as-
sistance systems have not yet achieved considerable recognition and relevance
in mathematical practice. One significant shortcoming of the current systems
is that they are not fully integrated or accessible from within standard math-
ematical text-editors and that therefore a duplication of the representation
effort is typically required. For purposes such as tutoring, communication,
or publication, the mathematical content is in practice usually encoded using
common mathematical representation languages by employing standard math-
ematical editors (e.g., LATEX and Emacs). Proof assistants, in contrast, require
fully formal representations and they are not yet sufficiently linked with these
standard mathematical text editors. Therefore, we have decided to extend the
mathematical text editor TEXmacs [dH01] in order to provide direct access
from it to the mathematics assistance system Ωmega [SBB+02, SBA05]. Gen-
erally, we aim at an approach that is not dependent on the particular proof
assistant system to be integrated [ABFL06].

TEXmacs [dH01] is a scientific WYSIWYG text editor that provides
professional typesetting and supports authoring with powerful macro defi-
nition facilities like in LATEX. The internal document format of TEXmacs is
a Scheme S-expression composed of TEXmacs specific markup enriched by
definable macros. The full access to the document format together with the
possibility to define arbitrary Scheme functions over the S-expressions makes
TEXmacs an appropriate text editor for an integration with a mathematical
assistance system.

The mathematical proof assistance system Ωmega [SBB+02, SBA05] pro-
vides proof development at a high level of abstraction using knowledge-based
proof planning and the proofs developed in Ωmega can be verbalized in nat-
ural language via the proof explanation system P.rex [Fie01b]. As the base
calculus of Ωmega we use the Core calculus [Aut03, Aut05], which sup-
ports proof development directly at the assertion level [Hua96], where proof
steps are justified in terms of applications of definitions, lemmas, theorems,
or hypotheses (collectively called assertions).

Now, consider a teacher, student, engineer, or mathematician who is about
to write a new mathematical document in TEXmacs. A first crucial step in
our approach is to link this new document to one or more mathematical the-
ories provided in a mathematical knowledge repository. By providing such a

http://www.ags.uni-sb.de/~omega/projects/verimathdoc
http://www.ags.uni-sb.de/~omega/projects/verimathdoc

main.tex 6161 2006-10-03 13:04:46Z

26.19 Proof Assistants in Scientific Editors 327

link the document is initialized and TEXmacs macros for the relevant math-
ematical symbols are automatically imported; these macros overload the pure
syntactical symbols and link them to formal semantics. In a TEXmacs dis-
play mode, where this additional semantic information is hidden, the user may
then proceed in editing mathematical text as usual. The definitions, lemmas,
theorems and especially their proofs give rise to extensions of the original
theory and the writing of some proof goes along with an interactive proof
construction in Ωmega. The semantic annotations are used to automatically
build up a corresponding formal representation in Ωmega, thus avoiding a
duplicated encoding effort of the mathematical content. Altogether this allows
for the development of mathematical documents in professional type-setting
quality which in addition can be formally validated by Ωmega, hence obtain-
ing verified mathematical documents.

Using TEXmacs’s macro definition features, we encode theory-specific
knowledge such as types, constants, definitions and lemmas in macros. This
allows us to translate new textual definitions and lemmas into the formal
representation, as well as to translate (partial) textbook proofs into formal
(partial) proof plans.

Rather than developing a new user interface for the mathematical assis-
tance system Ωmega, we adapt Ωmega to serve as a mathematical service
provider for TEXmacs. The main difference is that instead of providing a
user interface only for the existing interaction means of Ωmega, we extend
Ωmega to support requirements that arise in the preparation of a semi-formal
mathematical document. In the following we present some requirements that
we identified to guide our developments.

The mathematical document should be prepared directly in interaction
with Ωmega. This requires that (1) the semantic content of the document
is accessible for a formal analysis and (2) the interactions in either direction
should be localized and aware of the surrounding context.

To make the document accessible for formal analysis requires the extrac-
tion of the semantic content and its encoding in some semi-formal represen-
tation suitable for further formal processing. Since current natural language
analysis technology cannot yet provide us with the support required for this
purpose, we use semantic annotations in the TEXmacs document instead.
Since these semantic annotations must be provided by the author, one require-
ment is to keep the burden of providing the annotations as low as possible.

Due to their formal nature the representations of mathematical objects, for
instance, definitions or proofs, in existing mathematical assistance systems are
very detailed, whereas mathematicians omit many obvious or easily inferable
details in their documents: there is a big gap between common mathematical
language and formal, machine-oriented representations. Thus another require-
ment to interfacing TEXmacs to Ωmega is to limit the details that must be
provided by the user in the TEXmacs document to an acceptable amount.

In order to allow both the user and the proof assistance system to ma-
nipulate the mathematical content of the document we need a common rep-

main.tex 6161 2006-10-03 13:04:46Z

328 26 Applications and Projects

resentation format for this pure mathematical content implemented both in
TEXmacs and in Ωmega. To this end we define a language S, which in-
cludes many standard notions known from other specification languages, such
as terms, formulas, symbol declarations, definitions, lemmas and theorems.
The difference to standard specification languages is that our language S (i)
includes a language for proofs, (ii) provides means to indicate the logical con-
text of different parts of a document by fitting the narrative structure of
documents rather than imposing a strictly incremental description of theories
as used in specification languages, and (iii) accommodates various aspects of
underspecification, that is, formal details that the writer purposely omitted.
Given the language S, we augment the document format of TEXmacs by
the language S. Thus, if we denote the document format of TEXmacs by T ,
we define a semantic document format T + S as a document format still
accepted by TEXmacs.

Ideally this format of the documents and especially the semantic anno-
tations should not be specific to Ωmega in order to enable the combination
of the TEXmacs extension with other proof assistance systems as well as
the development of independent proof checking tools. However, an abstract
language for proofs that is suitable for our purposes and that allows for under-
specification is not yet completely fixed. So far we support the assertion-level
proof construction rules provided by Core [Aut03, Aut05]. Thus, instead of
defining a fixed language S, we define a language S(P) parametrized over a
language P for proofs and define the document format based on S(C), where
C denotes the proof language of Core. This format supports the static rep-
resentation of semantically annotated documents, which can be professionally
typeset with TEXmacs.

The TEXmacs document T + S(C) and the pure semantic representation
S(C) in the proof assistant must be synchronized. The basic idea here is to
synchronize via a diff/patch mechanism tailored to the tree structure of the
TEXmacs documents. The differences between two versions tsi and tsi+1 of
the document in T + S(C) are compiled into a patch description p of the
corresponding document si in S(C) for tsi, such that the application of p
to si results in si+1 which corresponds to tsi+1. An analogous diff/patch
technique is used to propagate changes performed by the proof assistant tool
to documents in S(C) towards the TEXmacs document in T +S(C). In order
to enable the translation of the patch descriptions, a key-based protocol is
used to identify the corresponding parts in T + S(C) and S(C).

Beyond this basic synchronization mechanism, we define a language that
allows for the description of specific interactions between TEXmacs and the
proof assistant. This language M is a language for structured menus and
actions with an evaluation semantics which allows to flexibly compute the
necessary parameters for the commands and directives employed in interaction
with the proof assistants. The TEXmacs document format T +S(C) is finally
extended to T + S(C) + M , where the menus can be attached to arbitrary
parts of a document and the changes of the documents performed either by

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26.19 Proof Assistants in Scientific Editors 329

the author or by the proof assistants are propagated between T + S(C) +M
and S(C) + M via the diff/patch mechanism. Note that this includes also
the adaptation of the menus, which is a necessary prerequisite to support
context-sensitive menus and actions contained therein.

The goal of the proposed integration is to useΩmega as a context-sensitive
reasoning and verification service accessible from within the first-class math-
ematical text editor TEXmacs, where the proof assistant adapts to the style
an author would like to write his mathematical publication, and to hide any
irrelevant system peculiarities from the user. The communication between
TEXmacs and Ωmega is realized by an OMDoc-based interface language.

Although so far the proofs are tailored to the rules of the Core system, the
representation language in principle is parametrized over a specific language
for proofs. We currently replace the Core specific proof languages by some
generic notion of proofs, in order to obtain a generic format for formalized
mathematical documents. Thereby we started from a language for assertion-
level proofs with underspecification [ABF+03, AF05], which we developed
from previous experiences with tutorial dialogs about mathematical proofs
between a computer and students [PSBKK04].

main.tex 6161 2006-10-03 13:04:46Z

330 26 Applications and Projects

26.20 OMDoc as a Data Format for XeriFun

Project Home http://www.verifun.de/

Authors Normen Müller
Computer Science, International University Bremen

XeriFun (Verification of Functional programs) is a semi-automated sys-
tem for the verification of programs written in a simple functional pro-
gramming language FP. The system has been developed since 1998 at
the university of Darmstadt for use in education and research. The main
design goals are a clearly structured, didactically suited system interface
(Figure 26.20), an easily portable implementation (JAVA) and an easily

Fig. 26.26. A XeriFun session

but also powerful proof
calculus [WS02]. The
system’s object lan-
guage consists of a
simple definition prin-
ciple for free data
structures, called sorts
(see Chapter 16), a re-
cursive definition prin-
ciple for functions, and
finally a definition prin-
ciple for statements,
called lemmas, about
the data structures and
the functions. To prove
a statement XeriFun
supports the user with
a couple of inference
rules aggregated in tac-
tics. A collection of
sorts, functions, lem-
mas, and proofs is
called a XeriFun pro-
gram. Common file
commands, which are
based on the JAVA
binary serialization mech-
anism, are provided to save and reload intermediate work.

The OMDoc interface for XeriFun described here (see [Mül05] for de-
tails) was introduced to alleviate the following drawbacks of the former I/O
mechanism based on JAVA binary serialization:

• Files are only machine-readable. Thus, e.g. if the files became corrupted
by any circumstance, there is no change of a manual repair.

http://www.verifun.de/

main.tex 6161 2006-10-03 13:04:46Z

26.20 VeriFun 331

• Files are strongly bound to the version of the system. Thus any internal
system modifications make the files unreadable.

• Files are not interchangeable with other theorem provers or other math-
ematical software systems. Thus the information inside the files are only
accessible by XeriFun .

XeriFun ’s interface to OMDoc can be divided into two parts: Encoding
and decoding of XeriFun programs to and from OMDoc respectively.

Encoding

In a typical session with the system, a user defines a program by stipulating
the sorts and the functions of the program, defines lemmas about the sorts
and the functions of the program, and finally verifies these lemmas and the
termination of the functions.

In general a program is mapped to two OMDoc files: The first one consists
of the user-defined elements21 and in the second one XeriFun ’s logic compris-
ing the predefined symbols, the type system and the proof tactics is defined.
At each case one XeriFun-generated-OMDoc file is composed of one theory

element. The name of a user-defined theory can be set by the user, whereas
the name of the theory XeriFun is based on is fixed to vafp.

Functions are declared by symbol elements that also introduces the type
of the function (Subsection 15.2.3). The body of a function is encoded as an
OpenMath object inside a definition element. The corresponding symbol

element is referenced by the definition element in the for and relating
termination assertions in the existence attribute.

Note that instead of using name attributes, which only allow XML simple
names, we generate a unique ID. The actual XeriFun names are represented
in presentation elements or rather their use elements (Listing 26.4). By
using this technique we can use any character string22 for element names.
To cover the whole set of XeriFun fixities (prefix (the default), infix,
postfix, infixl, infixr, and outfix) we had to extend the OMDoc format
by infixl and infixr. However, it was not necessary to also add the outfix

value, but encoding of outfix functions is treated slightly different: The name
of the function is encoded in the lbrack and rbrack attribute respectively of
the relating presentation element and the use element is left empty23.

Lemmata are mapped to assertion elements, the value “lemma” being
assigned to the type attribute. The formula of a lemma, analogous to function
bodies, is encoded as an OpenMath object inside an assertion element.

21 Actually there are also automatically system-generated elements included, but
we may neglect those at this point.

22 XeriFun has full Unicode [Inc03] support
23 As a consequence the previous mentioned special encoding feature does not hold

for outfix functions

main.tex 6161 2006-10-03 13:04:46Z

332 26 Applications and Projects

Particularly convenient is the direct mapping of XeriFun proofs to the
OMDoc presentation of proofs. Verifications of lemmas and termination anal-
ysis of functions are represented in proof elements. The assertion to be proven
is referenced in the for attribute. vafp-tactics used inside a proof to achieve
the various proof steps (encoded in derive elements) are denoted by method

elements. Parameters heuristically computed by the system or manually an-
notated by the user are encoded as OpenMath objects and appended to
each proof step. Furthermore each proof step in XeriFun is annotated with
a sequence of the form h1, . . . hn,∀ . . . ih1, . . . ,∀ . . . ihl ` goal whereas the ex-
pressions hi are the hypotheses, the expressions ∀ . . . ihk are the induction
hypotheses, and the expression goal is the goal-term of the sequence. Such a
sequent is represented by assumption and conclusion child-elements respec-
tively of the relating derive element.

Listing 26.2. A polymorphic XeriFun sort

structure list [@value] <=
2 ∅,

[infixr ,100] :: (hd : @value, tl : list [@value])

Sorts are wrapped inside adt elements. At this point this integration pro-
cess provoked two further adaptations of the OMDoc standard. On the one
hand, in contrast to OMDoc, sorts in XeriFun could be polymorphic (List-
ing 26.2). This led to the additional, optional parameters attribute of an adt

element (Listing 26.3). Within this new attribute one can declare by a comma
separated list the names of type variables of the abstract data type.

Listing 26.3. A polymorphic OMDoc ADT

<adt xml:id=”vf7b9f3e59−e78e−4221−8064−7fa0c5689f5d.adt” parameters=”value”>
2 <sortdef name=”vf7b9f3e59−e78e−4221−8064−7fa0c5689f5d” type=”free”>

<constructor name=”vf8a6673ac−c1d9−4698−b6ee−90213539a984”/>
<constructor name=”vf38164505−4983−417f−8bdc−6a42b046e933”>
<argument>
<type system=”simpletypes”>

7 <OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
<OMV name=”value”/>

</OMOBJ>
</type>
<selector name=”vf9fc4c672−207f−45c0−ae61−1f675fde7aed” total=”yes”/>

12 </argument>
<argument>
<type system=”simpletypes”>
<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
<OMA>

17 <OMS cd=”VeriFun” name=”vf7b9f3e59−e78e−4221−8064−7fa0c5689f5d”/>
<OMV name=”value”/>

</OMA>
</OMOBJ>

</type>
22 <selector name=”vf55767f3a−b019−4308−88f9−d68ee0db595e” total=”yes”/>

</argument>
</constructor>

</sortdef>
</adt>

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

26.20 VeriFun 333

On the other hand, the child elements of a constructor element had to be
expanded by an additional type element to specify the type of the formal
parameter of the parent constructor element. Listing 26.4 illustrates the
corresponding presentation elements of the ADT in Listing 26.3.

Listing 26.4. Representation of XeriFun names to OMDoc

<presentation for=”#vf7b9f3e59−e78e−4221−8064−7fa0c5689f5d” role=”applied”>
<use format=”VeriFun”>list</use>

</presentation>
4 <presentation for=”#vf8a6673ac−c1d9−4698−b6ee−90213539a984” role=”applied”

bracket−style=”math” precedence=”1” fixity=”prefix” lbrack=”(” rbrack=”)”>
<use format=”VeriFun”>∅</use>

</presentation>
<presentation for=”#vf38164505−4983−417f−8bdc−6a42b046e933” role=”applied”

9 bracket−style=”math” precedence=”100” fixity=”infixr” lbrack=”(” rbrack=”)”>
<use format=”VeriFun”>::</use>

</presentation>
<presentation for=”#vf9fc4c672−207f−45c0−ae61−1f675fde7aed” role=”applied”

bracket−style=”math” precedence=”1” fixity=”prefix” lbrack=”(” rbrack=”)”>
14 <use format=”VeriFun”>hd</use>

</presentation>
<presentation for=”#vf55767f3a−b019−4308−88f9−d68ee0db595e” role=”applied”

bracket−style=”math” precedence=”1” fixity=”prefix” lbrack=”(” rbrack=”)”>
<use format=”VeriFun”>tl</use>

19 </presentation>

Decoding

The decoding of a XeriFun program represented in OMDoc is reverse to
the encoding mechanism. First we create an empty program and then start
the sequential decoding of each adt, symbol and its relating definition, and
assertion element back into the FP syntax. After a successful reconstruction
of an element it is appended to the current program. Right after such an
insertion we check for a proof element containing a reference to this new
program element. If a proof exists, we re-play all the proof steps and associate
the recreated XeriFun proof to the corresponding program element.

One aspect of this decoding exercise is worth mentioning here. TheXeriFun
system also benefited by the development of the OMDoc standard: Revelation
of bugs deep in the system! Especially FP parser errors and inconsistencies
in proof tactics applications could be discovered. Maybe those errors would
never have been detected, because in most cases the user is not able to produce
them manually, but this errors are automatically generated by the system. So
with the assistance of the strict encoding and decoding to and from OMDoc
respectively we were able to achieve a much more robust verification system.

By the integration of the open content Markup language OMDoc into
the semi-automated theorem prover XeriFun, we made the system more reli-
able and facilitate the participation in the mathematical network to serve as
yet another service. Functional programs and especially proof of statements
created in XeriFun are now open to the public. The data is human-readable,
machine-understandable, no longer subjected to a particular version of the

projects.tex 8024 2008-09-09 16:51:59Z kohlhase

334 26 Applications and Projects

system. Thus, XeriFun generated knowledge became accessible, robust, inter-
changeable and transparent.

partappendix.tex 6154 2006-10-03 11:31:31Z

Part V

Appendix

In this appendix, we document the changes of the OMDoc format over the
versions, provide quick reference tables, and discuss the validation helps

changes.tex 6154 2006-10-03 11:31:31Z

changes.tex 6154 2006-10-03 11:31:31Z

A

Changes to the specification

After about 18 Months of development, Version 1.0 of the OMDoc format
was released on November 1st 2000 to give users a stable interface to base their
documents and systems on. It was adopted by various projects in automated
deduction, algebraic specification, and computer-supported education. The
experience from these projects uncovered a multitude of small deficiencies and
extension possibilities of the format, that have been subsequently discussed
in the OMDoc community.

OMDoc1.1 was released on December 29th 2001 as an attempt to roll
the uncontroversial and non-disruptive part of the extensions and corrections
into a consistent language format. The changes to version 1.0 were largely
conservative, adding optional attributes or child elements. Nevertheless, some
non-conservative changes were introduced, but only to less used parts of the
format or in order to remedy design flaws and inconsistencies of version 1.0.

OMDoc1.2 is the mature version in the OMDoc1 series of specifications.
It contains almost no large-scale changes to the document format, except that
Content-MathML is now allowed as a representation for mathematical ob-
jects. But many of the representational features have been fine-tuned and
brought up to date with the maturing XML technology (e.g. ID attributes
now follow the XML ID specification [MVW05], and the Dublin Core ele-
ments follow the official syntax [DUB03a]). The main development is that the
OMDoc specification, the DTD, and schema are split into a system of interde-
pendent modules that support independent development of certain language
aspects and simpler specification and deployment of sub-languages. Version
1.2 of OMDoc freezes the development so that version 2 can be started off
on the modules.

In the following, we will keep a log on the changes that have occurred in the
released versions of the OMDoc format. We will briefly tabulate the changes
by element name. For the state of an element we will use the shorthands
“dep” for deprecated (i.e. the element is no longer in use in the new OMDoc
version), “cha” for changed, if the element is re-structured (i.e. some additions
and losses), “new” if did not exist in the old OMDoc version, “lib”, if it

changes1.2.tex 8011 2008-09-07 19:43:48Z kohlhase

338 A Changes to the specification

was liberalized (e.g. an attribute was made optional) and finally “aug” for
augmented, i.e. if it has obtained additional children or attributes in the new
OMDoc version.

All changes will be relative to the previous version, starting out with OM-
Doc 1.0.

A.1 Changes from 1.1 to 1.2

Most of the changes in version 1.2 are motivated by modularization. The goal
was to modularize the specification so that it can be used as a DTD module,
and that restricted sub-languages of OMDoc can be identified.

Perhaps the most disruptive change is in the presentation/style apparatus:
In version 1.1, OMDoc used the style attribute for all elements that have
an id attribute to specify generic style classes for the OMDoc elements. This
was based on a misunderstanding of the XML cascading style sheet (CSS)
mechanism [Bos98], which uses the class attribute to specify this information
and uses the style attribute to specify CSS directives that override the class
information. This error in Version 1.1 of OMDoc so severely limits the use-
fulness for styling that we rename the Version 1.1 of OMDoc style attribute
to class, even though it breaks 1.1-compatible implementations. Concretely,
the Version 1.2 of OMDoc class attribute takes the role of the Version 1.1 of
OMDoc style. and the Version 1.2 of OMDoc style takes CSS directives.

Furthermore, all xml:id on non-constitutive (see Section 15.1) elements
in OMDoc were made optional.

Version 1.1 of OMDoc files can be upgraded to version 1.2 with the XSLT
style sheet https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/
omdoc1.1adapt1.2.xsl.BErr(87)

element state comments cf.

alternative aug This element can now have theory,
generated-from, and generated-via at-
tributes.

154

argument cha The sort has been replaced by a type

child, so that higher-order sorts can be
specified.

167

assertion aug the assertion element now has an op-
tional for attribute. Furthermore, an op-
tional attribute generated-via has been
added to allow generation via a theory
morphism. Finally, two new attributes
status and just-by have been added to
mark up the deductive status of the asser-
tion.

150

87 Erratum: the old extradata content has nothing to do with dc:subject

https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/omdoc1.1adapt1.2.xsl
https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/omdoc1.1adapt1.2.xsl

changes1.2.tex 8011 2008-09-07 19:43:48Z kohlhase

A.1 Changes from 1.1 to 1.2 339

assumption cha This element can now have an attribute
inductive for inductive assumptions. The
natural langauge description in the op-
tional CMP element is no longer allowed, use
a phrase element in a CMP that is a sibling
to the FMP instead.

154

adt aug the adt loses the CMP and commonname chil-
dren, use the Dublin Core metadata el-
ements dc:description and dc:subject

instead. The type attribute is now on
the sortdef element. Furthermore, an
optionala attribute generated-via has
been added to allow generation via a
theory morphism. Finally, an attribute
parameters has been added to allow for
parametric ADTs.

165

answer cha the answer element does not allow symbol

children any more, if these are needed, the
exercise should have its own theory.

224

attribute aug the attribute element now has a optional
ns attribute for the namespace URI of the
generated attribute node and an attribute
select for an XPath expression that spec-
ifies the value of the generated attribute.

203

axiom aug the axiom element now has an optional for
attribute which can point to a list of sym-
bols. Furthermore, an optional attribute
generated-via has been added to allow
generation via a theory morphism and an
attribute type is now also allowed.

146

axiom-inclusion lib the axiom-inclusion element can
now contain multiple path-just

children to record multiple justifi-
cations. Furthermore, it can now
have theory, generated-from, and
generated-via attributes. New op-
tional attributes conservativity and
conservativity-just for stating and
justifying conservativity.

191

catalogue dep the catalogue mechanism has been elimi-
nated.

choice cha the choice element does not allow symbol

children any more, if these are needed, the
exercise should have its own theory

224

changes1.2.tex 8011 2008-09-07 19:43:48Z kohlhase

340 A Changes to the specification

code cha Attributes classid and codebase are
deprecated. The attributes pto and
pto-version have moved to the data

element. The attribute type has been
removed and optional attributes theory,
generated-from, and generated-via have
been added.

216

commonname dep This element is deprecated in favor of a
metadata/dc:subject element.

conclusion cha The natural langauge description in the
optional CMP element is no longer allowed,
use a phrase element in a CMP that is a
sibling to the FMP instead.

132

constructor cha The role attribute is now fixed to object.
The commonname child has been replaced by
an initial metadata element.

166

data aug new optional attributes original to spec-
ify whether the external resource ref-
erenced by the href attribute (value
external) or the data content is the orig-
inal (value local). The data element has
acquired attributes pto and pto-version

from the code and private elements.

217

dc:* aug All Dublin Core tags have been lowercased
to synchronize with the tag syntax recom-
mended by the Dublin Core Initiative. The
tags were capitalized in OMDoc1.1. Fur-
thermore, dc:contributor, dc:creator,
dc:publisher have received an optional
xml:id attribute, so that they can be cross-
referenced by the new who of the dc:date

element.

104

decomposition aug The for attribute is now optional, it
need not be given, if the element is a
child of a theory-inclusion element. Fur-
thermore, it can now have a theory,
generated-from, and generated-via at-
tributes.

195

dc:description aug The dc:description can now have the op-
tional xml:id, and CSS attributes

105

definition aug The definition element can now have
the type pattern for pattern-defined func-
tions. This is a degenerate case of the type
inductive. Furthermore, an optional at-
tribute generated-via has been added to
allow generation via a theory morphism.

148

effect aug allows an optional xml:id attribute 218

changes1.2.tex 8011 2008-09-07 19:43:48Z kohlhase

A.1 Changes from 1.1 to 1.2 341

example aug The example element now has the op-
tional theory attribute that specifies the
home theory. Furthermore, it can now have
attributes theory, generated-from, and
generated-via.

155

exercise cha the exercise element does not allow
symbol children any more, if these are
needed, the exercise should have its
own theory. Furthermore, it can now
have a theory, generated-from, and
generated-via attributes.

223

extradata cha The content of the old extradata element
can now be directly in the metadata ele-
ment as additional elements.

element aug The element element now allows the map

and separator elements in the body.
Furthermore, it carries the optional at-
tributes crid for parallel markup, cr for
cross-references, and ns for specifying the
namespace.

203

hint aug the hint element can now appear on top-
level and has a for attribute. It does not
allow symbol children any more, if these
are needed, the exercise should have its
own theory. Furthermore, the exercise

can now have a theory, generated-from,
and generated-via attributes.

223

hypothesis cha the discharged-in attribute has been
eliminated. Scoping is now specified in
terms of the enclosing proof element. Fur-
thermore, the symbol child is no longer al-
lowed inside the element. A sibling symbol

should be used.

173

inclusion aug allows optional attributes
xml:id, conservativity, and
conservativity-just for stating and
justifying conservativity.

190

imports lib the xml:id is now optional. New op-
tional attributes conservativity and
conservativity-just for stating and jus-
tifying conservativity.

159

input aug allows an optional xml:id attribute 218

legacy new An element for encapsulating legacy math-
ematics, can be used wherever m:math and
om:OMOBJ are allowed.

127

loc dep The catalogue mechanism has been elimi-
nated.

changes1.2.tex 8011 2008-09-07 19:43:48Z kohlhase

342 A Changes to the specification

m:math new Content-MathML is now allowed wher-
ever OpenMath objects were allowed be-
fore.

121

map new this element allows to map its style direc-
tives over a list of e.g. arguments

203

mc aug the mc element can now have a for at-
tribute. It does not allow symbol children
any more, if these are needed, the domi-
nating exercise element should have its
own theory. Furthermore, the mc element
can now have a theory, generated-from,
and generated-via attributes.

224

measure aug allows an optional xml:id attribute 149

metacomment dep This element is superseded by the omtext

element.
133

morphism aug The morphism element now carries
the optional attributes consistency,
exhaustivity, hiding, and type. Further-
more the content model allows optional
elements measure and ordering after the
requation children to specify termination
information like in definition.

98

obligation aug allows an optional xml:id attribute 189

omdoc aug This element can now have a theory,
generated-from, and generated-via at-
tributes.

96

omgroup cha The values dataset and labeled-dataset

are deprecated in Version 1.2 of OMDoc,
since we provide tables in module RT;
see Section 14.6 for details. Furthermore,
the element can now have the attributes,
modules, theory, generated-from, and
generated-via.

100

omlet cha omlet can no longer occur at top-level (it
just does not make sense). The data model
for this element has been totally reworked,
inspired by the xhtml:object element.

219

omstyle aug This element can now have
generated-from, and generated-via

attributes. New attribute xref that allows
to inherit the information from another
omstyle element.

200

changes1.2.tex 8011 2008-09-07 19:43:48Z kohlhase

A.1 Changes from 1.1 to 1.2 343

om:* aug with OpenMath2, the OpenMath ele-
ments carry an optional id attribute for
structure sharing via the om:OMR element.
Furthermore, in OMDoc, they carry cref

attributes for parallel markup with cross-
references.

114

om:OMFOREIGN new The om:OMFOREIGN element can be used to
encapsulate arbitrary XML data in Open-
Math attributions.

117

om:OMR new In the OpenMath2 standard, this element
is the main vehicle of the structure sharing
representation.

118

omtext aug the type attribute can now also
have the values axiom, definition,
theorem, proposition, lemma,
corollary, postulate, conjecture,
false-conjecture, obligation,
assumption, and formula.
Furthermore, omtext can now
have theory, generated-from, and
generated-via and verbalizes at-
tributes.

133

ordering aug Now allows the optional xml:id and
terminating attributes. The latter points
to a termination assertion.

149

output aug allows an optional xml:id attribute 218

pattern aug this element is no longer used, the pattern
of a recursive equation is determined by
the position as the first child.

path-just aug The element can now appear as a top-level
element, if it does, the attribute for must
point to the axiom-inclusion element it
justifies. It also now allows an optional
xml:id attribute

195

phrase new used to mark up phrases in CMPs and sup-
ply them with identifiers and links to con-
text that can be used for presentation and
referencing.

134

presentation cha The theory is not allowed any more, to
refer to a symbol outside its theory use its
xml:id attribute. The element now also al-
lows a mutilingual CMP group, so that it can
be used as a notation definition element in
mathematical vernacular.

205

changes1.2.tex 8011 2008-09-07 19:43:48Z kohlhase

344 A Changes to the specification

private cha The replaces attribute is now called
reformulates. The attributes pto and
pto-version have moved to the data el-
ement. The attribute type has been re-
moved and optional attributes theory,
generated-from, and generated-via have
been added.

216

proof lib The for attribute is now optional to al-
low for proofs as objects of mathematical
discourse. Furthermore, it can now have
generated-from and generated-via at-
tributes.

171

proofobject lib The for attribute is now optional to al-
low for proofs as objects of mathematical
discourse. Furthermore, it can now have
generated-from and generated-via at-
tributes.

180

recognizer cha The role attribute was fixed to object.
The commonname child has been replaced
by an initial metadata element.

167

ref aug ref now has an optional xml:id attribute
that identifies it.

100

selector cha The role attribute was fixed to object.
The commonname child has been replaced
by an initial metadata element.

167

solution cha the solution element now allows arbitrary
OMDoc top-level elements as children.
Furthermore, it can now have a theory,
generated-from, and generated-via at-
tributes.

223

sortdef cha The role attribute was fixed to sort. The
type from the adt element is now on the
sortdef element. The commonname child
has been replaced by an initial metadata

element.

166

dc:subject aug The dc:subject can now have the optional
dc:id, and CSS attributes

105

style aug The style element now allows a map ele-
ment in the body

201

changes1.2.tex 8011 2008-09-07 19:43:48Z kohlhase

A.1 Changes from 1.1 to 1.2 345

symbol cha may no longer contain selector, since
it only makes sense for constructors
in data types. The kind attribute has
been renamed to role for compatibility
with OpenMath2 and can have the
additional values binder, attribution,
semantic-attribution, and error cor-
responding to the OpenMath 2 roles.
Furthermore, an optional attribute
generated-via has been added to allow
generation via a theory morphism.

144

term new the term element can appear in mathemat-
ical text and contain it. It is used to link
technical terms to symbols defined in con-
tent dictionaries via its cd and name at-
tributes.

136

theory cha the theory element loses the CMP and
commonname children, use the Dublin Core
metadata elements dc:description and
dc:subject instead. The theory element
also gains the optional cdbase attribute
to specify the disambiguating string pre-
scribed for content dictionaries by the
OpenMath2 standard. The xml:id is now
optional, it only needs to be specified, if
the theory has constitutive elements. Fi-
nally, the element has gained the optional
attributes cdurl, cdbase, cdreviewdate,
cdversion, cdrevision, and cdstatus at-
tributes for encoding the management
metadata of OpenMath content dictionar-
ies.

158

dc:title aug The dc:title can now have the optional
dc:id, and CSS attributes.

104

tgroup new The tgroup can be used to structure the-
ories like documents.

158

changes1.1.tex 8011 2008-09-07 19:43:48Z kohlhase

346 A Changes to the specification

type aug the type element now has the optional
just-by and theory attribute. The first
one points to an assertion or axiom that
justifies the type judgment, the second
specifies the home theory. The system at-
tribute is now optional.
Furthermore, the type element can have
two math objects as children. If it does,
then it is a term declaration, i.e. the first
element is interpreted as a mathematical
object and the second one is interpreted as
its type.
Finally, it can now have generated-from

and generated-via attributes.

147

theory-inclusion aug the theory-inclusion element can now
have obligation and decomposition chil-
dren that justify it. Furthermore, it can
now have a theory, generated-from,
and generated-via attributes. New op-
tional attributes conservativity and
conservativity-just for stating and jus-
tifying conservativity.

189

theory aug the theory element can now be nested. 158

use cha can now contain element, text, recurse,
map, and value-of to specify XML con-
tent. We have deprecated the larg-group

and rarg-group attributes, since they were
never used.

206

value aug this element is no longer used, the value of
a recursive equation is determined by the
position as the second child.

with ren the role of this element is now taken by the
phrase element.

134

xslt cha the content of this element need not be es-
caped any more, it is now a valid XSLT
fragment.

201

EErr(87)

A.2 Changes from 1.0 to 1.1

Version 1.1 was mainly a bug-fix release that has become necessary by the ex-
periments of encoding legacy material in OMDoc. The changes are relatively
minor, mostly added optional fields. The only non-conservative changes con-
cern the private, hypothesis, sortdef and signature elements. OMDoc

changes1.1.tex 8011 2008-09-07 19:43:48Z kohlhase

A.2 Changes from 1.0 to 1.1 347

files can be upgraded to version 1.1 with the XSLT style sheet https://svn.
omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/omdoc1.0adapt1.1.xsl.

element state comments cf.

attribute new presentation of attributes for XML ele-
ments

203

alternative cha new form of the alternative-def el-
ement, it can now also used as an
alternative to axiom. Compared to
alternative-def it has a new optional
attribute generated-by to show that an
assertion is generated by expanding a
some other element like adt.

154

alternative-def dep new form is alternative, since there can
be alternative axioms too.

argument cha attribute sort is now of type IDREF, since
it must be local in the definition.

167

assertion aug more values for the type attribute, new
optional attribute generated-by to show
that an assertion is generated by expand-
ing a definition or an adt. New optional
attribute just-by.

150

assertion-just dep this is now obligation

axiom aug new optional attribute generated-by to
show that an axiom is generated by ex-
panding a definition.

146

axiom-inclusion cha now allows a CMP group for descriptive
text, includes a set of obligation ele-
ments instead of an assertion-just. The
timestamp attribute is deprecated, use
dc:date with appropriate action instead

191

CMP cha the attribute format is now deprecated,
it makes no sense, since we are more strict
and consistent about CMP content. CMP

now allows an optional id attribute.

130

code cha Attributes width and height now in
omlet, got attributes classid and
codebase from private. Attribute
format moved to data children.
The multilingual group of CMP ele-
ments for description is deprecated,
use metadata/dc:description instead.
Child element data may appear multi-
ple times (with different values of the
format).

216

constructor aug new optional child recognizer for a rec-
ognizer predicate

166

https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/omdoc1.0adapt1.1.xsl
https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2/xsl/omdoc1.0adapt1.1.xsl

changes1.1.tex 8011 2008-09-07 19:43:48Z kohlhase

348 A Changes to the specification

Coverage dep this Dublin Core element specifies the
place or time which the publication’s con-
tents addresses. This does not seem ap-
propriate for the mathematical content of
OMDoc.

data aug new optional attributes size to specify
the size of the data file that is referenced
by the href attribute and format for the
format the data is in.

217

dc:date aug new optional who attribute that can be
used to specify who did the action on
this date.

105

Translator dep this element is not part of Dublin Core,
it got into OMDoc by mistake, we use
dc:contributor with role=trl for this.

104

decomposition aug has a new required id attribute. It is no
longer a child of theory-inclusion, but
specifies which theory-inclusion it jus-
tifies by the new required attribute for.

195

definition aug new optional children measure and
ordering to specify termination of recur-
sive definitions. New optional attribute
generated-by to show that it is gener-
ated by expanding a definition.

148

element new presentation of XML elements 203

FMP aug now allows multiple conclusion ele-
ments, to represent general Gentzen-type
sequents (not only natural deduction.)
FMP now allows an optional id attribute.

131

hypothesis cha new required attribute discharged-in

to specify the derive element that dis-
charges this hypothesis.

173

measure new specifies a measure function (as an
OMOBJ)

149

metadata aug new optional attribute inherits that al-
lows to inherit metadata from other dec-
larations

98

method cha first child that used to be an om:OMSTR

or ref element is now moved into a re-
quired xref attribute that holds an URI
that points to the element that defines
the method. The om:OMOBJ content of the
other children (they were parameter el-
ements) is now directly included in the
method element.

174

obligation new takes over the role of assertion-just.

changes1.1.tex 8011 2008-09-07 19:43:48Z kohlhase

A.2 Changes from 1.0 to 1.1 349

omgroup aug also allows the elements that can only
appear in theory elements, so that
omgroups can also be used for group-
ing inside theory elements. The type

attribute is now restrained to one
of narrative, sequence, alternative,
contrast.

100

omlet aug obtained attributes width and height

from private. New optional attributes
action for the action to be taken when
activated, and data a URIref to data in
a private element. New optional attribute
type for the type of the applet.

219

omstyle new for specifying the style of OMDoc ele-
ments

200

omtext cha the from is deprecated, we only leave the
for attribute, to specify the referential
character of the type.

133

ordering new specifies a well-founded ordering (as an
OMOBJ)

149

parameter dep the om:OMOBJ element child is now di-
rectly a child of method

pattern cha the child can be an arbitraryOpenMath
element.

premise cha new optional attribute rank for the im-
portance in the inference rule. The old
href attribute is renamed to xref to be
consistent with other cross-referencing.

presentation aug New attribute xref that allows to
inherit the information from another
presentation element. New attribute
theory to specify the theory the symbol
is from; without this, referencing in OM-
Doc is not unique.
The parent attribute has been renamed
to role and now takes the values
applied, binding, and key, since we want
to be less OpenMath-centric

205

changes1.1.tex 8011 2008-09-07 19:43:48Z kohlhase

350 A Changes to the specification

private cha new optional attribute for to point to
an OMDoc element it provides data for.
As a consequence, private elements are
no longer allowed in other OMDoc ele-
ments, only on top-level. New attribute
replaces as a pointer to the OMDoc el-
ements that are replaced by the system-
specific information in this element. Old
attributes width and height now in
omlet. Attribute format moved to data

children.
The descriptive CMP elements are depre-
cated, use metadata/dc:description in-
stead.
Child element data may appear multi-
ple times (with different values of the
format). The attributes classid and
codebase are deprecated, since they only
make sense on the code element.

q 216

proof cha attribute theory is now optional, since
the element can appear inside a theory

element.

171

proofobject cha attribute theory is now optional, since
the element can appear inside a theory

element.

171

recognizer new specifies the recognizer predicate of a
sort.

167

recurse new recursive calls to presentation in style. 203

ref cha attribute kind renamed to type. 100

selector cha the old type attribute (had values total

and partial) is deprecated, its duty is
now carried by an attribute total (values
yes and no).

167

signature dep for the moment

sortdef cha has a mandatory name attribute, other-
wise the defined symbol has no name.

166

style new allows to specify style information in
presentation and omstyle elements us-
ing a simplified OMDoc-internalized ver-
sion of XSLT.

201

symbol aug new optional attribute generated-by to
show that it is generated by expanding a
definition.

144

text new presentation of text in omstyle. 203

changes.tex 6154 2006-10-03 11:31:31Z

A.2 Changes from 1.0 to 1.1 351

theory-inclusion cha now allows CMP group for descriptive text,
no longer has a decomposition child,
this is now attached by its for attribute.
The timestamp attribute is deprecated,
use dc:date with appropriate action in-
stead.

189

type aug can now also appear on top-level. Has
an optional id attribute for identification,
and an optional for attribute to point to
a symbol element it declares type infor-
mation for.

147

use aug New attribute element allows to spec-
ify that the content should be encased in
an XML element with the attribute-value
pairs specified in the string specified in
the attribute attributes.

206

value-of new presentation of values in style. 203

with new used to supply fragments of text in CMPs
with style and id attributes that can be
used for presentation and referencing.

134

xslt new allows to embed XSLT into
presentation and omstyle elements.

201

quickref.tex 6154 2006-10-03 11:31:31Z

quickref.tex 6154 2006-10-03 11:31:31Z

B

Quick-Reference Table to the OMDoc Elements

Element p. Mod. Required Optional D Content

Attribs Attribs C

adt 165 ADT xml:id, type,
style, class,
theory,
generated-from,
generated-via

+ sortdef+

alternative 154 ST for,
entailed-by,
entails,
entailed-by-thm,
entails-thm

xml:id,
type, theory,
generated-from,
generated-via,
uniqueness,
exhaustivity,
consistency,
existence,
style, class

+ CMP*, (FMP|
requation*|
(OMOBJ |m:math
|legacy)*)

answer 224 QUIZ verdict xml:id,
style, class

+ CMP*, FMP*

m:apply 122 MML id,
xlink:href

– bvar?,〈〈CMel〉〉*

argument 167 ADT sort + selector?

assertion 150 ST xml:id,
type, theory,
generated-from,
generated-via,
style, class

+ CMP*, FMP*

assumption 132 MTXT xml:id,
inductive,
style, class

+ CMP*, (OMOBJ
|m:math
|legacy)?

attribute 203 PRES name – (value-of|
text)*

axiom 146 ST name xml:id, type,
generated-from,
generated-via,
style, class

+ CMP*, FMP*

axiom-inclusion191 CTH from, to xml:id,
style, class,
theory,
generated-from,
generated-via

+ morphism?,
(path-just|
obligation*)

m:bvar 122 MML id,
xlink:href

– ci*

quickref.tex 6154 2006-10-03 11:31:31Z

354 B Quick-Reference

m:ci 121 MML id,
xlink:href

– PCDATA

m:cn 121 MML id,
xlink:href

– ([0-9]|,|.)
(*|e([0-9]|,|.)*)?

choice 224 QUIZ xml:id,
style, class

+ CMP*, FMP*

CMP 130 MTXT xml:lang,
xml:id

– (text| OMOBJ
|m:math |legacy
| with | term |
omlet)*

code 216 EXT xml:id,
for, theory,
generated-from,
generated-via,
requires,
style, class

+ input?, output?,
effect?, data+

conclusion 132 MTXT xml:id,
style, class

+ CMP*, (OMOBJ
|m:math
|legacy)?

constructor 166 ADT name type, scope,
style, class,
theory,
generated-from,
generated-via

+ argument*,
recognizer?

dc:contributor 104 DC xml:id, role,
style, class

– 〈〈text〉〉

dc:creator 104 DC xml:id, role,
style, class

– 〈〈text〉〉

m:csymbol 121 MML definitionURL id,
xlink:href

– EMPTY

data 217 EXT format,
href, size,
original

– <![CDATA[...]]>

dc:date 105 DC action, who – ISO 8601 norm

dd 138 RT xml:id,
style,
class, index,
verbalizes

+ CMPcontent

di 138 RT xml:id,
style,
class, index,
verbalizes

+ dt+,dd*

dl 138 RT xml:id,
style,
class, index,
verbalizes

+ li*

dt 138 RT xml:id,
style,
class, index,
verbalizes

+ CMPcontent

decomposition 195 DG links theory,
generated-from,
generated-via

– EMPTY

definition 148 ST xml:id, for uniqueness,
existence,
consistency,
exhaustivity,
type,
generated-from,
generated-via,
style, class

+ CMP*, (FMP|
requation+|
OMOBJ |m:math
|legacy)?,
measure?,
ordering?

dc:description 105 DC xml:lang – CMPcontent
derive 172 PF xml:id,

style, class
– CMP*, FMP?,

method?

quickref.tex 6154 2006-10-03 11:31:31Z

B Quick-Reference 355

effect 218 EXT xml:id,
style, class

– CMP*,FMP*

element 203 PRES name xml:id, cr,
ns

– (attribute|
element| text|
recurse)*

example 155 ST for xml:id, type,
assertion,
proof, style,
class,
theory,
generated-from,
generated-via

+ CMP*| (OMOBJ
|m:math
|legacy)?

exercise 223 QUIZ xml:id, type,
for, from,
style, class,
theory,
generated-from,
generated-via

+ CMP*, FMP*,
hint?,
(solution*|mc*)

FMP 131 MTXT logic, xml:id – (assumption*,
conclusion*)|OMOBJ
|m:math |legacy

dc:format 106 DC – fixed:
"application/omdoc+xml"

hint 223 QUIZ xml:id,
style, class,
theory,
generated-from,
generated-via

+ CMP*, FMP*

hypothesis 173 PF xml:id,
style, class,
inductive

– CMP*, FMP*

dc:identifier 106 DC scheme – ANY

ide 139 RT index xml:id,sort-by,see,
seealso,
links, style,
class

– idp*

idp 139 RT xml:id,sort-by,see,
seealso,
links, style,
class

– CMPcontent

idt 139 RT style, class – CMPcontent
idx 139 RT xml:id,sort-by,see,

seealso,
links, style,
class

– idt?,idp+

ignore 99 DOC type, comment – ANY

imports 159 CTH from xml:id, type,
style, class

+ morphism?

inclusion 190 CTH for xml:id –
input 218 EXT xml:id,

style, class
– CMP*,FMP*

insort 166 ADT for –

dc:language 106 DC – ISO 8601 norm

li 138 RT xml:id,
style,
class, index,
verbalizes

– Math Vernacular

cc:license 108 CC jurisdiction – permissions,
prohibitions,
requirements

quickref.tex 6154 2006-10-03 11:31:31Z

356 B Quick-Reference

link 138 RT xml:id,
style,
class, index,
verbalizes

– Math Vernacular

m:math 121 MML id,
xlink:href

– 〈〈CMel〉〉+

mc 224 QUIZ xml:id,
style, class,
theory,
generated-from,
generated-via

– choice, hint?,
answer

measure 149 ST xml:id – OMOBJ |m:math
|legacy

metadata 98 DC inherits – (dc-element)*
method 174 PF xref – (OMOBJ |m:math

|legacy| premise
| proof |
proofobject)*

morphism 185 CTH xml:id, base,
consistency,
exhaustivity,
type, hiding,
style, class

– requation*,
measure?,
ordering?

note 139 RT type,xml:id,
style,
class, index,
verbalizes

– Math Vernacular

obligation 189 CTH induced-by,
assertion

xml:id – EMPTY

om:OMA 114 OM id, cdbase – 〈〈OMel〉〉*
om:OMATTR 116 OM id, cdbase – 〈〈OMel〉〉
om:OMATP 116 OM cdbase – (OMS, (〈〈OMel〉〉 |

om:OMFOREIGN))+

om:OMB 117 OM id, class,
style, class

– #PCDATA

om:OMBIND 115 OM id, cdbase – 〈〈OMel〉〉,
om:OMBVAR,
〈〈OMel〉〉?

om:OMBVAR 116 OM – (om:OMV |
om:OMATTR)+

om:OMFOREIGN 117 OM id, cdbase – ANY

omdoc 96 DOC xml:id,type,
version,
style, class,
xmlns,
theory,
generated-from,
generated-via

+ (top-level ele-
ment)*

om:OME 117 OM xml:id – (〈〈OMel〉〉)?
om:OMR 118 OM href –
om:OMF 117 OM id, dec, hex – #PCDATA

omgroup 100 DOC xml:id, type,
style, class,
modules,
theory,
generated-from,
generated-via

+ top-level element*

ol 138 RT xml:id,
style,
class, index,
verbalizes

– li*

om:OMI 117 OM id, class,
style

– [0-9]*

quickref.tex 6154 2006-10-03 11:31:31Z

B Quick-Reference 357

omlet 219 EXT id, argstr,
type,
function,
action, data,
style, class

+ ANY

om:OMOBJ 114 OM id, cdbase,
class, style

– 〈〈OMel〉〉?

omstyle 200 PRES element for, xml:id,
xref, style,
class

– (style|xslt)*

om:OMS 114 OM cd, name class, style – EMPTY

omtext 133 MTXT xml:id, type,
for, from,
style,
theory,
generated-from,
generated-via

+ CMP+, FMP?

om:OMV 114 OM name class, style – EMPTY

ordering 149 ST xml:id – OMOBJ |m:math
|legacy

output 218 EXT xml:id,
style, class

– CMP*,FMP*

p 138 RT xml:id,
style,
class, index,
verbalizes

– Math Vernacular

param 221 EXT name value,
valuetype

– EMPTY

path-just 195 DG local,
globals

for, xml:id – EMPTY

cc:permissions 109 CC reproduction,
distribution,
derivative works

– EMPTY

premise 174 PF xref – EMPTY

presentation 205 PRES for xml:id, xref,
fixity, role,
lbrack,
rbrack,
separator,
bracket-style,
style, class,
precedence,
crossref-symbol

– (use | xslt |
style)*

private 216 EXT xml:id,
for, theory,
generated-from,
generated-via,
requires,
reformulates,
style, class

+ data+

cc:prohibitions109 CC commercial use – EMPTY

proof 171 PF xml:id,
for,theory,
generated-from,
generated-via,
style, class

+ (symbol |
definition |
omtext | derive
| hypothesis)*

proofobject 180 PF xml:id,
for, theory,
generated-from,
generated-via,
style, class

+ CMP*, (OMOBJ
|m:math |legacy)

dc:publisher 105 DC xml:id,
style, class

– ANY

ref 100 DOC xref, type – ANY

quickref.tex 6154 2006-10-03 11:31:31Z

358 B Quick-Reference

recognizer 167 ADT name type, scope,
role, style,
class

+

recurse 203 PRES select – EMPTY

dc:relation 106 DC – ANY

requation 149 ST xml:id,
style, class

– (OMOBJ |m:math
|legacy),(OMOBJ
|m:math |legacy)

cc:requirements109 CC notice,
copyleft,
attribution

– EMPTY

dc:rights 106 DC – ANY

selector 167 ADT name type, scope,
role, total,
style, class

+

solution 223 QUIZ xml:id, for,
style, class,
theory,
generated-from,
generated-via

+ (CMP*, FMP*) |
proof

sortdef 166 ADT name role, scope,
style, class

+ (constructor|insort)*

dc:source 106 DC – ANY

style 201 PRES format xml:lang,
requires

– (element | text
| recurse |
value-of)*

dc:subject 105 DC xml:lang – CMPcontent
symbol 144 ST name role, scope,

style,
class,generated-from,generated-via

+ type*

table 138 RT xml:id,
style,
class, index,
verbalizes

– tr*

term 136 MTXT cd, name xml:id, role,
style, class

– CMP content

text 203 PRES – #PCDATA

td 138 RT xml:id,
style,
class, index,
verbalizes

– Math Vernacular

th 138 RT xml:id,
style,
class, index,
verbalizes

– Math Vernacular

theory 158 ST xml:id cdbase,
style, class

+ (statement|theory)*

theory-inclusion189 CTH from, to xml:id,
style, class,
theory,
generated-from,
generated-via

+ (morphism,
decomposition?)

tr 138 RT xml:id,
style,
class, index,
verbalizes

– (td|th)*

dc:title 104 DC xml:lang – CMPcontent
tgroup 158 DOC xml:id, type,

style, class,
modules,
generated-from,
generated-via

+ top-level
or theory-
constitutive
element*

type 147 ST system xml:id, for,
style, class

– CMP*, (OMOBJ
|m:math |legacy)

quickref.tex 6154 2006-10-03 11:31:31Z

B Quick-Reference 359

dc:type 106 DC – fixed: "Dataset"
or "Text" or
"Collection"

ul 138 RT xml:id,
style,
class, index,
verbalizes

– li*

use 206 PRES format xml:lang,
requires,
fixity,
lbrack,
rbrack,
separator,
crossref-symbol,
element,
attributes

– (use | xslt |
style)*

value-of 203 PRES select – EMPTY

phrase 134 MTXT xml:id,
style,
class, index,
verbalizes,
type

– CMP content

xslt 201 PRES format xml:lang,
requires

– XSLT fragment

quickref-attributes.tex 6154 2006-10-03 11:31:31Z

quickref-attributes.tex 6154 2006-10-03 11:31:31Z

C

Quick-Reference Table to the OMDoc
Attributes

Attribute element Values

action dc:date unspecified

specifies the action taken on the document on this date.

action omlet execute, display, other

specifies the action to be taken when executing the omlet, the
value is application-defined.

actuate omlet onPresent, onLoad, onRequest,

other

specifies the timing of the action specified in the action at-
tribute

assertion example

specifies the assertion that states that the objects given in the
example really have the expected properties.

assertion obligation

specifies the assertion that states that the translation of the
statement in the source theory specified by the induced-by at-
tribute is valid in the target theory.

attributes use

the attribute string for the start tag of the XML element substi-
tuted for the brackets (this is specified in the element attribute).

attribution cc:requirements required, not required

Specifies whether the copyright holder/author must be given
credit in derivative works

base morphism

specifies another morphism that should be used as a base for
expansion in the definition of this morphism

bracket-style presentation, use lisp, math

specifies whether a function application is of the form f(a, b) or
(fab)

cd om:OMS

specifies the content dictionary of an OpenMath symbol

quickref-attributes.tex 6154 2006-10-03 11:31:31Z

362 C Table of Attributes

cd term

specifies the content dictionary of a technical term

cdbase om:*

specifies the base URI of the content dictionaries used in an
OpenMath object

cdreviewdate theory

specifies the date until which the content dictionary will remain
unchanged

cdrevision theory

specifies the minor version number of the content dictionary

cdstatus theory official, experimental,

private, obsolete

specifies the content dictionary status

cdurl theory

the main URL, where the newest version of the content dictio-
nary can be found

cdversion theory

specifies the major version number of the content dictionary

comment ignore

specifies a reason why we want to ignore the contents

crossref-symbol presentation, use all, brackets, lbrack, no,

rbrack, separator, yes

specifies whether cross-references to the symbol definition should
be generated in the output format.

class *

specifies the CSS class

commercial use cc:permissions permitted, prohibited

specifies, whether commercial use of the document with this
license is permitted

consistency morphism, definition OMDoc reference

points to an assertion stating that the cases are consistent, i.e.
that they give the same values, where they overlap

copyleft cc:restrictions required, not required

specifies whether derived works must be licensed with the same
license as the current document.

cr element yes/no

specifies whether an xlink:href cross-reference should be set
on the result element.

cref om:* URI reference

extra attribute for cross-references in parallel markup

crid element XPath expression

the path to the sub-element that corresponds to the result ele-
ment.

crossref-symbol presentation, use no, yes, brackets, separator,

lbrack, rbrack, all

quickref-attributes.tex 6154 2006-10-03 11:31:31Z

C Table of Attributes 363

specifies which generated presentation elements should carry
cross-references to the definition.

data omlet

points to a private element that contains the data for this omlet

definitionURL m:* URI

points to the definition of a mathematical concept

derivative workscc:permissions permitted, not permitted

specifies whether the document may be used for making deriva-
tive works.

distribution cc:permissions permitted,not permitted

specifies whether distribution of the current document fragment
is permitted.

element use

the XML element tags to be substituted for the brackets.

element omstyle

the XML element, the presentation information contained in the
omstyle element should be applied to.

encoding m:annotation,om:OMFOREIGNMIME type of the content

specifies the format of the content

entails,

entailed-by

alternative

specifies the equivalent formulations of a definition or axiom

entails-thm,

entailed-by-thm

alternative

specifies the entailment statements for equivalent formulations
of a definition or axiom

exhaustivity morphism, definition OMDoc reference

points to an assertion that states that the cases are exhaustive.

existence definition OMDoc reference

points to an assertion that states that the symbol described in
an implicit definition exists

fixity presentation assoc, infix, postfix, prefix

specifies where the function symbol-of a function application
should be displayed in the output format

function omlet

specifies the function to be called when this omlet is activated.

format data

specifies the format of the data specified by a data element. The
value should e.g. be a MIME type [FB96].

for *

can be used to reference an element by its unique identifier given
in its xml:id attribute.

formalism legacy URI reference

specifies the formalism in which the content is expressed

format legacy URI reference

specifies the encoding format of the content

quickref-attributes.tex 6154 2006-10-03 11:31:31Z

364 C Table of Attributes

format use cmml, default, html,

mathematica, pmml, TeX,...

specifies the output format for which the notation is specified

from imports,

theory-inclusion,

axiom-inclusion

URI reference

pointer to source theory of a theory morphism

from omtext URI reference

points to the source of a relation given by a text type

generated-from top-level elements URI reference

points to a higher-level syntax element, that generates this state-
ment.

generated-via top-level elements,... URI reference

points to a theory-morphism, via which it is translated from the
element pointed to by the generated-from attribute.

globals path-just

points to the axiom-inclusions or theory-inclusions that is
the rest of the inclusion path.

hiding morphism

specifies the names of symbols that are in the domain of the
morphism

href data, link, om:OMR URI reference

a URI to an external file containing the data.

xml:id

associates a unique identifier to an element, which can thus be
referenced by an for or xref attribute.

xml:base

specifies a base URL for a resource fragment

index on RT elements

A path identifier to establish multilingual correspondence

induced-by obligation

points to the statement in the source theory that induces this
proof obligation

inductive assumption, hypothesis yes, no

Marks an assumption or hypothesis inductive.

inherits metadata URI reference

points to a metadata element from which this one inherits.

jurisdiction cc:license IANA Top level Domain

designator

specifies the country of jurisdiction for a Creative Commons
license

just-by type

points to an assertion that states the type property in question.

role symbol, constructor,

recognizer, selector,

sortdef

object, type, sort,

binder, attribution,

semantic-attribution, error

quickref-attributes.tex 6154 2006-10-03 11:31:31Z

C Table of Attributes 365

specifies the role (possible syntactic roles) of the symbol in this
declaration.

role dc:creator,dc:contributorMARC relators

specifies the role of a person who has contributed to the docu-
ment

role presentation applied, binding, key

specifies which role of the symbol is annotated with notation
information

lbrack presentation, use

the left bracket to use in the notation of a function symbol

links decomposition

specifies a list of theory- or axiom-inclusions that justify (by
decomposition) the theory-inclusion specified in the for at-
tribute.

local path-just

points to the axiom-inclusion that is the first element in the
path.

logic FMP token

specifies the logical system used to encode the property.

modules omdoc, omgroup module and sub-language

shorthands, URI reference

specifies the modules or OMDoc sub-language used in this doc-
ument fragment

name om:OMS, om:OMV, symbol,

term

the name of a concept referenced by a symbol, variable, or tech-
nical term.

name attribute, element

the local name of generated element.

name param

the name of a parameter for an external object.

notice cc:requirements required, not required

specifies whether copyright and license notices must be kept in-
tact in distributed copies of this document

ns element, attribute URI

specifies the namespace URI of the generated element or at-
tribute node

original data local, external

specifies whether the local copy in the data element is the orig-
inal or the external resource pointed to by the href attribute.

parameters adt

The list of formal parameters of a higher-order abstract data
type

precedence presentation

the precedence of a function symbol (for elision of brackets)

just-by assertion

quickref-attributes.tex 6154 2006-10-03 11:31:31Z

366 C Table of Attributes

specifies a list of URIs to proofs or other justifications for the
proof status given in the status attribute.

pto,

pto-version

private, code

specifies the system and its version this data or code is private
to

rank premise

specifies the rank (importance) of a premise

rbrack presentation, use

the right bracket to use in the notation of a function symbol

reformulates private

points to a set of elements whose content is reformulated by the
content of the private element for the system.

reproduction cc:permissions permitted,not permitted

specifies whether reproduction of the current document frag-
ment is permitted by the licensor

requires private, code, use,

xslt, style

URI reference

points to a code element that is needed for the execution of this
data by the system.

role dc:creator,

dc:collaborator

aft, ant, aqt, aui, aut, clb,

edt, ths, trc, trl

the MARC relator code for the contribution of the individual.

role phrase, term

the role of the phrase annotation

role presentation applied, binding, key

specifies for which role (as the head of a function application, as
a binding symbol, or as a key in a attribution, or as a stand-alone
symbol (the default)) of the symbol presentation is intended

scheme dc:identifier scheme name

specifies the identification scheme (e.g. ISBN) of a resource

scope symbol global, local

specifies the visibility of the symbol declared. This is a very
crude specification, it is better to use theories and importing to
specify symbol accessibility.

select map, recurse, value-of XPath expression

specifies the path to the sub-expression to act on

separator presentation, use

the separator for the arguments to use in the notation of a func-
tion symbol

show omlet new, replace, embed, other

specifies the desired presentation of the external object.

size data

specifies the size the data specified by a data element. The value
should be number of kilobytes

sort argument

quickref-attributes.tex 6154 2006-10-03 11:31:31Z

C Table of Attributes 367

specifies the argument sort of the constructor

style *

specifies a token for a presentation style to be picked up in a
presentation element.

system type

A token that specifies the logical type system that governs the
type specified in the type element.

theory *

specifies the home theory of an OMDoc statement.

to theory-inclusion,

axiom-inclusion

specifies the target theory

total selector no, yes

specifies whether the symbol declared here is a total or partial
function.

type adt free, generated, loose

defines the semantics of an abstract data type free = no junk,
no confusion, generated = no junk, loose is the general case.

type assertion theorem, lemma, corollary,

conjecture, false-conjecture,

obligation, postulate,

formula, assumption,

proposition

tells you more about the intention of the assertion

type definition implicit, inductive, obj,

recursive, simple

specifies the definition principle

type derive conclusion, gap

singles out special proof steps: conclusions and gaps (unjustified
proof steps)

type example against, for

specifies whether the objects in this example support or falsify
some conjecture

type ignore

specifies the type of error, if ignore is used for in-place error
markup

type imports global, local

local imports only concern the assumptions directly stated in
the theory. global imports also concern the ones the source
theory inherits.

type morphism

specifies whether the morphism is recursive or merely pattern-
defined

type omgroup, omdoc enumeration, sequence, itemize

the first three give the text category, the second three are used
for generalized tables

quickref-attributes.tex 6154 2006-10-03 11:31:31Z

368 C Table of Attributes

type omtext abstract, antithesis, comment,

conclusion, elaboration,

evidence, introduction,

motivation, thesis

a specification of the intention of the text fragment, in reference
to context.

type phrase

the linguistic or mathematical type of the phrase

type ref include, cite

specifies whether to replace the ref element by the fragment
referenced by href attribute or to merely cite it.

uniqueness definition URI reference

points to an assertion that states the uniqueness of the concept
described in an implicit definition

value param

specifies the value of the parameter

valuetype param

specifies the type of the value of the parameter

verbalizes on RT elements URI references

contains a whitespace-separated list of pointers to OMDoc ele-
ments that are verbalized

verdict answer

specifies the truth or falsity of the answer. This can be used e.g.
by a grading application.

version omdoc 1.2

specifies the version of the document, so that the right DTD is
used

version cc:license

specifies the version of the Creative Commons license that ap-
plies, if not present, the newest one is assumed

via inclusion

points to a theory-inclusion that is required for an actualization

who dc:date

specifies who acted on the document fragment

xml:lang CMP, dc:* ISO 639 code

the language the text in the element is expressed in.

xml:lang use, xslt, style whitespace-separated list of

ISO 639 codes

specifies for which language the notation is meant

xlink:* om:OMR, m:* URI reference

specify the link behavior on the elements

xref ref, method, premise URI reference

Identifies the resource in question

xref presentation, omstyle URI reference

The element, this URI points to should be in the place of the
object containing this attribute.

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

D

The RelaxNG Schema for OMDoc

We reprint the modularized RelaxNG schema for OMDoc here. It is avail-
able at http://omdoc.org/rnc and consists of separate files for the OMDoc
modules, which are loaded by the schema driver omdoc.rnc in this directory.
We will use the abbreviated syntax for RelaxNG here, since the XML syn-
tax, document type definitions and even XML schemata can be generated
from it by standard tools.

The RelaxNG schema consists of the grammar fragments for the modules
(see Appendices D.3 to D.15), a definition of the most common attributes that
occur in several of the modules (see Appendix D.2), and the sub-language
driver files which we will introduce next.

D.1 The Sub-Language Drivers

The driver files set up the grammars for the OMDoc sub-languages (see
Section 22.3 for a discussion) in layers. The RelaxNG grammar for “Basic
OMDoc” sets up the language and loads the relevant modules.

1 # A RelaxNG schema for Open Mathematical documents (OMDoc 1.2: OMDoc Basic)
$Id: omdoc−basic.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdoc−basic.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

6

start = omdoc

include ”omdocattribs.rnc”
include ”omdocmobj.rnc”

11 include ”omdocdoc.rnc”
include ”omdocdc.rnc”
include ”omdoccc.rnc”
include ”omdocmtxt.rnc”
include ”omdocrt.rnc”

The RelaxNG grammar for “Content Dictionary OMDoc” adds modules
PRES and ST.

http://omdoc.org/rnc

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

370 D The RelaxNG Schema for OMDoc

A RelaxNG for Open Mathematical documents (OMDoc 1.2: OMDoc Content Dictionaries)
$Id: omdoc−cd.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdoc−cd.rnc $

4 # See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

include ”omdoc−basic.rnc”
include ”omdocpres.rnc”

9 include ”omdocst.rnc”

The RelaxNG grammar for “Educational OMDoc” adds modules PF
and QUIZ to that:

A RelaxNG for Open Mathematical documents (OMDoc 1.2: OMDoc Education)
$Id: omdoc−education.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdoc−education.rnc $
See the documentation and examples at http://www.omdoc.org

5 # Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

include ”omdoc−mathweb.rnc”
include ”omdocquiz.rnc”

The RelaxNG grammar for “Educational OMDoc” starts with “Content
Dictionary OMDoc” adds modules PF and EXT:

1 # A RelaxNG for Open Mathematical documents (OMDoc 1.2: OMDoc MathWeb)
$Id: omdoc−mathweb.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdoc−mathweb.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

6

include ”omdoc−cd.rnc”
include ”omdocext.rnc”
include ”omdocpf.rnc”

The RelaxNG grammar for “Educational OMDoc” starts with “Content
Dictionary OMDoc” adds modules PF and EXT:

1 # A RelaxNG schema for Open Mathematical documents (OMDoc 1.2: OMDoc Specification)
$Id: omdoc−spec.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdoc−spec.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

6

default namespace omdoc = ”http://www.mathweb.org/omdoc”

include ”omdoc−cd.rnc”
include ”omdoccth.rnc”

11 include ”omdocdg.rnc”
include ”omdocpf.rnc”
include ”omdocadt.rnc”

Finally, the The RelaxNG grammar for full OMDoc only needs to add
modules EXT and QUIZ:

A RelaxNG schema for Open Mathematical documents (OMDoc 1.2)
$Id: omdoc.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdoc.rnc $
See the documentation and examples at http://www.omdoc.org

5 # Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

include ”omdoc−spec.rnc”

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

D.2 Common Attributes 371

include ”omdocext.rnc”
include ”omdocquiz.rnc”

D.2 Common Attributes

The RelaxNG grammar for OMDoc separates out declarations for com-
monly used attributes.

1 # A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Common attributes
$Id: omdocattribs.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocattribs.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

6

default namespace omdoc = ”http://www.mathweb.org/omdoc”
namespace local = ””

all the explicitly namespaced attributes, except xml:lang, which
11 # is handled explicitly

nonlocal−attribs = attribute ∗ − (local:∗ | xml:∗) {xsd:string}

the attributes for CSS and PRES styling
css . attribs = attribute style {xsd:string}?, attribute class {xsd:string}?

16

omdocref = xsd:anyURI # an URI reference pointing to an OMDoc fragment
omdocrefs = list {xsd:anyURI∗} # a whitespace−separated list of omdocref

xref . attrib = attribute xref {omdocref}
21 idrest . attribs = css. attribs , nonlocal−attribs∗, attribute xml:base {xsd:anyURI}?

id . attrib = attribute xml:id {xsd:ID}?, idrest . attribs

omdoc.toplevel.attribs = id.attrib , attribute generated−from {omdocref}?

26 # The current XML−recommendation doesn’t yet support the
three−letter short names for languages (ISO 693−2). So
the following section will be using the two−letter
(ISO 693−1) encoding for the languages.
#

31 # en : English, de : German, fr : French,
la : Latin, it : Italian , nl : Dutch,
ru : Russian, pl : Polish, es : Spanish,
tr : Turkish, zh : Chinese, ja : Japanese,
ko : Korean ...

36

iso639 = ”aa” | ”ab” | ”af” | ”am” | ”ar” | ”as” |
”ay” | ”az” | ”ba” | ”be” | ”bg” | ”bh” | ”bi” | ”bn” | ”bo” | ”br” | ”ca” | ”co”
| ”cs” | ”cy” | ”da” | ”de” | ”dz” | ”el” | ”en” | ”eo” | ”es” | ”et” | ”eu” |
”fa” | ”fi” | ”fj” | ”fo” | ”fr” | ”fy” | ”ga” | ”gd” | ”gl” | ”gn” | ”gu” | ”ha”

41 | ”he” | ”hi” | ”hr” | ”hu” | ”hy” | ”ia” | ”ie” | ”ik” | ”id” | ”is” | ”it” |
”iu” | ”ja” | ”jv” | ”ka” | ”kk” | ”kl” | ”km” | ”kn” | ”ko” | ”ks” | ”ku” | ”ky”
| ”la” | ”ln” | ”lo” | ”lt” | ”lv” | ”mg” | ”mi” | ”mk” | ”ml” | ”mn” | ”mo” |
”mr” | ”ms” | ”mt” | ”my” | ”na” | ”ne” | ”nl” | ”no” | ”oc” | ”om” | ”or” | ”pa”
| ”pl” | ”ps” | ”pt” | ”qu” | ”rm” | ”rn” | ”ro” | ”ru” | ”rw” | ”sa” | ”sd” |

46 ”sg” | ”sh” | ”si” | ”sk” | ”sl” | ”sm” | ”sn” | ”so” | ”sq” | ”sr” | ”ss” | ”st”
| ”su” | ”sv” | ”sw” | ”ta” | ”te” | ”tg” | ”th” | ”ti” | ”tk” | ”tl” | ”tn” |
”to” | ”tr” | ”ts” | ”tt” | ”tw” | ”ug” | ”uk” | ”ur” | ”uz” | ”vi” | ”vo” | ”wo”
| ”xh” | ”yi” | ”yo” | ”za” | ”zh” | ”zu”

51 xml.lang.attrib = attribute xml:lang {iso639}?

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

372 D The RelaxNG Schema for OMDoc

D.3 Module MOBJ: Mathematical Objects and Text

The RNC module MOBJ includes the representations for mathematical ob-
jects and defines the legacy element (see Chapter 13 for a discussion). It
includes the standard RelaxNG schema for OpenMath (we have reprinted
it in Appendix E.1) adding the OMDoc identifier and CSS attributes to all
elements. If also includes a schema for MathML (see Appendix E.2).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module MOBJ
$Id: omdocmobj.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocmobj.rnc $

4 # See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://www.mathweb.org/omdoc”

9 namespace om = ”http://www.openmath.org/OpenMath”

we include the OpenMath 2 schema, but we also allow CSS attributes, etc.
include ”openmath2.rnc” {common.attributes = attribute id {xsd:ID}?,idrest.attribs}

14 # we include the MathML2 schema
include ”mathml2/mathml2.rnc”

the legacy element, it can encapsulate the non−migrated formats
legacy = (ss| element legacy {id. attrib ,

19 attribute formalism {xsd:anyURI}?,
attribute format {xsd:anyURI},
Anything}) # to allow everything

omdocmobj.class = legacy | OMOBJ | math

D.4 Module MTXT: Mathematical Text
BErr(88)

BErr(89)

BErr(90)

The RNC module MTXT provides infrastructure for mathematical vernacular
(see Chapter 14 for a discussion).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module MTXT
2 # $Id: omdocmtxt.rnc 8672 2010−08−22 13:12:47Z clange $

$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocmtxt.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

7 default namespace omdoc = ”http://www.mathweb.org/omdoc”

omdoc.class |= omtext

#attribute for is a whitespace−separated list of URIrefs
12 for . attrib = attribute for {omdocrefs}

fori . attrib = attribute for {omdocrefs}?
from.attrib = attribute from {omdocref}

88 Erratum: The type attributes on phrase and omtext were not conform-
ing to the spec

89 Erratum: attribute value trasition forgotten from rnc
90 Erratum: the verbalizes attribute had been forgotten for the phrase

element

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

D.5 Module DOC: Document Infrastructure 373

verbalizes . attrib = attribute verbalizes {omdocrefs}
parallel . attribs = verbalizes. attrib ?, attribute index {xsd:NMTOKEN}?

17 omdocmtxt.MC.content = metadata?,CMP∗
omdocmtxt.MCF.content = omdocmtxt.MC.content,FMP∗

what can go into a mathematical text (to be extended in other modules)
omdoc.mtext.class = text | phrase | term | omdocmobj.class

22

rsttype = ”abstract” | ”introduction” | ”annote” | ”transition” |
”conclusion” | ”thesis” | ”comment” | ”antithesis” |
”elaboration” | ”motivation” | ”evidence” | ”note” | ”notation”

27 statementtype = ”axiom” | ”definition” | ”example” | ”proof” |
”derive” | ”hypothesis”

assertiontype = ”theorem” | ”lemma” | ”corollary” | ”proposition” |
”conjecture” | ” false−conjecture” | ”obligation” |

32 ”postulate” | ”formula” | ”assumption” | ”rule”
omtext.type.attrib = attribute type {rsttype | statementtype | assertiontype | xsd:anyURI}
omtext = element omtext {omdoc.toplevel.attribs,

omtext.type.attrib? &
attribute for {omdocref}?,

37 attribute from {omdocref}?,
verbalizes . attrib ?,
metadata?,CMP+,FMP∗}

attribute ’ for ’ is a URIref, to omdocdoc.class’s it is needed by the ’type’ attribute

42 CMP = (ss| element CMP {xml.lang.attrib, id.attrib, (omdoc.mtext.class)∗})

phrase = (ss| element phrase {id.attrib , parallel . attribs ,
omtext.type.attrib? &
(omdoc.mtext.class)∗})

47 # identifies a text passage and allows to attatch style and type information to it

term = (ss| element term {id.attrib ,
attribute role {text}?,
attribute cdbase {xsd:anyURI}?,

52 attribute cd {xsd:NCName},
attribute name {xsd:NCName},
(omdoc.mtext.class)∗})

FMP = (ss| element FMP {id.attrib, attribute logic {xsd:NMTOKEN}?,
57 ((assumption∗,conclusion∗)|omdocmobj.class)})

If FMP contains a omdocmobj.class then this is the assertion,
if it contains (assumption∗,conclusion∗), then it is a
logical sequent (A1 ,..., An |− C1,...,Cm):

62 # all the Ai entail one of the Ci

assumption = (ss| element assumption {id.attrib,
attribute inductive {”yes” | ”no”}?,
(omdocmobj.class)})

67 conclusion = (ss| element conclusion {id. attrib , (omdocmobj.class?)})
EErr(90)

EErr(89)

EErr(88)D.5 Module DOC: Document Infrastructure

The RNC module DOC specifies the document infrastructure of OMDoc
documents (see Chapter 11 for a discussion).

A RelaxNG for Open Mathematical documents (OMDoc 1.2) Module DOC
$Id: omdocdoc.rnc 8373 2009−06−07 04:19:16Z kohlhase $

3 # $HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocdoc.rnc $

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

374 D The RelaxNG Schema for OMDoc

See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://www.mathweb.org/omdoc”
8 # extend the stuff that can go into a mathematical text

omdoc.mtext.class |= ignore | ref

ss = ignore | ref
omdoc.class |= ss

13 omdoc.meta.class |= notAllowed

metadata = element metadata {id.attrib,
attribute inherits {omdocref}?,
(omdoc.meta.class)∗}

18

Anything = (AnyElement|text)∗
AnyElement = element ∗ {AnyAttribute,(text|AnyElement)∗}
AnyAttribute = attribute ∗ { text }∗

23 # this element can be used in lieu of a comment, it is read
by the style sheet, (comments are not) and can therefore
be transformed by them

ignore = element ignore {attribute type {xsd:string}?,
28 attribute comment {xsd:string}?,

Anything}

ref = element ref {id. attrib ,
xref . attrib ,

33 attribute type {xsd:string}?}

the types supported (there may be more over time) are
− ’include’ (the default) for in−text replacement
− ’cite ’ for a reference with a generated label

38

group.attribs = attribute type {xsd:anyURI}?, attribute modules {xsd:anyURI}?

group.elts = metadata?,(omdoc.class | omgroup)∗

43 # grouping defines the structure of a document
omgroup = element omgroup {group.attribs,omdoc.toplevel.attribs,group.elts}

finally the definition of the OMDoc root element
omdoc = element omdoc {omdoc.toplevel.attribs,group.attribs,

48 attribute version {xsd:string {pattern = ”1.2”}}?,
group.elts}

D.6 Module DC: Dublin Core Metadata

The RNC module DC includes an extension of the Dublin Core vocabulary
for bibliographic metadata, see Sections 12.1 and 12.2 for a discussion.

1 # A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module DC
$Id: omdocdc.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocdc.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

6

default namespace dc = ”http://purl.org/dc/elements/1.1/”

Persons in Dublin Core Metadata
omdocdc.person.content = text

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

D.7 Module ST: Mathematical Statements 375

11 # the rest of Dublin Core content
omdocdc.rest.content = (text | AnyElement)∗

omdoc.meta.class |= ss | dc.contributor | dc.creator | dc. rights
| dc.subject | dc. title | dc.description | dc.publisher

16 | dc.date | dc.type | dc.format | dc. identifier
| dc.source | dc.language | dc. relation

the MARC relator set; see http://www.loc.gov/marc/relators
dcrole = attribute role {”act” | ”adp” | ”aft” | ”ann” | ”ant” | ”app” | ”aqt” |

21 ”arc” | ”arr” | ”art” | ”asg” | ”asn” | ”att” | ”auc” | ”aud” | ”aui” |
”aus” | ”aut” | ”bdd” | ”bjd” | ”bkd” | ”bkp” | ”bnd” | ”bpd” | ”bsl” |
”ccp” | ”chr” | ”clb” | ” cli ” | ” cll ” | ”clt” | ”cmm” | ”cmp” | ”cmt” |
”cnd” | ”cns” | ”coe” | ”col” | ”com” | ”cos” | ”cot” | ”cov” | ”cpc” |
”cpe” | ”cph” | ”cpl” | ”cpt” | ”cre” | ”crp” | ”crr” | ”csl” | ”csp” |

26 ”cst” | ”ctb” | ”cte” | ”ctg” | ”ctr” | ”cts” | ”ctt” | ”cur” | ”cwt” |
”dfd” | ”dfe” | ”dft” | ”dgg” | ”dis” | ”dln” | ”dnc” | ”dnr” | ”dpc” |
”dpt” | ”drm” | ”drt” | ”dsr” | ”dst” | ”dte” | ”dto” | ”dub” | ”edt” |
”egr” | ”elt” | ”eng” | ”etr” | ”exp” | ”fac” | ”flm” | ”fmo” | ”fnd” |
”fpy” | ”frg” | ”hnr” | ”hst” | ” ill ” | ”ilu” | ”ins” | ”inv” | ”itr” |

31 ”ive” | ”ivr” | ”lbt” | ”lee” | ” lel ” | ”len” | ”let” | ” lie ” | ” lil ” |
” lit ” | ”lsa” | ”lse” | ”lso” | ”ltg” | ”lyr” | ”mdc” | ”mod” | ”mon” |
”mrk” | ”mte” | ”mus” | ”nrt” | ”opn” | ”org” | ”orm” | ”oth” | ”own” |
”pat” | ”pbd” | ”pbl” | ”pfr” | ”pht” | ”plt” | ”pop” | ”ppm” | ”prc” |
”prd” | ”prf” | ”prg” | ”prm” | ”pro” | ”prt” | ”pta” | ”pte” | ”ptf” |

36 ”pth” | ”ptt” | ”rbr” | ”rce” | ”rcp” | ”red” | ”ren” | ”res” | ”rev” |
”rpt” | ”rpy” | ”rse” | ”rsp” | ”rst” | ”rth” | ”rtm” | ”sad” | ”sce” |
”scl” | ”scr” | ”sec” | ”sgn” | ”sng” | ”spk” | ”spn” | ”spy” | ”srv” |
”stl” | ”stn” | ”str” | ”ths” | ”trc” | ”trl” | ”tyd” | ”tyg” | ”voc” |
”wam” | ”wdc” | ”wde” | ”wit”}?

41 dclang = id.attrib , xml.lang.attrib

first the Dublin Core Metadata model of the
Dublin Metadata initiative (http://purl.org/dc)

46 dc.contributor = element contributor {dclang,dcrole,omdocdc.person.content}
dc.creator = element creator {dclang,dcrole,omdocdc.person.content}
dc. title = element title {dclang,(omdoc.mtext.class)∗}
dc.subject = element subject {dclang,(omdoc.mtext.class)∗}
dc.description = element description {dclang,(omdoc.mtext.class)∗}

51 dc.publisher = element publisher {id.attrib ,omdocdc.rest.content}
dc.type = element type {(”Dataset” | ”Text” | ”Collection”)}
dc.format = element format {(”application/omdoc+xml”)}
dc.source = element source {omdocdc.rest.content}
dc.language = element language {omdocdc.rest.content}

56 dc. relation = element relation {omdocdc.rest.content}
dc. rights = element rights {omdocdc.rest.content}
dc.date = element date {attribute action {xsd:NMTOKEN}?,

attribute who {omdocref}?,
xsd:dateTime}

61 dc. identifier = element identifier {attribute scheme {xsd:NMTOKEN},text}

D.7 Module ST: Mathematical Statements

The RNC module ST deals with mathematical statements like assertions and
examples in OMDoc and provides an infrastructure for mathematical theories

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

376 D The RelaxNG Schema for OMDoc

as contexts, for the OMDoc elements that fix the meaning for symbols, see
Chapter 15 for a discussion.BErr(91)

BErr(92)

BErr(93)

A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module ST
2 # $Id: omdocst.rnc 8713 2010−09−22 05:49:27Z kohlhase $

$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocst.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

7 default namespace omdoc = ”http://www.mathweb.org/omdoc”

omdocst.scope.attrib = attribute scope {”global” | ”local”}?

omdocst.constitutive. class = symbol | axiom | definition | imports
12 omdocst.nonconstitutive.class = assertion | type | alternative | example | theory

theory−unique = xsd:NCName
just−by.attrib = attribute just−by {omdocref}

17 omdoc.class |= omdocst.nonconstitutive.class

omdocst.constitutive. attribs = id.attrib , attribute generated−from {omdocref}?

sym.role. attrib = attribute role {”type” | ”sort” | ”object” |
22 ”binder” | ”attribution” | ”application” | ”constant” |

”semantic−attribution” | ”error”}

symbol = element symbol {omdocst.scope.attrib,
attribute name {theory−unique}?,

27 omdocst.constitutive. attribs ,
sym.role. attrib ?,
metadata?,type∗}

forname.attrib = attribute for { list {xsd:NCName+}}
32 axiom = element axiom {omdocst.constitutive.attribs,

forname.attrib?,
attribute type {xsd:string}?,
omdocmtxt.MCF.content}

37 #informal definitions
def .informal = attribute type {”informal”}?

#simple definitions
def .simple = (attribute type {”simple”},(omdocmobj.class))

42

#implicit definitions
exists . attrib = attribute existence {omdocref}
unique.attrib = attribute uniqueness {omdocref}
def. implicit = (attribute type {”implicit”}, exists . attrib ?, unique.attrib?, FMP∗)

47

#definitions by (recursive) equations
exhaust.attrib = attribute exhaustivity {omdocref}
consist . attrib = attribute consistency {omdocref}
def.pattern = attribute type {”pattern”}? & exhaust.attrib? & consist.attrib? & requation+

52 def. inductive = attribute type {”inductive”}? & exhaust.attrib? & consist.attrib? &
requation+ & measure? & ordering?

def .eq = def.pattern | def. inductive

91 Erratum: simple definitions should not have an existence attribute,
furthermore pattern definitions should not have measure and ordering

children
92 Erratum: the type element needs to allow a for attribute
93 Erratum: the tgroup element should not contain omgroup children

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

D.7 Module ST: Mathematical Statements 377

57 #all definition forms, add more by extending this.
defs . all = def.informal | def.simple | def. implicit | def.eq

Definitions contain CMPs, FMPs and concept specifications.
The latter define the set of concepts defined in this element.

62 # They can be reached under this name in the content dictionary
of the name specified in the theory attribute of the definition .
definition = element definition {omdocst.constitutive. attribs ,

forname.attrib,
omdocmtxt.MC.content,(defs.all)}

67

requation = (ss| element requation {id. attrib ,omdocmobj.class,omdocmobj.class})
measure = (ss| element measure {id.attrib,omdocmobj.class})
ordering = (ss| element ordering {id. attrib , attribute terminating {omdocref}?,omdocmobj.class})

72 # the non−constitutive statements, they need a theory attribute
omdoc.toplevel.attribs &= attribute theory {omdocref}?

ded.status. class = ” satisfiable ” | ”counter−satisfiable” | ”no−consequence” |
”theorem” | ”conter−theorem” | ”contradictory−axioms” |

77 ”tautologous−conclusion” | ” tautology” | ”equivalent” |
”conunter−equivalent” | ”unsatisfiable−conclusion” | ” unsatisfiable ”

assertion = element assertion {omdoc.toplevel.attribs ,
attribute type {assertiontype}?,

82 attribute status {ded.status. class}?,
attribute just−by {omdocrefs}?,
omdocmtxt.MCF.content}

the assertiontype has no formal meaning yet, it is solely for human consumption.
’just−by’ is a list of URIRefs that point to proof objects, etc that justifies the status .

87

type = element type {omdoc.toplevel.attribs, just−by.attrib?,
attribute system {omdocref}?,
attribute for {omdocref}?,
omdocmtxt.MC.content,

92 (omdocmobj.class),
(omdocmobj.class)?}

alternative = element alternative {omdoc.toplevel.attribs , for . attrib ,
omdocmtxt.MC.content,(defs.all),

97 attribute entailed−by {omdocref},
attribute entails {omdocref},
attribute entailed−by−thm {omdocref},
attribute entails−thm {omdocref}}

just−by, points to the theorem justifying well−definedness
102 # entailed−by, entails, point to other (equivalent definitions

entailed−by−thm, entails−thm point to the theorems justifying
the entailment relation)

example = element example {omdoc.toplevel.attribs, for.attrib,
107 attribute type {”for” | ”against” }?,

attribute assertion {omdocref}?,
omdocmtxt.MC.content,
(omdocmobj.class)∗}

theory = element theory {id.attrib,
112 attribute cdurl {xsd:anyURI}?,

attribute cdbase {xsd:anyURI}?,
attribute cdreviewdate {xsd:date}?,
attribute cdversion {xsd:nonNegativeInteger}?,
attribute cdrevision {xsd:nonNegativeInteger}?,

117 attribute cdstatus {” official ” | ”experimental”
|”private” | ”obsolete”}?,

metadata?,
(omdoc.class | omdocst.constitutive. class | tgroup)∗}

122 omdocsth.imports.model = id.attrib,from.attrib,metadata?
imports = (ss| element imports {omdocsth.imports.model})

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

378 D The RelaxNG Schema for OMDoc

tgroup = element tgroup {omdocst.constitutive.attribs,group.attribs ,
metadata?,

127 (omdoc.class | omdocst.constitutive. class | tgroup)∗}
EErr(93)

EErr(92)

EErr(91) D.8 Module ADT: Abstract Data Types

The RNC module ADT specifies the grammar for abstract data types in OM-
Doc, see Chapter 16 for a discussion.

A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module ADT
2 # $Id: omdocadt.rnc 8009 2008−09−07 19:02:21Z kohlhase $

$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocadt.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

7 default namespace omdoc = ”http://www.mathweb.org/omdoc”
omdoc.class |= adt

omdocadt.sym.attrib = id.attrib,omdocst.scope.attrib,attribute name {xsd:NCName}

12 # adts are abstract data types, they are short forms for groups of symbols
and their definitions , therefore , they have much the same attributes.

adt = element adt {omdoc.toplevel.attribs,
attribute parameters {list {xsd:NCName∗}}?, metadata?, sortdef+}

17

adttype = ”loose” | ”generated” | ”free”
sortdef = (ss| element sortdef {omdocadt.sym.attrib,

attribute role {”sort”}?,
attribute type {adttype}?,

22 metadata?,(constructor | insort)∗, recognizer?})
insort = (ss| element insort {attribute for {omdocref}})
for is a reference to a sort symbol element

constructor = (ss| element constructor {omdocadt.sym.attrib,
27 sym.role. attrib ?,

metadata?,argument∗})
recognizer = (ss| element recognizer {omdocadt.sym.attrib,

sym.role. attrib ?,
metadata?})

32

argument = (ss| element argument {type,selector?})
sort is a reference to a sort symbol element p

37 selector = (ss| element selector {omdocadt.sym.attrib,
sym.role. attrib ?,
attribute total {”yes” | ”no”}?,
metadata?})

D.9 Module PF: Proofs and Proof objects

The RNC module PF deals with mathematical argumentations and proofs in
OMDoc, see Chapter 17 for a discussion.

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

D.10 Module CTH: Complex Theories 379

A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module PF
$Id: omdocpf.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocpf.rnc $
See the documentation and examples at http://www.omdoc.org

5 # Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://www.mathweb.org/omdoc”

omdocpf.opt.content |= proof | proofobject
10 omdoc.class |= proof | proofobject

proof = element proof {omdoc.toplevel.attribs, fori . attrib ,
metadata?,(omtext|symbol|definition|derive|hypothesis)∗}

proofobject = element proofobject {omdoc.toplevel.attribs, fori . attrib ,
15 metadata?,(omdocmobj.class)}

omdocpf.just.content = method?, premise∗, (proof | proofobject)∗

derive .type.attr = attribute type {(”conclusion” | ”gap”)}

20 derive = (ss| element derive {id. attrib ,derive .type.attr ?,
omdocmtxt.MCF.content,method?})

hypothesis = (ss| element hypothesis {id.attrib ,
attribute inductive {”yes” | ”no”}?,
omdocmtxt.MCF.content})

25

method = (ss| element method {xref.attrib?, (omdocmobj.class|premise|proof|proofobject)∗})
’xref’ is a pointer to the element defining the method

premise = (ss| element premise {xref.attrib ,
30 attribute rank {xsd:nonNegativeInteger}})

The rank of a premise specifies its importance in the inference rule .
Rank 0 (the default) is a real premise, whereas positive rank signifies
sideconditions of varying degree.

D.10 Module CTH: Complex Theories

The RNC presented in this section deals with the module CTH of complex
theories (see Chapter 18 for a discussion).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module CTH
$Id: omdoccth.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdoccth.rnc $
See the documentation and examples at http://www.omdoc.org

5 # Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://www.mathweb.org/omdoc”

omdocst.constitutive. class |= inclusion
10 omdocsth.imports.model &= morphism?,

attribute type { ”local” | ”global”}?,
attribute conservativity {”conservative” | ”monomorphism” | ”definitional”}?,
attribute conservativity−just {omdocref}?

15 omdoc.toplevel.attribs &= attribute generated−via {omdocref}?
omdocst.constitutive. attribs &= attribute generated−via {omdocref}?

omdoc.class |= theory−inclusion | axiom−inclusion
omdoccth.theory−inclusion.justification = obligation∗

20 omdoccth.axiom−inclusion.justification = obligation∗

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

380 D The RelaxNG Schema for OMDoc

fromto.attrib = from.attrib, attribute to {omdocref}
attributes ’to’ and ’from’ are URIref

25 morphism = (ss| element morphism {id.attrib,attribute hiding {omdocrefs}?, attribute base {omdocrefs}?,def.eq?})
base points to some other morphism it extends

inclusion = element inclusion {id. attrib , attribute via {omdocref}}
via points to a theory−inclusion

30

theory−inclusion = element theory−inclusion {omdoc.toplevel.attribs,fromto.attrib,
metadata?,morphism?,

(omdoccth.theory−inclusion.justification)}

35 axiom−inclusion = element axiom−inclusion {omdoc.toplevel.attribs,fromto.attrib,
metadata?,morphism?,
(omdoccth.axiom−inclusion.justification)}

obligation = (ss| element obligation {id. attrib ,
40 attribute induced−by {omdocref},

attribute assertion {omdocref}})

attribute ’ assertion ’ is a URIref, points to an assertion
that is the proof obligation induced by the axiom or definition

45 # specified by ’induced−by’.

BErr(94)

D.11 Module DG: Development Graphs

The RNC presented in this section deals with the module CTH of development
graphs (see Section 18.5 for a discussion).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module CTH
$Id: omdoccth.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdoccth.rnc $

4 # See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://www.mathweb.org/omdoc”

9 omdocst.constitutive. class |= inclusion
omdocsth.imports.model &= morphism?,

attribute type { ”local” | ”global”}?,
attribute conservativity {”conservative” | ”monomorphism” | ”definitional”}?,
attribute conservativity−just {omdocref}?

14

omdoc.toplevel.attribs &= attribute generated−via {omdocref}?
omdocst.constitutive. attribs &= attribute generated−via {omdocref}?

omdoc.class |= theory−inclusion | axiom−inclusion
19 omdoccth.theory−inclusion.justification = obligation∗

omdoccth.axiom−inclusion.justification = obligation∗

fromto.attrib = from.attrib, attribute to {omdocref}
attributes ’to’ and ’from’ are URIref

24

morphism = (ss| element morphism {id.attrib,attribute hiding {omdocrefs}?, attribute base {omdocrefs}?,def.eq?})
base points to some other morphism it extends

inclusion = element inclusion {id. attrib , attribute via {omdocref}}
29 # via points to a theory−inclusion

94 Erratum: The DG module RelaxNG schema had been forgotten

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

D.12 Module RT: Rich Text Structure 381

theory−inclusion = element theory−inclusion {omdoc.toplevel.attribs,fromto.attrib,
metadata?,morphism?,

(omdoccth.theory−inclusion.justification)}
34

axiom−inclusion = element axiom−inclusion {omdoc.toplevel.attribs,fromto.attrib,
metadata?,morphism?,
(omdoccth.axiom−inclusion.justification)}

39 obligation = (ss| element obligation {id. attrib ,
attribute induced−by {omdocref},
attribute assertion {omdocref}})

attribute ’ assertion ’ is a URIref, points to an assertion
44 # that is the proof obligation induced by the axiom or definition

specified by ’induced−by’.

EErr(94)

D.12 Module RT: Rich Text Structure

The RNC module RT provides text structuring elements for mathematical text
below the level of mathematical statements (see Section 14.6 for a discussion).

A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module DOC
$Id: omdocrt.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocrt.rnc $

4 # See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://www.mathweb.org/omdoc”

9 omdoc.mtext.class |= ss|ul |ol |dl |p|note| link |table |idx

omdocrt.common.attrib = id.attrib, fori. attrib , parallel . attribs

ul = element ul {omdocrt.common.attrib, metadata?,li+}
14 ol = element ol {omdocrt.common.attrib, metadata?,li+}

dl = element dl {omdocrt.common.attrib, metadata?,di+}
li = element li {omdocrt.common.attrib, metadata?,(omdoc.mtext.class)∗}
di = element di {omdocrt.common.attrib, metadata?,dt+,dd∗}
dt = element dt {omdocrt.common.attrib, metadata?,(omdoc.mtext.class)∗}

19 dd = element dd {omdocrt.common.attrib, metadata?,(omdoc.mtext.class)∗}

p = element p {omdocrt.common.attrib, (omdoc.mtext.class)∗}
note = element note {omdocrt.common.attrib,

24 attribute type {xsd:NMTOKEN}?,
(omdoc.mtext.class)∗}

a simplified html table
29 table = element table {omdocrt.common.attrib, tr+}

tr = (ss| element tr {omdocrt.common.attrib, (td|th)+})
td = (ss| element td {omdocrt.common.attrib, (omdoc.mtext.class)∗})
th = (ss| element th {omdocrt.common.attrib, (omdoc.mtext.class)∗})

34 link = element link {omdocrt.common.attrib,
attribute href {xsd:anyURI},
(omdoc.mtext.class)∗}

index
39 index.att = attribute sort−by {text}?,

attribute see {omdocrefs}?,

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

382 D The RelaxNG Schema for OMDoc

attribute seealso {omdocrefs}?,
attribute links { list {xsd:anyURI∗}}?

idx = element idx {(id.attrib |xref . attrib), idt?, ide+}
44 ide = element ide {attribute index {xsd:NCName}?,index.att,idp∗}

idt = element idt {idrest . attribs ,omdoc.mtext.class∗}
idp = element idp {index.att,omdoc.mtext.class∗}

D.13 Module EXT: Applets and non-XML data

The RNC module EXT provides an infrastructure for applets, program code,
and non-XML data like images or measurements (see Chapter 20 for a dis-
cussion).BErr(95)

A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module EXT
$Id: omdocext.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocext.rnc $

4 # See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://www.mathweb.org/omdoc”

9 omdoc.mtext.class |= omlet
omdocext.class = private | code | omlet
omdoc.class |= omdocext.class

omdocext.private.attrib = fori . attrib , attribute requires {omdocref}?
14

private = element private {omdoc.toplevel.attribs,omdocext.private.attrib,
attribute reformulates {omdocref}?,
metadata?,data+}

reformulates is a URIref to the omdoc elements that are reformulated by the
19 # system−specific information in this element

code = element code {omdoc.toplevel.attribs,omdocext.private.attrib,
(metadata?,data+,input?,output?,effect?)}

input = (ss| element input {id. attrib , (omdocmtxt.MCF.content)})
output = (ss| element output {id.attrib , (omdocmtxt.MCF.content)})

24 effect = (ss| element effect {id. attrib , (omdocmtxt.MCF.content)})

data = (ss| element data {id.attrib ,
attribute format {xsd:string}?,
attribute href {xsd:anyURI}?,

29 attribute size {xsd:string}?,
attribute pto {xsd:string}?,
attribute pto−version {xsd:string}?,
attribute original {”external” | ”local”}?,
Anything})

34

omlet = (ss| element omlet {id.attrib ,
attribute action {”display” | ”execute” | ”other”}?,
attribute show {”new” | ”replace” | ”embed” | ”other”}?,
attribute actuate {”onPresent” | ”onLoad” | ”onRequest” | ”other”}?,

39 metadata?,
(omdoc.mtext.class | param)∗,
(attribute data {xsd:anyURI}|(private|code))})

param = (ss| element param {id.attrib,
44 attribute name {xsd:string},

attribute value {xsd:string}?,
attribute valuetype {”data” | ”ref” | ”object”}?,
(omdocmobj.class)?})

95 Erratum: we have to allow the metadata element in omlet

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

D.14 Module PRES: Adding Presentation Information 383

EErr(95)

D.14 Module PRES: Adding Presentation Information

The RNC module PRES provides a sub-language for defining notations for
mathematical symbols and for styling OMDoc elements (see Chapter 19 for
a discussion).

A RelaxNG for Open Mathematical documents (OMDoc 1.2) Module PRES
$Id: omdocpres.rnc 8009 2008−09−07 19:02:21Z kohlhase $

3 # $HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocpres.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace omdoc = ”http://www.mathweb.org/omdoc”
8

we include the XSLT 2 schema
include ”xslt10.rnc”

#xslt10 = external ”xslt10.rnc”
13

omdoc.class |= presentation |omstyle

crossref . attrib = attribute crossref−symbol
{”no” | ”yes” | ”brackets” | ”separator” | ”lbrack” | ”rbrack” | ”all”}

18 fixity . attrib = attribute fixity {”prefix” | ” infix” | ”postfix” | ”assoc” | ” infixl ” | ” infixr ”}
format.attrib = attribute format {xsd:string}, attribute requires {omdocref}?, xml.lang.attrib
bracket−style.attrib = attribute bracket−style {”lisp” | ”math”}
lbrack. attrib = attribute lbrack {xsd:string}
rbrack. attrib = attribute rbrack {xsd:string}

23 separator. attrib = attribute separator {xsd:string}
precedence.attrib = attribute precedence {xsd:nonNegativeInteger}
role . attrib = attribute role {”applied” | ”binding” | ”key”}

presentation = element presentation {omdoc.toplevel.attribs,
28 attribute for {omdocref},

role . attrib ?,
(xref . attrib ?|
(fixity . attrib ?,
lbrack. attrib ?,

33 rbrack. attrib ?,
separator. attrib ?,
bracket−style.attrib ?,
precedence.attrib?,
crossref . attrib ?,

38 CMP∗,
(use | xslt | style)∗))}

omdocpres.use.mix = elt | txt | recurse | value−of | map

43 use = (ss| element use {format.attrib,
bracket−style.attrib ?,
precedence.attrib?,
fixity . attrib ?,
lbrack. attrib ?,rbrack. attrib ?,separator. attrib ?,

48 attribute element {xsd:string}?,
attribute attributes {xsd:string}?,
crossref . attrib ?,
(text | omdocpres.use.mix)∗})

the attributes in the <use> element overwrite those in the
53 # <presentation> element, therefore, they do not have defaults

omstyle = element omstyle {omdoc.toplevel.attribs,

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

384 D The RelaxNG Schema for OMDoc

attribute for {omdocref}?,
attribute element {xsd:string}?,

58 (xslt | style)∗}

xslt = (ss| element xslt {format.attrib , xref . attrib ?,template.model})

style = (ss| element style {format.attrib , (omdocpres.use.mix)∗})
63 # this element contains mock xslt expressed in the elements below

elt = (ss| element element {attribute name {xsd:NMTOKEN},
attribute crid {xsd:string}?,
attribute cr {”yes” |”no”}?,

68 attribute ns {xsd:anyURI}?,
(attrb | omdocpres.use.mix)∗})

map = (ss| element map {attribute select {xsd:string}?,
attribute lbrack {xsd:string}?,

73 attribute rbrack {xsd:string}?,
attribute precedence {xsd:string}?,

separator?,
(omdocpres.use.mix)∗})

78 separator = (ss| element separator {(omdocpres.use.mix)∗})

attrb = (ss| element attribute {attribute name {xsd:NMTOKEN},
attribute ns {xsd:anyURI}?,
(attribute select {xsd:string} |

83 (txt | value−of)∗)})

txt = (ss| element text {text})

value−of = (ss| element value−of {attribute select {xsd:string}})
88 recurse = (ss| element recurse {attribute select {xsd:string}?})

D.15 Module QUIZ: Infrastructure for Assessments

The RNC module QUIZ provides a basic infrastructure for various kinds of
exercises (see Chapter 21 for a discussion).

1 # A RelaxNG schema for Open Mathematical documents (OMDoc 1.2) Module QUIZ
$Id: omdocquiz.rnc 8373 2009−06−07 04:19:16Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/omdocquiz.rnc $
See the documentation and examples at http://www.omdoc.org
Copyright (c) 2004−2007 Michael Kohlhase, released under the GNU Public License (GPL)

6

default namespace omdoc = ”http://www.mathweb.org/omdoc”
omdoc.class |= exercise | hint | mc | solution

exercise = element exercise {id. attrib , fori . attrib ,
11 omdocmtxt.MCF.content,

hint∗,
(solution∗|mc∗)}

omdocpf.opt.content = notAllowed
16

hint = element hint {omdoc.toplevel.attribs, fori . attrib , omdocmtxt.MCF.content}
solution = element solution {omdoc.toplevel.attribs, fori . attrib ,metadata?,(omdoc.class | omgroup)∗}
mc = element mc {omdoc.toplevel.attribs,fori.attrib ,choice ,hint?,answer}

21 choice = (ss| element choice {id. attrib ,omdocmtxt.MCF.content})

answer = (ss| element answer {id.attrib ,

rnc.tex 8710 2010-09-22 05:43:57Z kohlhase

D.15 Module QUIZ: Infrastructure for Assessments 385

attribute verdict {”true” | ” false ”}?,
omdocmtxt.MCF.content})

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

E

The RelaxNG Schemata for Mathematical
Objects

For completeness we reprint the RelaxNG schemata for the external formats
OMDoc makes use of.

E.1 The RelaxNG Schema for OpenMath

For completeness we reprint the RelaxNG schema for OpenMath, the orig-
inal can be found in the OpenMath2 standard [BCC+04].

RELAX NG Schema for OpenMath 2
$Id: openmath2.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/openmath2.rnc $

4 # See the documentation and examples at http://www.openmath.org

default namespace om = ”http://www.openmath.org/OpenMath”

#start = OMOBJ
9

OpenMath object constructor
OMOBJ = element OMOBJ { compound.attributes,

attribute version { xsd:string }?,
omel }

14

Elements which can appear inside an OpenMath object
omel =

OMS | OMV | OMI | OMB | OMSTR | OMF | OMA | OMBIND | OME | OMATTR |OMR

19 # things which can be variables
omvar = OMV | attvar

attvar = element OMATTR { common.attributes,(OMATP , (OMV | attvar))}

24

cdbase = attribute cdbase { xsd:anyURI}?

attributes common to all elements
common.attributes = (attribute id { xsd:ID })?

29

attributes common to all elements that construct compount OM objects.
compound.attributes = common.attributes,cdbase

symbol

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

388 E The RelaxNG Schemata for Mathematical Objects

34 OMS = element OMS { common.attributes,
attribute name {xsd:NCName},
attribute cd {xsd:NCName},
cdbase }

39 # variable
OMV = element OMV { common.attributes,

attribute name { xsd:NCName} }

integer
44 OMI = element OMI { common.attributes,

xsd:string {pattern = ”\s∗(−\s?)?[0−9]+(\s[0−9]+)∗\s∗”}}
byte array
OMB = element OMB { common.attributes, xsd:base64Binary }

49 # string
OMSTR = element OMSTR { common.attributes, text }

IEEE floating point number
OMF = element OMF { common.attributes,

54 (attribute dec { xsd:double } |
attribute hex { xsd:string {pattern = ”[0−9A−F]+”}}) }

apply constructor
OMA = element OMA { compound.attributes, omel+ }

59

binding constructor
OMBIND = element OMBIND { compound.attributes, omel, OMBVAR, omel }

variables used in binding constructor
64 OMBVAR = element OMBVAR { common.attributes, omvar+ }

error constructor
OME = element OME { common.attributes, OMS, (omel|OMFOREIGN)∗ }

69 # attribution constructor and attribute pair constructor
OMATTR = element OMATTR { compound.attributes, OMATP, omel }

OMATP = element OMATP { compound.attributes, (OMS, (omel | OMFOREIGN))+ }

74 # foreign constructor
OMFOREIGN = element OMFOREIGN {

compound.attributes, attribute encoding {xsd:string}?,
(omel|notom)∗ }

79 # Any elements not in the om namespace
(valid om is allowed as a descendant)
notom =

(element ∗ − om:∗ {attribute ∗ { text }∗,(omel|notom)∗}
| text)

84

reference constructor
OMR = element OMR { common.attributes,

attribute href { xsd:anyURI }
}

E.2 The RelaxNG Schema for MathML

For completeness, we reprint the RelaxNG schema for MathML. It comes
in three parts, the schema driver, and the parts for content- and presentation
MathML which we will present in the next two subsections.

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

E.2 The RelaxNG Schema for MathML 389

1 # A RelaxNG schema for MathML2
$Id: mathml2.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/mathml2/mathml2.rnc $
(c) 2005 Michael Kohlhase, released under the GNU Public License (GPL)

6 default namespace m = ”http://www.w3.org/1998/Math/MathML”
namespace a = ”http://relaxng.org/ns/compatibility/annotations/1.0”
namespace xlink = ”http://www.w3.org/1999/xlink”
namespace local = ””

11 non−mathml−attribs = attribute ∗ − (local:∗|xlink:href) {xsd:string}

MathML.Common.attrib = attribute class {xsd:NMTOKENS}?,
attribute style {xsd:string}?,
attribute id {xsd:ID}?,

16 attribute xlink:href {xsd:anyURI}?,
non−mathml−attribs∗

include ”mathml2−presentation.rnc”
21 include ”mathml2−content.rnc”

Presentation−expr.class = PresExpr.class | ContExpr.class

Content−expr.class = ContExpr.class | PresExpr.class
26

PresExpr.class = Presentation−token.class |
Presentation−layout.class |
Presentation−script.class |
Presentation−table.class |

31 mspace | maction | merror | mstyle

ContExpr.class = Content−tokens.class |
Content−arith.class |
Content−functions.class |

36 Content−logic.class |
Content−constants.class |
Content−sets.class |
Content−relations.class |
Content−elementary−functions.class |

41 Content−calculus.class |
Content−linear−algebra.class |
Content−vector−calculus.class |
Content−statistics. class |
Content−constructs.class |

46 semantics

Browser−interface.attrib = attribute baseline {xsd:string}?,
[a:default = ”scroll ”]
attribute overflow {” scroll ” | ”elide” | ”truncate” | ”scale”}?,

51 attribute altimg {xsd:anyURI}?,
attribute alttext {xsd:string}?,
attribute type {xsd:string}?,
attribute name {xsd:string}?,
attribute height {xsd:string}?,

56 attribute width {xsd:string}?

math.attlist = Browser−interface.attrib,
attribute macros {xsd:string}?,
[a:default = ”inline”]

61 attribute display {”block” | ” inline”}?,
MathML.Common.attrib

math.content = PresExpr.class | ContExpr.class

66 math = element math {math.attlist,math.content∗}

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

390 E The RelaxNG Schemata for Mathematical Objects

E.2.1 Presentation MathML

A RelaxNG schema for MathML2 Presentation Elements
$Id: mathml2−presentation.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/mathml2/mathml2−presentation.rnc $

4 # (c) 2005 Michael Kohlhase, released under the GNU Public License (GPL)

default namespace m = ”http://www.w3.org/1998/Math/MathML”
namespace a = ”http://relaxng.org/ns/compatibility/annotations/1.0”

9 # Simple sizes
simple−size= ”small” | ”normal” | ”big”

Centering values
centering .values = ”left” | ”center” | ”right”

14

The named spaces
this is also used in the value of the ”width” attribute on the ”mpadded” element
named−space = ”veryverythinmathspace” |

”verythinmathspace” |
19 ”thinmathspace” |

”mediummathspace” |
”thickmathspace” |
”verythickmathspace” |
”veryverythickmathspace”

24

Thickness
thickness = ”thin” | ”medium” | ”thick”

number with units used to specified lengths
29 length−with−unit =

xsd:string #{pattern=”(−?([0−9]+|[0−9]∗\.[0−9]+)∗(em|ex|px|in|cm|mm|pt|pc|%))|0”}
length−with−optional−unit =

xsd:string #{pattern=”−?([0−9]+|[0−9]∗\.[0−9]+)∗(em|ex|px|in|cm|mm|pt|pc|%)?”}

34 # This is just ” infinity ” that can be used as a length
infinity = ”infinity”

colors defined as RGB
RGB−color = xsd:string {pattern=”#(([0−9]|[a−f]){3}|([0−9]|[a−f]){6})”}

39

This schema module defines sets of attributes common to several elements
of presentation MathML.

The mathematics style attributes. These attributes are valid on all
44 # presentation token elements except ”mspace” and ”mglyph”, and on no

other elements except ”mstyle”.

Token−style.attrib = attribute mathvariant
{”normal” | ”bold” | ” italic ” | ”bold−italic” | ”double−struck” |

49 ”bold−fraktur” | ”script” | ”bold−script” | ”fraktur” |
”sans−serif” | ”bold−sans−serif” | ”sans−serif−italic” |
”sans−serif−bold−italic” | ”monospace”}?,

attribute mathsize {simple−size | length−with−unit}?,
For both of the following attributes the types should be more restricted

54 attribute mathcolor {xsd:string}?,
attribute mathbackground {xsd:string}?

These operators are all related to operators. They are valid on ”mo” and ”mstyle”.

59 Operator.attrib =
this attribute value is normally inferred from the position of
the operator in its ”<mrow”>

attribute form {”prefix” | ” infix” | ”postfix”}?,
set by dictionnary, else it is ”thickmathspace”

64 attribute lspace {length−with−unit | named−space}?,

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

E.2 The RelaxNG Schema for MathML 391

set by dictionary, else it is ”thickmathspace”
attribute rspace {length−with−unit | named−space}?,
set by dictionnary, else it is ” false”
attribute fence {xsd:boolean}?,

69 # set by dictionnary, else it is ” false”
attribute separator {xsd:boolean}?,
set by dictionnary, else it is ” false”
attribute stretchy {xsd:boolean}?,
set by dictionnary, else it is ”true”

74 attribute symmetric {xsd:boolean}?,
set by dictionnary, else it is ” false”
attribute movablelimits {xsd:boolean}?,
set by dictionnary, else it is ” false”
attribute accent {xsd:boolean}?,

79 # set by dictionnary, else it is ” false”
attribute largeop {xsd:boolean}?,
attribute minsize {length−with−unit | named−space}?,
attribute maxsize {length−with−unit | named−space | infinity | xsd:float}?

84 mglyph = element mglyph {attribute alt {xsd:string}?,
attribute fontfamily {xsd:string}?,
attribute index {xsd:positiveInteger}?}

This is the XML schema module for the token elements of the
89 # presentation part of MathML.

Glyph−alignmark.class = malignmark|mglyph

”mi” is supposed to have a default value of its ”mathvariant” attribute set to ” italic ”
94 mi = element mi {Token−style.attrib, MathML.Common.attrib,(Glyph−alignmark.class|text)∗}

”mo”
mo = element mo {Operator.attrib,Token−style.attrib,MathML.Common.attrib,

(text |Glyph−alignmark.class)∗}
99

”mn”
mn = element mn {Token−style.attrib, MathML.Common.attrib,(text|Glyph−alignmark.class)∗}

”mtext”
104 mtext = element mtext {Token−style.attrib, MathML.Common.attrib,(text|Glyph−alignmark.class)∗}

ms (the values of ”lquote” or ”rquote” are not restricted to be one character strings ...)
ms = element ms {[a:default=”"”] attribute lquote {xsd:string}?,

[a:default=”"”] attribute rquote {xsd:string}?,
109 Token−style.attrib,MathML.Common.attrib,

(text |Glyph−alignmark.class)∗}

And the group of any token
Presentation−token.class = mi | mo | mn | mtext | ms

114

This is an XML Schema module for the presentation elements of MathML
dealing with subscripts and superscripts.

”msub”
119 msub = element msub {attribute subscriptshift {length−with−unit}?, MathML.Common.attrib,

Presentation−expr.class,(Presentation−expr.class)}

”msup”
msup = element msup {attribute supscriptshift {length−with−unit}?, MathML.Common.attrib,

124 Presentation−expr.class,Presentation−expr.class}

”msubsup”
msubsup = element msubsup {MathML.Common.attrib,

attribute subscriptshift {length−with−unit}?,
129 attribute supscriptshift {length−with−unit}?,

Presentation−expr.class,Presentation−expr.class}

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

392 E The RelaxNG Schemata for Mathematical Objects

”munder”
munder = element munder {MathML.Common.attrib,

134 attribute accentunder {xsd:boolean}?,
Presentation−expr.class,Presentation−expr.class}

”mover”
mover = element mover {MathML.Common.attrib,

139 attribute accent {xsd:boolean}?,
Presentation−expr.class,Presentation−expr.class}

”munderover”
munderover = element munderover {MathML.Common.attrib,

144 attribute accentunder {xsd:boolean}?,
attribute accent {xsd:boolean}?,
Presentation−expr.class,
Presentation−expr.class,
Presentation−expr.class}

149

”mmultiscripts”, ”mprescripts” and ”none”

Presentation−expr−or−none.class = Presentation−expr.class | none

154 mmultiscripts = element mmultiscripts{MathML.Common.attrib,
Presentation−expr.class,
(Presentation−expr−or−none.class,
Presentation−expr−or−none.class)∗,

(mprescripts,
159 (Presentation−expr−or−none.class,

Presentation−expr−or−none.class)∗)?}
none = element none {empty}
mprescripts = element mprescripts {empty}

164 Presentation−script.class = msub|msup|msubsup|munder|mover|munderover|mmultiscripts

mspace = element mspace {[a:defaultValue = ”0em”]
attribute width {length−with−unit | named−space}?,
[a:defaultValue = ”0ex”]

169 attribute height {length−with−unit}?,
[a:defaultValue = ”0ex”]
attribute depth {length−with−unit}?,
[a:defaultValue=”auto”]
attribute linebreak {”auto” | ”newline” | ”indentingnewline” |

174 ”nobreak” | ”goodbreak” | ”badbreak”}?,
MathML.Common.attrib}

This is the XML schema module for the layout elements of the
presentation part of MathML.

179

”mrow”
mrow = element mrow {MathML.Common.attrib,(Presentation−expr.class)∗}

”mfrac”
184

mfrac = element mfrac {attribute bevelled {xsd:boolean}?,
[a:defaultValue = ”center”]
attribute denomalign {centering.values}?,
[a:defaultValue = ”center”]

189 attribute numalign {centering.values}?,
[a:defaultValue=”1”]
attribute linethickness {length−with−optional−unit|thickness}?,
MathML.Common.attrib,
Presentation−expr.class,Presentation−expr.class}

194 # ”msqrt”
msqrt = element msqrt {MathML.Common.attrib,(Presentation−expr.class)∗}

”mroot”
mroot = element mroot {MathML.Common.attrib,Presentation−expr.class,Presentation−expr.class}

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

E.2 The RelaxNG Schema for MathML 393

199

”mpadded”
mpadded−space = xsd:string {pattern=”(\+|−)?([0−9]+|[0−9]∗\.[0−9]+)(((%?)∗(width|lspace|height|depth))|(em|ex|px|in|cm|mm|pt|pc))”}

MaxF: definition from spec seems wrong,
204 # fixing to ([+|−] unsigned−number (%[pseudo−unit]|pseudo−unit|h−unit)) | namedspace | 0

mpadded−width−space = xsd:string {pattern=”((\+|−)?([0−9]+|[0−9]∗\.[0−9]+)(((%?) ∗(width|lspace|height|depth)?)|(width|lspace|height|depth)|(em|ex|px|in|cm|mm|pt|pc)))|((veryverythin|verythin|thin|medium|thick|verythick|veryverythick)mathspace)|0”}
mpadded = element mpadded {attribute width {mpadded−width−space},

should have default=0 below but ’0’ is not in value space
209 # see bug #425

attribute lspace {mpadded−space}?,
attribute height {mpadded−space}?,
attribute depth {mpadded−space}?,
MathML.Common.attrib,

214 (Presentation−expr.class)∗}

”mphantom”
mphantom = element mphantom.attlist {MathML.Common.attrib,Presentation−expr.class∗}

219 # ”mfenced”
mfenced = element mfenced {[a:defaultValue= ”(”] attribute open {xsd:string}?,

[a:defaultValue = ”)”] attribute close {xsd:string}?,
[a:defaultValue = ”,”] attribute separators {xsd:string}?,
MathML.Common.attrib,

224 (Presentation−expr.class)∗}

”menclose”
menclose = element menclose {[a:defaultValue=”longdiv”]

attribute notation {”actuarial”|”longdiv”|”radical ”|
229 ”box”|”roundedbox”|”circle”|

” left ”|”right”|”top”|”bottom”|
”updiagonalstrike”|”downdiagonalstrike”|
” verticalstrike ”|” horizontalstrike ”}?,

MathML.Common.attrib,
234 (Presentation−expr.class)∗}

And the group of everything
Presentation−layout.class = mrow|mfrac|msqrt|mroot|mpadded|mphantom|mfenced|menclose

239 # This is an XML Schema module for tables in MathML presentation.

Table−alignment.attrib = [a:defaultValue = ”baseline”]
attribute rowalign

{xsd:string {pattern=”(top|bottom|center|baseline|axis)(top|bottom|center|baseline|axis)∗”}}?,
244 [a:defaultValue = ”center”]

attribute columnalign
{xsd:string {pattern=”(left|center | right)(left |center | right)∗”}}?,

attribute groupalign {xsd:string}?

249 mtr = element mtr {Table−alignment.attrib, MathML.Common.attrib,mtd+}

mlabeledtr = element mlabeledtr {Table−alignment.attrib,MathML.Common.attrib,mtd∗}

”mtd”
254 mtd = element mtd {Table−alignment.attrib,

[a:defaultValue=”1”] attribute columnspan {xsd:positiveInteger}?,
[a:defaultValue=”1”] attribute rowspan {xsd:positiveInteger}?,
MathML.Common.attrib,
Presentation−expr.class∗}

259

”mtable”
mtable = element mtable {Table−alignment.attrib,

[a:defaultValue=”axis”] attribute align {xsd:string}?,
[a:defaultValue=”true”]

264 attribute alignmentscope {xsd:string {pattern=”(true|false)(true| false)∗”}}?,
[a:defaultValue=”auto”] attribute columnwidth {xsd:string}?,

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

394 E The RelaxNG Schemata for Mathematical Objects

[a:defaultValue=”auto”] attribute width {xsd:string}?,
[a:defaultValue=”1.0ex”] attribute rowspacing {xsd:string}?,
[a:defaultValue=”0.8em”] attribute columnspacing {xsd:string}?,

269 [a:defaultValue=”none”] attribute rowlines {xsd:string}?,
[a:defaultValue=”none”] attribute columnlines {xsd:string}?,
[a:defaultValue=”none”] attribute frame {”none” | ”solid” | ”dashed”}?,
[a:defaultValue=”0.4em 0.5ex”] attribute framespacing {xsd:string}?,
[a:defaultValue=”false”] attribute equalrows {xsd:boolean}?,

274 [a:defaultValue=”false”] attribute equalcolumns {xsd:boolean}?,
[a:defaultValue=”false”] attribute displaystyle {xsd:boolean}?,
[a:defaultValue=”right”]
attribute side {” left ”|”right”|” leftoverlap ”|”rightoverlap”}?,
[a:defaultValue=”0.8em”] attribute minlabelspacing {length−with−unit}?,

279 MathML.Common.attrib,
(mtr|mlabeledtr)∗}

”maligngroup”
maligngroup = element maligngroup {

284 attribute groupalign {” left” | ”center” | ”right” | ”decimalpoint”}?,
MathML.Common.attrib}

”malignmark”

289 malignmark = element malignmark {[a:defaultValue=”left”] attribute edge {”left” | ”right”}?,
MathML.Common.attrib}

Presentation−table.class = mtable|maligngroup|malignmark

”mstyle”
294 mstyle = element mstyle {attribute scriptlevel {xsd:integer}?,

attribute displaystyle {xsd:boolean}?,
[a:defaultValue=”0.71”] attribute scriptsizemultiplier {xsd:decimal}?,
[a:defaultValue=”8pt”] attribute scriptminsize {length−with−unit}?,
attribute color {xsd:string}?,

299 [a:defaultValue=”transparent”] attribute background {xsd:string}?,
[a:defaultValue=”0.0555556em”] attribute veryverythinmathspace {length−with−unit}?,
[a:defaultValue=”0.111111em”] attribute verythinmathspace {length−with−unit}?,
[a:defaultValue=”0.166667em”] attribute thinmathspace {length−with−unit}?,
[a:defaultValue=”0.222222em”] attribute mediummathspace {length−with−unit}?,

304 [a:defaultValue=”0.277778em”] attribute thickmathspace {length−with−unit}?,
[a:defaultValue=”0.333333em”] attribute verythickmathspace {length−with−unit}?,
[a:defaultValue=”0.388889em”] attribute veryverythickmathspace {length−with−unit}?,
[a:defaultValue=”1”] attribute linethickness {length−with−optional−unit|thickness}?,
Operator.attrib,Token−style.attrib,MathML.Common.attrib,

309 Presentation−expr.class∗}

This is the XML Schema module for the MathML ”merror” element.

merror = element merror {MathML.Common.attrib,Presentation−expr.class∗}
314

This is the XML Schema module for the MathML ”maction” element.

maction = element maction {attribute actiontype {xsd:string}?,
[a:defaultValue=”1”] attribute selection {xsd:positiveInteger }?,

319 MathML.Common.attrib,
Presentation−expr.class∗}

E.2.2 Content MathML

A RelaxNG schema for MathML2 Content Elements
$Id: mathml2−content.rnc 8009 2008−09−07 19:02:21Z kohlhase $
$HeadURL: https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/rnc/mathml2/mathml2−content.rnc $
(c) 2005 Michael Kohlhase, released under the GNU Public License (GPL)

5

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

E.2 The RelaxNG Schema for MathML 395

default namespace m = ”http://www.w3.org/1998/Math/MathML”
namespace a = ”http://relaxng.org/ns/compatibility/annotations/1.0”

Definition . attrib = attribute encoding {xsd:string}?,
10 attribute definitionURL {xsd:anyURI}?

This is the XML schema module for the token elements of the content part of MathML.

Content−token.content = text|Presentation−expr.class
15 # the content of ”cn” may have <sep> elements in it

sep = element sep {empty}

cn = element cn {######attribute base {xsd:positiveInteger [1,...,36]},
20 attribute type {”e−notation”|”integer”|”rational”|”real” |

”complex−cartesian”|”complex−polar”|”constant” }?,
Definition . attrib ,
MathML.Common.attrib,
(text |sep|Presentation−expr.class)∗}

25 # ”ci”
ci = element ci {attribute type {xsd:string}?,

Definition . attrib ,
MathML.Common.attrib,
Content−token.content}

30 # ”csymbol”

csymbol = element csymbol {Definition.attrib, MathML.Common.attrib, Content−token.content}

And the group of everything
35 Content−tokens.class = cn|ci|csymbol

This is an XML Schema module for the ”arithmetic” operators of content MathML.

Arith.type = Definition. attrib , MathML.Common.attrib
40

abs = element abs {Arith.type}
conjugate = element conjugate {Arith.type}
arg = element arg {Arith.type}
real = element real {Arith.type}

45 imaginary = element imaginary{Arith.type}

floor = element floor {Arith.type}
ceiling = element ceiling {Arith.type}

50 power = element power {Arith.type}
root = element root {Arith.type}

minus = element minus {Arith.type}
plus = element plus {Arith.type}

55 sum = element sum {Arith.type}
times = element times {Arith.type}
product = element product {Arith.type}

max = element max {Arith.type}
60 min = element min {Arith.type}

factorial = element factorial {Arith.type}
quotient = element quotient {Arith.type}
divide = element divide {Arith.type}

65 rem = element rem {Arith.type}
gcd = element gcd {Arith.type}
lcm = element lcm {Arith.type}

Content−arith.class = abs|conjugate| factorial |arg| real |imaginary|
70 floor | ceiling |quotient|divide |rem|minus|

plus|times|power|root|max|min|gcd|lcm|
sum|product

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

396 E The RelaxNG Schemata for Mathematical Objects

This is an XML Schema module for operators dealing with functions in content MathML.

75 Functions.type = Definition. attrib , MathML.Common.attrib

”compose”
compose = element compose {Functions.type}

80 # Domain, codomain and image
domain = element domain {Functions.type}
codomain = element codomain {Functions.type}
image = element image {Functions.type}

85 # ”domainofapplication”
domainofapplication = element domainofapplication{Definition.attrib,

MathML.Common.attrib,
Content−expr.class}

identity
90 ident = element ident {Functions.type}

Content−functions.class = compose|domain|codomain|image|domainofapplication|ident

This is an XML Schema module for the logic operators of content MathML.
95

Logic.type = Definition. attrib ,MathML.Common.attrib

and = element and {Logic.type}
or = element or {Logic.type}

100 xor = element xor {Logic.type}
not = element not {Logic.type}
exists = element exists {Logic.type}
forall = element forall {Logic.type}
implies = element implies {Logic.type}

105

Content−logic.class = and|or|xor|not|exists | forall | implies

This is an XML Schema module for the basic constructs of content MathML.

110 apply = element apply {MathML.Common.attrib,Content−expr.class∗}

interval = element interval {MathML.Common.attrib,
[a:defaultvalue = ”closed”]
attribute closure {”closed”|”open”|”open−closed”|”closed−open”}?,

115 (Content−expr.class),(Content−expr.class)}
inverse = element inverse {Definition. attrib ,MathML.Common.attrib}
condition = element condition {Definition.attrib ,Content−expr.class+}

declare = element declare {attribute type {xsd:string}?,
120 attribute scope {xsd:string}?,

attribute nargs {xsd:nonNegativeInteger}?,
attribute occurrence {”prefix”|” infix ”|”function−model”}?,
Definition . attrib ,
Content−expr.class+}

125

lambda = element lambda {MathML.Common.attrib,Content−expr.class+}

#”piecewise” and its inner elements
otherwise = element otherwise {Content−expr.class,MathML.Common.attrib}

130 piece = element piece {MathML.Common.attrib,Content−expr.class+}
piecewise = element piecewise {MathML.Common.attrib,piece∗,(otherwise,piece)∗}
bvar = element bvar {MathML.Common.attrib,Content−expr.class+}
degree = element degree {MathML.Common.attrib,Content−expr.class+}

135

Content−constructs.class = apply|interval| inverse |condition|declare |lambda|piecewise|bvar|degree

This is the XML Schema module for the basic constants of MathML content.

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

E.2 The RelaxNG Schema for MathML 397

140 Constant.type = Definition.attrib , MathML.Common.attrib

Basic sets
naturalnumbers= element naturalnumbers {Constant.type}
primes= element primes{Constant.type}

145 integers = element integers {Constant.type}
rationals = element rationals{Constant.type}
reals = element reals {Constant.type}
complexes = element complexes {Constant.type}

150 #Empty set
emptyset = element emptyset {Constant.type}

Basic constants
exponentiale = element exponentiale {Constant.type}

155 imaginaryi = element imaginaryi {Constant.type}
pi = element pi {Constant.type}
eulergamma = element eulergamma {Constant.type}

Boolean constants
160 true = element true {Constant.type}

false = element false {Constant.type}

Infinty
infinit = element infinity {Constant.type}

165

NotANumber
notanumber = element notanumber {Constant.type}

Content−constants.class = naturalnumbers|primes|integers|rationals|reals |
170 complexes|emptyset|exponentiale|imaginaryi|pi|

eulergamma|true|false| infinit |notanumber

This is an XML Schema module for the elementary functions in content MathML.

175 Elementary−functions.type = Definition.attrib,MathML.Common.attrib

Exp and logs

exp= element exp {Elementary−functions.type}
180 ln = element ln {Elementary−functions.type}

log = element log {Elementary−functions.type}

special element of the base of logarithms

185 logbase = element logbase {MathML.Common.attrib,Content−expr.class}

Trigonometric functions

sin = element sin {Elementary−functions.type}
190 cos = element cos {Elementary−functions.type}

tan = element tan {Elementary−functions.type}
sec = element sec {Elementary−functions.type}
csc = element csc {Elementary−functions.type}
cot = element cot {Elementary−functions.type}

195

arcsin = element arcsin {Elementary−functions.type}
arccos = element arccos {Elementary−functions.type}
arctan = element arctan {Elementary−functions.type}
arccot = element arccot {Elementary−functions.type}

200 arccsc = element arccsc {Elementary−functions.type}
arcsec = element arcsec {Elementary−functions.type}

Hyperbolic trigonometric functions

205 sinh = element sinh {Elementary−functions.type}
cosh = element cosh {Elementary−functions.type}

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

398 E The RelaxNG Schemata for Mathematical Objects

tanh = element tanh {Elementary−functions.type}
sech = element sech {Elementary−functions.type}
csch = element csch {Elementary−functions.type}

210 coth = element coth {Elementary−functions.type}
arccosh = element arccosh {Elementary−functions.type}
arccoth = element arccoth {Elementary−functions.type}
arccsch = element arccsch {Elementary−functions.type}
arcsech = element arcsech {Elementary−functions.type}

215 arcsinh = element arcsinh {Elementary−functions.type}
arctanh = element arctanh {Elementary−functions.type}

And the group of everything

220 Content−elementary−functions.class =
exp|ln | log |logbase|sin |cos|tan|sec |csc |cot|
arcsin |arccos|arctan|arcsec |arccsc |arccot|
sinh|cosh|tanh|sech|csch|coth|
arccosh|arccoth|arccsch|arcsech|arcsinh|arctanh

225

This is an XML Schema module for the relational operators of content MathML.

a common type for all this
Relations.type = Definition. attrib , MathML.Common.attrib

230

eq = element eq {Relations.type}
neq = element neq {Relations.type}
leq = element leq {Relations.type}
lt = element lt {Relations.type}

235 geq = element geq {Relations.type}
gt = element gt {Relations.type}
equivalent = element equivalent {Relations.type}
approx = element approx {Relations.type}
factorof = element factorof {Relations.type}

240

And the group of everything
Content−relations.class = eq|neq|leq| lt |geq|gt|equivalent |approx|factorof

”annotation”
245 annotation = element annotation {attribute encoding {xsd:string}?,MathML.Common.attrib,text}

”annotation−xml”
anyElement = element ∗ {(attribute ∗ {text}|text | anyElement)∗}
annotation−xml = element annotation−xml {Definition.attrib,MathML.Common.attrib, anyElement}

250

”semantics”
semantics = element semantics {attribute encoding {xsd:string}?,

attribute definitionURL {xsd:anyURI}?,
MathML.Common.attrib,

255 Content−expr.class,
(annotation|annotation−xml)∗}

This is an XML Schema module for the part of content MathML dealing with sets and lists.

260 # ”set” (”type” could be ”multiset” or ”normal” or anything else)
set = element set {attribute type {xsd:string}?,

MathML.Common.attrib, Content−expr.class∗}

”list”
265 lst = element list {attribute order {”lexicographic”|”numeric”}?,

MathML.Common.attrib,
Content−expr.class∗}

”union”
union = element union {Definition.attrib, MathML.Common.attrib,Content−expr.class∗}

270 intersect = element intersect {Definition . attrib , MathML.Common.attrib,Content−expr.class∗}
in = element in {Definition. attrib , MathML.Common.attrib}
notin = element notin {Definition.attrib , MathML.Common.attrib}
subset = element subset {Definition.attrib , MathML.Common.attrib}

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

E.2 The RelaxNG Schema for MathML 399

prsubset = element prsubset {Definition.attrib , MathML.Common.attrib}
275 notsubset = element notsubset {Definition.attrib , MathML.Common.attrib}

notprsubset = element notprsubset {Definition.attrib, MathML.Common.attrib}
setdiff = element setdiff {Definition . attrib , MathML.Common.attrib}
card = element card {Definition.attrib , MathML.Common.attrib}
cartesianproduct = element cartesianproduct {Definition.attrib , MathML.Common.attrib}

280

And the group of everything

Content−sets.class = set| lst |union| intersect | in |notin|subset|
prsubset|notsubset|notprsubset| setdiff |card|cartesianproduct

285

This is an XML Schema module for the linear algebra part of content MathML.

”vector”

290 vector = element vector {MathML.Common.attrib,Content−expr.class∗}
matrix = element matrix {MathML.Common.attrib,matrixrow+}
matrixrow = element matrixrow {MathML.Common.attrib,Content−expr.class+}
determinant = element determinant {Definition.attrib,MathML.Common.attrib}
transpose = element transpose {Definition.attrib ,MathML.Common.attrib}

295 mselector = element selector {Definition . attrib ,MathML.Common.attrib}
vectorproduct = element vectorproduct {Definition.attrib,MathML.Common.attrib}
scalarproduct = element scalarproduct {Definition.attrib ,MathML.Common.attrib}
outerproduct = element outerproduct {Definition.attrib ,MathML.Common.attrib}

300 Content−linear−algebra.class = vector|matrix|determinant|transpose|mselector|
vectorproduct|scalarproduct|outerproduct

This is an XML Schema module for the calculus operators of content MathML.

305 calculus .type = Definition. attrib , MathML.Common.attrib

int = element int {calculus.type}
diff = element diff {calculus .type}
partialdiff = element partialdiff {calculus .type}

310 limit = element limit {calculus .type}
lowlimit = element lowlimit {calculus.type,Content−expr.class+}
uplimit = element uplimit {calculus.type,Content−expr.class+}
tendsto = element tendsto {calculus.type,attribute type {xsd:string}?}

315 Content−calculus.class = int| diff | partialdiff | limit | lowlimit |uplimit|tendsto

This is an XML Schema module for the vector calculus operators of content MathML.

divergence = element divergence {Definition.attrib ,MathML.Common.attrib}
320 grad = element grad {Definition.attrib ,MathML.Common.attrib}

curl = element curl {Definition. attrib ,MathML.Common.attrib}
laplacian = element laplacian {Definition. attrib ,MathML.Common.attrib}

And the group of everything
325

Content−vector−calculus.class = divergence|grad|curl|laplacian

This is an XML Schema module for the statistical operators of content MathML.

330 mean = element mean {Definition.attrib,MathML.Common.attrib}
sdev = element sdev {Definition.attrib ,MathML.Common.attrib}
variance = element variance {Definition.attrib ,MathML.Common.attrib}
median = element median {Definition.attrib,MathML.Common.attrib}
mode = element mode {Definition.attrib,MathML.Common.attrib}

335 moment = element moment {Definition.attrib,MathML.Common.attrib}
momentabout = element momentabout {Definition.attrib,MathML.Common.attrib,Content−expr.class+}

Content−statistics. class = mean|sdev|variance|median|mode|moment|momentabout

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

F

The Errata

In the following we will tabulate the errata in document order. Their location
will be referenced by the section they appear in rather than the page number,
since we do not expect the former to change in the errata correction process.

4.2 wrong reference
4.2 wrong cross-reference for “line 16”
4.3 for attribute on definition should be of type NCNames

4.3 should be ”definiendum” not ”definiens”
4.3 should be definiendum-applied not definiens-applied
4.4 for attribute on definition should be of type NCNames

4.4 for attribute on definition should be of type NCNames

4.4 should be ”definiendum” not ”definiens”
5. for attribute on definition should be of type NCNames

6. for attribute on definition should be of type NCNames

6. for attribute on definition should be of type NCNames

7. for attribute on definition should be of type NCNames

7. for attribute on definition should be of type NCNames

7. for attribute on definition should be of type NCNames, totally reworked
example

8.1 for attribute on axiom should be of type NCNames

8.1 for attribute on definition should be of type NCNames

8.1 forgot to thread through attribute renaming
8.1 The attribute on the assertion element should be just-by, not proofs.

We were also missing some fragment identifiers.
11.1 Typo: “Backus Naur form” instead of “Bachus Naur Form”
11.1 ref does permit an xml:id attribute (and this should remain, as that is

important for talking about refs from an RDF point of view)
11.1 omdoc and omgroup can have an optional theory attribute as well
11.2 RDF as a general data model is independent from XML; RDF/XML is

just one of its possible serializations.
11.2 correct name

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

402 F The Errata

12. The content Model for dc:creator and cd:contributor is simple text
12.1 wrong attribute name
12.4 for attribute on definition should be of type NCNames

13.1.1 It should be made clear that this inheritance mechanism is extended
by the OMDoc format. See section 3.1 of the errata document for details

14. added the attribute xml:id to the CMP element; added the attribute from
to the omtext element

14. added the attribute cdbase to the term element
14.1 should be ”definiendum” not ”definiens”
14.3 note

14.3 omtext can also be an assumption, obligation or rule as all of these can
be expressed in informal as well as formal way

14.3 And there should also be ¡omtext type=“assertion”¿ for generic asser-
tions, corresponding to the ¡assertion¿ element without a type.

14.5 also need cdbase for identifying
14.5 Should be Deffiniendum instead of deffiniens
14.5 should be ”definiendum” not ”definiens”
14.6 the index attribute should be optional
15.1 “Definiendum” and “Definiens” should switched
15.2.1 scope is deprecated
15.2.2 the for attribute in the axiom element must reference symbol names
15.2.2 for attribute on axiom should be of type NCNames

15.2.3 examples reference wrong listings
15.2.4 Note that this use of the for attribute is different from the other

usages, which are URI references.
15.2.4 for attribute on definition should be of type NCNames, also corrected

cd attribute.
15.2.4 for attribute on definition should be of type NCNames

15.2.4 for attribute on definition should be of type NCNames

15.3 deleted spurious for attribute on the assertion element, alternative
should have the same content as definition

15.3.2 for attribute on definition should be of type NCNames

15.3.3 fixed the target of the for attribute
15.4 added the axiom element to the list; cf. discussion on omdoc-dev on May

16, 2008
15.4 added the alternative element to the list
15.4 for attribute on definition should be of type NCNames

15.5 for attribute on definition should be of type NCNames

15.5 should be ”definendum” not ”definiens”
15.5 for attribute on definition should be of type NCNames

15.5 should be ”definiendum” not ”definiens”
15.6 the xml:id attribute on the theory element should be optional
15.6.1 The symbol name af should be aa

15.6.1 for attribute on definition should be of type NCNames

15.6.1 for attribute on definition should be of type NCNames

mobj-rnc.tex 6154 2006-10-03 11:31:31Z

F The Errata 403

15.6.2 This specification of the inheritance mechanism is to wishy washy. See
section 3.1 of the errata document for a clarification.

16..2 The for attribute contains a URI reference according to the RelaxNG
schema; the locality restriction here contradicts that and needs to be re-
moved.

17.1 for attribute on definition should be of type NCNames

17.1 made the for attribute in the proofobject element required; added the
rank attribute to the premise element

17.2 for attribute on definition should be of type NCNames

17.2 for attribute on definition should be of type NCNames

17.3 for attribute on definition should be of type NCNames

17.4 for attribute on definition should be of type NCNames

18. changed the order of type and hiding attributes in the morphism ele-
ment; removed the consistency and consistency-just attributes from the
morphism, inclusion, theory-inclusion, and axiom-inclusion ele-
ments; changed the contents of the theory-inclusion element to (mor-
phism?, obligation*); changed the contents of the morphism element to
(requation+, measure?, ordering?); added the element obligation

18.1 noted special case
18.1 Clarified wording
18.2 added missing word
18.2 Fixed value of the conservativity attribute
18.2 Fixed value of the conservativity attribute
18.2 Fixed value of the conservativity attribute
18.5.2 added the optional for attribute for the

decomposition element; removed the by attribute from the theory-inclusion
element; changed the contents of the theory-inclusion element to (mor-
phism?, (decomposition* — obligation*))

19..2 added CMP* to content of presentation element
19.4 The for attribute should be #X4 instead of #X in listings 19.5 and 19.6
20.1 The reference reformulates="ALGX0" should be a URI reference, i.e.

#ALGX0

20.2 Wrong Content Model for omlet
22.1 for attribute on definition should be of type NCNames

22.1 for attribute on definition should be of type NCNames

22.2 for attribute on definition should be of type NCNames

26.4 reference to QED
26.15 The domain is kwarc.eecs.iu-bremen.de

26.15.4 correct example given
1.1 the old extradata content has nothing to do with dc:subject

4.4 The type attributes on phrase and omtext were not conforming to the
spec

4.4 attribute value trasition forgotten from rnc
4.4 the verbalizes attribute had been forgotten for the phrase element

partappendix.tex 6154 2006-10-03 11:31:31Z

404 F The Errata

4.7 simple definitions should not have an existence attribute, furthermore
pattern definitions should not have measure and ordering children

4.7 the type element needs to allow a for attribute
4.7 the tgroup element should not contain omgroup children
4.10 The DG module RelaxNG schema had been forgotten
4.13 we have to allow the metadata element in omlet

post.tex 8061 2008-09-24 11:38:54Z kohlhase

References

ABC+03a. Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas,
Stan Devitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick Ion,
Michael Kohlhase, Robert Miner, Nico Poppelier, Bruce Smith, Neil
Soiffer, Robert Sutor, and Stephen Watt. Mathematical Markup Lan-
guage (MathML) version 2.0 (second edition). W3C recommendation,
World Wide Web Consortium, 2003.

ABC+03b. Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas,
Stan Devitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick Ion,
Michael Kohlhase, Robert Miner, Nico Poppelier, Bruce Smith, Neil
Soiffer, Robert Sutor, and Stephen Watt. Mathematical Markup Lan-
guage (MathML) version 2.0 (second edition). W3C recommendation,
World Wide Web Consortium, 2003.

ABD03. Andrea Asperti, Bruno Buchberger, and James Harold Davenport, edi-
tors. Mathematical Knowledge Management, MKM’03, number 2594 in
LNCS. Springer Verlag, 2003.

ABF+03. Serge Autexier, Christoph Benzmüller, Armin Fiedler, Helmut Horacek,
and Quoc Bao Vo. Assertion level proof representation with underspec-
ification. In Fairouz Kamareddine, editor, Proceedings of MKM Sym-
posium, Heriot-Watt, Edinburgh, November 2003.

ABFL06. Serge Autexier, Christoph Benzmüller, Armin Fiedler, and Henri
Lesourd. Integrating proof assistants as reasoning and verification tools
into a scientific wysiwig editor. Proceedings of UITP’05, 2006.

ABI+96. Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank
Pfenning, and Hongwei Xi. TPS: A theorem-proving system for classical
type theory. Journal of Automated Reasoning, 16:321–353, 1996.

Abn96. S. Abney. Partial parsing via finite-state cascades, 1996. http:

//citeseer.ifi.unizh.ch/abney96partial.html.
ABT04. Andrea Asperti, Grzegorz Bancerek, and Andrej Trybulec, editors.

Mathematical Knowledge Management, MKM’04, number 3119 in
LNAI. Springer Verlag, 2004.

AF05. Serge Autexier and Armin Fiedler. Textbook proofs meet formal logic -
the problem of underspecification and granularity. In Michael Kohlhase,
editor, Proceedings of MKM’05, volume 3863 of LNAI, IUB Bremen,
Germany, june 2005. Springer.

http://citeseer.ifi.unizh.ch/abney96partial.html
http://citeseer.ifi.unizh.ch/abney96partial.html

post.tex 8061 2008-09-24 11:38:54Z kohlhase

406 References

AH05. Serge Autexier and Dieter Hutter. Formal software development in
maya. In Dieter Hutter and Werner Stephan, editors, Festschrift in
Honor of J. Siekmann, volume 2605 of LNAI. Springer, february 2005.

AHL+00. S. Autexier, D. Hutter, B. Langenstein, H. Mantel, G. Rock, A. Schairer,
W. Stephan, R. Vogt, and A. Wolpers. Vse: Formal methods meet in-
dustrial needs. International Journal on Software Tools for Technology
Transfer, Special issue on Mechanized Theorem Proving for Technology,
3(1), september 2000.

AHMS99. S. Autexier, D. Hutter, H. Mantel, and A. Schairer. System description:
INKA 5.0 – a logical voyager. In H. Ganzinger, editor, 16th Interna-
tional Conference on Automated Deduction, CADE-16, volume 1732 of
Lecture Notes in Artificial Intelligence, Trento, 1999. Springer.

AHMS00. Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. To-
wards an evolutionary formal software-development using CASL. In
C. Choppy and D. Bert, editors, Proceedings Workshop on Algebraic
Development Techniques, WADT-99, number 1827 in LNCS, pages 73–
88. Springer Verlag, 2000.

AK02. Andrea Asperti and Michael Kohlhase. Mathml in the mowgli project.
In Second International Conference on MathML and Technologies for
Math on the Web, Chicago, USA, 2002.

AKC03. Andrea Asperti, Michael Kohlhase, and Claudio Sacerdoti Coen. Pro-
totype n. d2.b document type descriptors: OMDoc proofs. Mowgli de-
liverable, The MoWGLI Project, 2003.

Alt01. Modularization of xhtml. W3C recommendation, The World Wide Web
Consortium, 2001.

AM02. Serge Autexier and Till Mossakowski. Integrating holcasl into the devel-
opment graph manager maya. In Alessandro Armando, editor, Frontiers
of Combinning Systems (FROCOS’02), number 2309 in LNAI, pages 2–
17. Springer Verlag, 2002.

And02. Peter B. Andrews. An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof. Kluwer Academic Publishers, second
edition, 2002.

APCS01. Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene
Schena. HELM and the semantic math-web. In Richard. J. Boulton
and Paul B. Jackson, editors, Theorem Proving in Higher Order Logics:
TPHOLs’01, volume 2152 of LNCS, pages 59–74. Springer Verlag, 2001.

Aut03. Serge Autexier. Hierarchical Contextual Reasoning. PhD thesis, Saar-
land University, 2003.

Aut05. Serge Autexier. The core calculus. In Robert Nieuwenhuis, editor,
Proceedings of the 20th International Conference on Automated Deduc-
tion (CADE-20), volume 3632 of LNAI, Tallinn, Estonia, july 2005.
Springer.

Bar80. Hendrik P. Barendregt. The Lambda-Calculus: Its Syntax and Seman-
tics. North-Holland, 1980.

Bau99. Judith Baur. Syntax und Semantik mathematischer Texte — ein Proto-
typ. Master’s thesis, Fachrichtung Computerlinguistik, Universität des
Saarlandes, SaarbrückenGermany, 1999.

BB01. P. Baumgartner and A. Blohm. Automated deduction techniques for the
management of personalized documents. In Buchberger and Caprotti
[BC01b].

post.tex 8061 2008-09-24 11:38:54Z kohlhase

References 407

BC01a. Henk Barendregt and Arjeh M. Cohen. Electronic communication of
mathematics and the interaction of computer algebra systems and proof
assistants. Journal of Symbolic Computation, 32:3–22, 2001.

BC01b. Bruno Buchberger and Olga Caprotti, editors. Electronic Proceedings
of the First International Workshop on Mathematical Knowledge Man-
agement: MKM’2001, 2001.

BCC+04. Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar,
Marc Gaetano, and Michael Kohlhase. The Open Math standard, ver-
sion 2.0. Technical report, The Open Math Society, 2004.

BCD+02. R. Bradford, R. M. Corless, J. H. Davenport, D. J. Jeffrey, and S. M.
Watt. Reasoning about the elementary functions of complex analysis.
Annals of Mathematics and Artificial Intelligence, 36:303 – 318, 2002.

BCF+97. C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang,
M. Kerber, M. Kohlhase, K. Konrad, E. Melis, A. Meier,
W. Schaarschmidt, J. Siekmann, and V. Sorge. Ωmega: Towards a
mathematical assistant. In McCune [McC97], pages 252–255.

BDD+99. Stephen Buswell, Stan Devitt, Angel Diaz, Patrick Ion, Robert Miner,
Nico Poppelier, Bruce Smith, Neil Soiffer, Robert Sutor, and Stephen
Watt. Mathematical Markup Language (MathML) 1.01 specification.
W3c recommendation, World Wide Web Consortium (W3C), 1999.

Ber91. Paul Bernays. Axiomatic Set Theory. Dover Publications, 1991.
BF06. Jon Borwein and William M. Farmer, editors. Mathematical Knowledge

Management, MKM’06, number 4108 in LNAI. Springer Verlag, 2006.
BL98. Tim Berners-Lee. The semantic web, 1998.
BLFM98. Tim Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Iden-

tifiers (URI), Generic Syntax. RFC 2717, Internt Engineering Task
Force, 1998.

Blo56. B.S. Bloom, editor. Taxonomy of educational objectives: The classifi-
cation of educational goals: Handbook I, cognitive domain. Longmans,
Green, New York, Toronto, 1956.

BM79. R. S. Boyer and J S. Moore. A Computational Logic. ACM monograph
series. Academic Press, New York, 1979.

BM01. Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes.
W3C recommendation, World Wide Web Consortium, May 2001.

Bos98. Cascading style sheets, level 2; css2 specification. W3C recommenda-
tion, World Wide Web Consortium (W3C), 1998.

Bou74. Nicolas Bourbaki. Algebra I. Elements of Mathematics. Springer Verlag,
1974.

BPSM97. Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible
Markup Language (XML). W3C Recommendation TR-XML, World
Wide Web Consortium, December 1997.

BPSM+04. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François
Yergeau, and John Cowan. Extensible Markup Language (XML) 1.1.
W3C Recommendation REC-xml11-20040204, World Wide Web Con-
sortium, 2004.

Bra99. Namespaces in xml. W3C recommendation, The World Wide Web Con-
sortium, 1999.

Bug05. Bugzilla. web page at http://www.bugzilla.org, seen 2005.

http://www.bugzilla.org

post.tex 8061 2008-09-24 11:38:54Z kohlhase

408 References

BvHHS90. A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-
Clam system. In M. E. Stickel, editor, 10th International Conference on
Automated Deduction, pages 647–648. Springer-Verlag, 1990. Lecture
Notes in Artificial Intelligence No. 449. Also available from Edinburgh
as DAI Research Paper 507.

CAB+86. Robert L. Constable, S. Allen, H. Bromly, W. Cleaveland, J. Cre-
mer, R. Harper, D. Howe, T. Knoblock, N. Mendler, P. Panangaden,
J. Sasaki, and S. Smith. Implementing Mathematics with the Nuprl
Proof Development System. Prentice-Hall, Englewood Cliffs, NJUSA,
1986.

CCC+00. Olga Caprotti, Arjeh M. Cohen, Hans Cuypers, Manfred N. Riem, and
Hans Sterk. Using openmath servers for distributing mathematical
computations. In Wei Chi Yang, Sung-Chi Chu, and Jen-Chung Chuan,
editors, ATCM 2000: Proceedings of the Fifth Asian Technology Con-
ference in Mathematics,, pages 325–336, Chiang-Mai, Thailand, 2000.
ATCM, Inc.

CCR00. Olga Caprotti, Arjeh M. Cohen, and Manfred Riem. Java Phrase-
books for Computer Algebra and Automated Deduction. Bulletin of
the ACM Special Interest Group on Symbolic and Automated Mathe-
matics (SIGSAM), 34(2):43–48, 2000.

CCS99. Arjeh Cohen, Hans Cuypers, and Hans Sterk. Algebra Interactive!
Springer Verlag, 1999. Interactive Book on CD.

CD99. James Clark and Steve DeRose. XML Path Language (XPath) Ver-
sion 1.0. W3C recommendation, The World Wide Web Consortium,
November 1999.

CGG+92. Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, Benton L. Leong,
Michael B. Monagan, and Stephen M. Watt. First leaves: a tutorial
introduction to Maple V. Springer Verlag, Berlin, 1992.

CGM+04. R. Conejo, E. Guzman, E. Millan, M. Trella, J. L. Perez de-la Cruz, and
A. Rios. SIETTE: A Web-Based Tool for Adaptive Teaching. Inter-
national Journal of Artificial Intelligence in Education (IJAIED 2004),
14:29–61, 2004.

CKOS03. Edmund Clarke, Michael Kohlhase, Joël Ouaknine, and Klaus Sutner.
System description: Analytica 2. In Volker Sorge and Olga Caprotti, ed-
itors, Proceedings of the 11th Symposium on the Integration of Symbolic
Computation and Mechanized Reasoning (Calculemus-2003), 2003.

Cla97. James Clark. Comparison of sgml and xml. World Wide Web Consor-
tium Note, 1997.

Cla99. Associating style sheets with xml documents version 1.0. W3C recom-
mendation, World Wide Web Consortium (W3C), 1999.

Cla05. James Clark. nXML mode. web page at http://www.thaiopensource.
com/nxml-mode/, seen 2005.

CM98. A.M. Cohen and L. Meertens. The ACELA project: Aims and plans.
In N. Kajler, editor, Computer-Human interaction in Symbolic Compu-
tation, Texts and Monographs in Symbolic Computation, pages 7–23.
Springer Verlag, 1998.

Coe05. Claudio Sacerdoti Coen. Explanation in natural language of λµµ-terms.
In Kohlhase [Koh05a].

CoF04. CoFI (The Common Framework Initiative). Casl Reference Manual.
LNCS 2960 (IFIP Series). Springer, 2004.

http://www.thaiopensource.com/nxml-mode/
http://www.thaiopensource.com/nxml-mode/

post.tex 8061 2008-09-24 11:38:54Z kohlhase

References 409

Com. Userland Com. XML Remote Procedure Call Specification.
http://www.xmlrpc.com/.

Con01. IMS Global Learning Consortium. Learnig resource metadata specifi-
cation, 2001.

Cor. Microsoft Corp. Microsoft internet explorer. web page at http://www.

microsoft.com/windows/ie.
Cow04. XML information set (second edition), February 2004.
Crea. Creative Commons. web page at http://creativecommons.org. seen

August 2006.
Creb. Metadata Commons Worldwide. web page at http://

creativecommons.org/learn/technology/metadata.
Crec. Creative Commons Worldwide. web page at http://creativecommons.

org/worldwide.
Dah01. Ingo Dahn. Slicing book technology - providing online support for text-

books. In The 20th ICDE World Conference on Open Learning and
Distance Education, 2001.

dB80. Nicolaas Govert de Bruijn. A survey of the project AUTOMATH. In
R. Hindley and J. Seldin, editors, To H.B. Curry: Essays in Combina-
tor Logic, Lambda Calculus and Formalisms, pages 579–606. Academic
Press, 1980.

de 94. N. G. de Bruijn. The mathematical vernacular, a language for mathe-
matics with typed sets. In R. P Nederpelt, J. H. Geuvers, and R. C. de
Vrijer, editors, Selected Papers on Automath, volume 133 of Studies in
Logic and the Foundations of Mathematics, pages 865 – 935. Elsevier,
1994.

Des05. Deskzilla. web page at http://www.deskzilla.com, seen 2005.
dH01. Joris Van der Hoeven. Gnu TeXMacs: A free, structured, wysiwyg and

technical text editor. Cahiers GUTenberg, pages 39–40, May 2001.
DMOT01. Steve DeRose, Eve Maler, David Orchard, and Ben Trafford. XML

linking language (XLink version 1.0). W3C recommendation, W3C,
2001.

DOM. Document object model DOM. web page at http://www.w3.org/DOM/.
DUB03a. The DCMI Usage Board. DCMI metadata terms. DCMI recommenda-

tion, Dublin Core Metadata Initiative, 2003.
DUB03b. The DCMI Usage Board. DCMI type vocabulary. DCMI recommenda-

tion, Dublin Core Metadata Initiative, 2003.
DuC97. Bob DuCharme. Formatting documents with dsssl specifications and

jade. The SGML Newsletter, 10(5):6–10, 1997.
Duc98. Denys Duchier. The NeGra tree bank. Private communication, 1998.
DW05. Mark Davis and Ken Whistler. Unicode collation algorithm, 2005. Uni-

code Technical Standard #10.
ea07. Peter Murray-Rust et al. Chemical markup language (CML). http:

//cml.sourceforge.net/, seen January 2007.
Far93. William M. Farmer. Theory interpretation in simple type theory. In

HOA’93, an International Workshop on Higher-order Algebra, Logic
and Term Rewriting, volume 816 of LNCS, Amsterdam, The Nether-
lands, 1993. Springer Verlag.

FB96. N. Freed and N. Borenstein. Multipurpose internet mail extensions
(mime) part two: Media types. RFC 2046: http://www.faqs.org/rfcs/
rfc2046.html, 1996.

http://www.xmlrpc.com/
http://www.microsoft.com/windows/ie
http://www.microsoft.com/windows/ie
http://creativecommons.org
http://creativecommons.org/learn/technology/metadata
http://creativecommons.org/learn/technology/metadata
http://creativecommons.org/worldwide
http://creativecommons.org/worldwide
http://www.deskzilla.com
http://www.w3.org/DOM/
http://cml.sourceforge.net/
http://cml.sourceforge.net/
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2046.html

post.tex 8061 2008-09-24 11:38:54Z kohlhase

410 References

FGT93. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS:
An Interactive Mathematical Proof System. Journal of Automated Rea-
soning, 11(2):213–248, October 1993.

FH97. Amy P. Felty and Douglas J. Howe. Hybrid interactive theorem proving
using NuPRL and HOL. In McCune [McC97], pages 351–365.

FH01. Armin Fiedler and Helmut Horacek. Argumentation in explanations to
logical problems. In Vassil N. Alexandrov, Jack J. Dongarra, Benjoe A.
Juliano, Renè S. Renner, and C. J. Kenneth Tan, editors, Computa-
tional Science — ICCS 2001, number 2074 in LNCS, pages 969–978,
San Francisco, CAUSA, 2001. Springer Verlag.

FHJ+99a. A. Franke, S. Hess, C. Jung, M. Kohlhase, and V. Sorge. Agent-Oriented
Integration of Distributed Mathematical Services. Journal of Universal
Computer Science, 5(3):156–187, March 1999. Special issue on Integra-
tion of Deduction System.

FHJ+99b. Andreas Franke, Stephan M. Hess, Christoph G. Jung, Michael
Kohlhase, and Volker Sorge. Agent-oriented integration of distributed
mathematical services. Journal of Universal Computer Science, 5:156–
187, 1999.

Fie97. Armin Fiedler. Towards a proof explainer. In Siekmann et al. [SPH97],
pages 53–54.

Fie99. Armin Fiedler. Using a cognitive architecture to plan dialogs for the
adaptive explanation of proofs. In Thomas Dean, editor, Proceedings of
the 16th International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 358–363, Stockholm, 1999. Morgan Kaufmann.

Fie01a. Armin Fiedler. Dialog-driven adaptation of explanations of proofs.
In Bernhard Nebel, editor, Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1295–1300, Seattle,
WAUSA, 2001. Morgan Kaufmann.

Fie01b. Armin Fiedler. User-adaptive Proof Explanation. Phd thesis,
Naturwissenschaftlich-Technische Fakultät I, Universität des Saarlan-
des, Saarbrücken, Germany, 2001.

FK99. Andreas Franke and Michael Kohlhase. System description: MathWeb,
an agent-based communication layer for distributed automated theorem
proving. In Harald Ganzinger, editor, Automated Deduction — CADE-
16, number 1632 in LNAI, pages 217–221. Springer Verlag, 1999.

Fre91. Free Software Foundation. Gnu general public license, 1991.
Fre99. Free Software Foundation. GNU lesser general public license, 1999.
GB92. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory

for specification and programming. Journal of the Association for Com-
puting Machinery, 39:95–146, 1992. Predecessor in: LNCS 164, 221–256,
1984.

Gen35. Gerhard Gentzen. Untersuchungen über das logische Schließen I & II.
Mathematische Zeitschrift, 39:176–210, 572–595, 1935.

GGP03. Georgi Goguadze and Alberto González Palomo. Adapting mainstream
editors for semantic authoring of mathematics. Presented at the Math-
ematical Knowledge Management Symposium, Heriot-Watt University,
Edinbourgh, Scotland, November 2003.

GGPM05. Georgi Goguadze, Alberto González Palomo, and Erica Melis. Inter-
activity of exercises in activemath. In Accepted to the International
Conference on Computers in Education (ICCE 2005), Singapore, 2005.

post.tex 8061 2008-09-24 11:38:54Z kohlhase

References 411

GHMN03. Martin Gudgin, Marc Hadley, Jean-Jacques Moreau, and Hen-
rik Frystyk Nielsen. Soap 1.2 part 1: Adjuncts, 2003.

GM93. M. J. C. Gordon and T. F. Melham. Introduction to HOL – A theorem
proving environment for higher order logic. Cambridge University Press,
1993.

GMMW03. Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh. Xpointer
framework. W3C recommendation, World Wide Web Consortium W3C,
25 March 2003.

GMUC03. G. Goguadze, E. Melis, C. Ullrich, and P. Cairns. Problems and
solutions for markup for mathematical examples and exercises. In
A. Asperti, B. Buchberger, and J.H. Davenport, editors, International
Conference on Mathematical Knowledge Management, MKM03, LNCS
2594, pages 80–93. Springer-Verlag, 2003.

Gol90. C. F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.
GPa. Alberto González Palomo. Algebra.
GPb. Alberto González Palomo. Qmath history. http://www.matracas.org/

qmath/history.html.
GR02. J. Goguen and G. Rosu. Institution morphisms. Formal aspects of

computing, 13:274–307, 2002.
Gra96. Peter Graf. Term Indexing. Number 1053 in LNCS. Springer Verlag,

1996.
Gro99. The Open eBook Group. Open ebook[tm] publication structure 1.0.

Draft recommendation, The OpenEBook Initiative, 1999.
Gro00. The W3C HTML Working Group. Xhtml 1.0 the extensible hypertext

markup language (second edition) a reformulation of html 4 in xml 1.0.
W3C recommendation, World Wide Web Consortium (W3C), 2000.

GUM+04. G. Goguadze, C. Ullrich, E. Melis, J. Siekmann, Ch. Gross, and
R. Morales. LeActiveMath Structure and Metadata Model. De-
liverable D6, LeActiveMath Consortium, 2004. accessible from
http://www.leactivemath.org/.

Har01. Eliotte Rusty Harold. XML Bible. Hungry Minds, gold edition edition,
2001.

Har03. Eliotte Rusty Harold. Effective XML, chapter 15. Addison Wesley,
2003.

HF96. Xiaorong Huang and Armin Fiedler. Presenting machine-found proofs.
In McRobbie and Slaney [MS96], pages 221–225.

HF97. Xiaorong Huang and Armin Fiedler. Proof verbalization in PROVERB.
In Siekmann et al. [SPH97], pages 35–36.

HKW96. Reiner Hähnle, Manfred Kerber, and Christoph Weidenbach. Common
syntax of dfg-schwerpunktprogramm “deduktion”. Interner Bericht
10/96, Universität Karlsruhe, Fakultät für Informatik, 1996.

HS96. Dieter Hutter and Claus Sengler. INKA - The Next Generation. In
McRobbie and Slaney [MS96], pages 288–292.

Hua96. Xiaorong Huang. Human Oriented Proof Presentation: A Reconstruc-
tive Approach. Number 112 in DISKI. Infix, Sankt Augustin, Germany,
1996.

Hut00. Dieter Hutter. Management of change in verification systems. In Pro-
ceedings 15th IEEE International Conference on Automated Software
Engineering, ASE-2000, pages 23–34. IEEE Computer Society, 2000.

http://www.matracas.org/qmath/history.html
http://www.matracas.org/qmath/history.html

post.tex 8061 2008-09-24 11:38:54Z kohlhase

412 References

IAN. Root-zone whois information. http://www.iana.org/cctld/

cctld-whois.htm.
IEE02. IEEE Learning Technology Standards Committee. 1484.12.1-2002 IEEE

standard for Learning Object Metadata, 2002.
Inc03. Unicode Inc., editor. The Unicode Standard, Version 4.0. Addison-

Wesley, 2003.
JEN08. Jena — A Semantic Web Framework for Java, seen June 2008. web

page at http://jena.sf.net.
JFF02. Dean Jackson, Jon Ferraiolo, and Jun Fujisawa. Scalable vector graphics

(svg) 1.1 specification. W3c candidate recommendation, World Wide
Web Consortium (W3C), April 2002.

JSP. JavaServer Pages. web page at http://java.sun.com/products/jsp.
KA03. Michael Kohlhase and Romeo Anghelache. Towards collaborative con-

tent management and version control for structured mathematical
knowledge. In Asperti et al. [ABD03], pages 147–161.

KAB+04. E. Klieme, H. Avenarius, W. Blum, P. Döbrich, H. Gruber, M. Prenzel,
K. Reiss, K. Riquarts, J. Rost, H. Tenorth, and H. J. Vollmer. The
development of national educational standards - an expertise. Techni-
cal report, Bundesministerium für Bildung und Forschung / German
Federal Ministry of Education and Research, 2004.

Kay. Michael Kay. Saxon, the xslt and xquery processor. Web page at
saxon.sf.net.

KBKB+04. B. Krieg-Brückner, B. Krämer, D. Basin, J. Siekmann, and M. Wirsing.
Multimedia Instruction in Safe and Secure Systems. Abschlussbericht,
Universität Bremen, 2004. BMBF project 01NM070, 2001-2004.

KBLL+04. Bernd Krieg-Brückner, Arne Lindow, Christoph Lüth, Achim Mahnke,
and George Russell. Semantic interrelation of documents via an ontol-
ogy. In G. Engels and S. Seehusen, editors, DeLFI 2004, volume P-52
of LNI, pages 271–282. Springer-Verlag, 2004.

KD03a. Michael Kohlhase and Stan Devitt. Bound variables in mathml. W3C
Working Group Note, 2003. http://www.w3.org/TR/mathml-bvar,
pubs = mkohlhase.

KD03b. Michael Kohlhase and Stan Devitt. Structured types in mathml 2.0.
W3C Note, 2003.

KF00. M. Kohlhase and A. Franke. MBase: Representing knowledge and con-
text for the integration of mathematical software systems. Journal of
Symbolic Computation, 2000.

KF01. Michael Kohlhase and Andreas Franke. MBase: Representing knowl-
edge and context for the integration of mathematical software systems.
Journal of Symbolic Computation; Special Issue on the Integration of
Computer Algebra and Deduction Systems, 32(4):365–402, 2001.

KK04. Andrea Kohlhase and Michael Kohlhase. CPoint: Dissolving the au-
thor’s dilemma. In Asperti et al. [ABT04], pages 175–189.

KK06. Andrea Kohlhase and Michael Kohlhase. Communities of Practice in
MKM: An Extensional Model. In Borwein and Farmer [BF06], pages
179–193.

KM96. M. Kaufmann and J S. Moore. ACL2: An industrial strength version
of Nqthm. In Compass’96: Eleventh Annual Conference on Computer
Assurance, page 23, Gaithersburg, Maryland, 1996. National Institute
of Standards and Technology.

http://www.iana.org/cctld/cctld-whois.htm
http://www.iana.org/cctld/cctld-whois.htm
http://jena.sf.net
http://java.sun.com/products/jsp
saxon.sf.net
http://www.w3.org/TR/mathml-bvar

post.tex 8061 2008-09-24 11:38:54Z kohlhase

References 413

Knu84. Donald E. Knuth. The TEXbook. Addison Wesley, 1984.
Koha. Michael Kohlhase. CodeML: An open markup format the content and

presentatation of program code. Internet Draft at https://svn.omdoc.
org/repos/codeml/doc/spec/codeml.pdf.

Kohb. Michael Kohlhase. OMDoc: An open markup format for mathematical
documents (latest released version). Specification, http://www.omdoc.
org/pubs/spec.pdf.

Kohc. Michael Kohlhase. The OMDoc Document Type Definition. http:

//omdoc.org/dtd/omdoc.dtd.
Kohd. Michael Kohlhase. The OMDoc RelaxNG schema. http://omdoc.org/

rnc/omdoc.rnc.
Kohe. Michael Kohlhase. The OMDoc XML schema. http://omdoc.org/rnc/

omdoc.xsd.
Kohf. Michael Kohlhase. XSL style sheets for OMDoc. http://omdoc.org/

xsl/.
Koh05a. Michael Kohlhase, editor. Mathematical Knowledge Management,

MKM’05, number 3863 in LNAI. Springer Verlag, 2005.
Koh05b. Michael Kohlhase. Semantic markup for TEX/LATEX. 2005.
Koh05c. Michael Kohlhase. Inference rules. OMDoc Content Dic-

tionary at https://svn.omdoc.org/repos/omdoc/trunk/examples/

logics/inference-rules.omdoc, seen Jan 2005.
Koh06. Andrea Kohlhase. What if PowerPoint became emPowerPoint (through

CPoint)? In Caroline M. Crawford, editor, Society for Informa-
tion Technology and Teacher Education, 17th International Conference
SITE 2006, pages 2934–2939. SITE, AACE, 2006. Orlando (USA),
2006-03-20/24.

Koh08. Michael Kohlhase. OMDoc mailing lists. http://omdoc.org/

resources/mailing-lists.html, seen May 2008.
KR93. Hans Kamp and Uwe Reyle. From Discourse to Logic. Kluwer, Dor-

drecht, 1993.
KZ95. D. Kapur and H. Zhang. An overview of rewrite rule laboratory (RRL).

J. Computer and Mathematics with Applications, 29(2):91–114, 1995.
Lam94. Leslie Lamport. LaTeX: A Document Preparation System, 2/e. Addison

Wesley, 1994.
LC01. Bo Leuf and Ward Cunningham. The Wiki Way: Collaboration and

Sharing on the Internet. Addison-Wesley Professional, 2001.
Len04. Richard Lennox. Development of an RDF/XML based data model for

bibliographic data. Dissertation for Bachelor of Science in Computer
Science, 2004. http://richardlennox.net/dissertation.pdf.

Lib04. P. Libbrecht. Authoring web content in activemath: From developer
tools and further. In Alexandra Christea and Franca Garzotto, edi-
tors, Proceedings of the Second International Workshop on Authoring
Adaptive and Adaptable Educational Hypermedia, AH-2004: Workshop
Proceedings, Part II, CS-Report 04-19, pages 455–460. Technische Uni-
versiteit Eindhoven, 2004.

Lom05. Cyprien Lomas. 7 things you should know about social bookmarking.
http://www.educause.edu/ir/library/pdf/ELI7001.pdf, 2005. Seen
March 2006.

https://svn.omdoc.org/repos/codeml/doc/spec/codeml.pdf
https://svn.omdoc.org/repos/codeml/doc/spec/codeml.pdf
http://www.omdoc.org/pubs/spec.pdf
http://www.omdoc.org/pubs/spec.pdf
http://omdoc.org/dtd/omdoc.dtd
http://omdoc.org/dtd/omdoc.dtd
http://omdoc.org/rnc/omdoc.rnc
http://omdoc.org/rnc/omdoc.rnc
http://omdoc.org/rnc/omdoc.xsd
http://omdoc.org/rnc/omdoc.xsd
http://omdoc.org/xsl/
http://omdoc.org/xsl/
https://svn.omdoc.org/repos/omdoc/trunk/examples/logics/inference-rules.omdoc
https://svn.omdoc.org/repos/omdoc/trunk/examples/logics/inference-rules.omdoc
http://omdoc.org/resources/mailing-lists.html
http://omdoc.org/resources/mailing-lists.html
http://www.educause.edu/ir/library/pdf/ELI7001.pdf

post.tex 8061 2008-09-24 11:38:54Z kohlhase

414 References

LS99. Ora Lassila and Ralph R. Swick. Resource Description Framework
(RDF) Model and Syntax Specification. W3C recommendation, World
Wide Web Consortium (W3C), 1999.

MAH06. Till Mossakowski, Serge Autexier, and Dieter Hutter. Development
graphs – proof management for structured specifications. Journal of
Logic and Algebraic Programming, 67(1–2):114–145, 2006.

MAR03. MARC code list for relators, sources, description conventions, 2003.
Web Version at http://www.loc.gov/marc/relators.

Mat. Using the mathweb.org subversion repository. Web page at http://

www.mathweb.org/svn.html.
Max. Maxima - a gpl cas based on doe-macsyma. web page at http:

//maxima.sourceforge.net.
MBa. Mbase. http://mbase.mathweb.org:8000.
MBA+01. E. Melis, J. Buedenbender, E. Andres, Adrian Frischauf, G. Goguadze,

P. Libbrecht, M. Pollet, and C. Ullrich. The activemath learning
environment. Artificial Intelligence and Education, 12(4), 2001.

MBG+03. Erica Melis, Jochen Büdenbender, George Goguadze, Paul Libbrecht,
and Carsten Ullrich. Knowledge representation and management in
activemath. Annals of Mathematics and Artificial Intelligence, 38:47–
64, 2003. see http://www.activemath.org.

McC97. William McCune, editor. Proceedings of the 14th Conference on Auto-
mated Deduction, number 1249 in LNAI, Townsville, Australia, 1997.
Springer Verlag.

Mei00. Andreas Meier. System description: Tramp: Transformation of
machine-found proofs into ND-proofs at the assertion level. In David
McAllester, editor, Automated Deduction – CADE-17, number 1831 in
LNAI, pages 460–464. Springer Verlag, 2000.

Mes89. J. Meseguer. General logics. In Logic Colloquium 87, pages 275–329.
North Holland, 1989.

MG04. E. Melis and G. Goguadze. Towards adaptive generation of faded ex-
amples. In International Conference on Intelligent Tutoring Systems,
number 3220 in LNCS, pages 762–771. Springer-Verlag, 2004.

MGDT05. Till Mossakowski, Joseph Goguen, Razvan Diaconescu, and Andrzej
Tarlecki. What is a logic? In Jean-Yves Beziau, editor, Logica Univer-
salis, pages 113–133. Birkhäuser, 2005.

MGH+05. Erica Melis, Giorgi Goguadze, Martin Homik, Paul Libbrecht, Carsten
Ullrich, and Stefan Winterstein. Semantic-aware components and ser-
vices of activemath. British Journal of Educational Technology, 2005.

MGP04. M. Mavrikis and A. González Palomo. Mathematical, interactive exer-
cise generation from static documents. Electronic Notes in Computer
Science, 93:183–201, 2004.

Mil07. Bruce Miller. LaTeXML: A LATEX to xml converter. Web Manual at
http://dlmf.nist.gov/LaTeXML/, seen September2007.

Mit03. Nilo Mitra. Soap 1.2 part 0: Primer, 2003.
Miz06. Mizar language. web page at http://mizar.org/language, seen III

2006.
Miz08. Mizar mathematical library. Web Page at http://www.mizar.org/

library, seen May 2008.

http://www.loc.gov/marc/relators
http://www.mathweb.org/svn.html
http://www.mathweb.org/svn.html
http://maxima.sourceforge.net
http://maxima.sourceforge.net
http://mbase.mathweb.org:8000
http://www.activemath.org
http://dlmf.nist.gov/LaTeXML/
http://mizar.org/language
http://www.mizar.org/library
http://www.mizar.org/library

post.tex 8061 2008-09-24 11:38:54Z kohlhase

References 415

MKH05. E. Melis, P. Kärger, and M. Homik. Interactive Concept Mapping in
ActiveMath (iCMap). In Djamshid Tavangarian Jörg M. Haake, Ul-
rich Lucke, editor, Delfi 2005: 3. Deutsche eLearning Fachtagung In-
formatik, volume 66 of LNI, pages 247–258. Gesellschaft für Informatik
e.V. (GI), -, 2005. accepted.

MMLW. T. Mossakowski, Christian Maeder, Klaus Lüttich, and Stefan Wölfl.
The heterogeneous tool set. Submitted for publication.

Mon. MONET – Mathematics on the net, an EU funded project. web page
at http://monet.nag.co.uk.

Mos02. Till Mossakowski. Heterogeneous development graphs and heteroge-
neous borrowing. In Mogens Nielsen and Uffe Engberg, editors, Founda-
tions of Software Science and Computation Structures (FOSSACS02),
number 2303 in LNCS, pages 310–325. Springer Verlag, 2002.

Mos04. T. Mossakowski. Hetcasl - heterogeneous specification. language sum-
mary, 2004.

Mos05. T. Mossakowski. Heterogeneous specification and the heterogeneous
tool set. Habilitation thesis, University of Bremen, 2005.

Moz. The mozart programming system.
MS96. M.A. McRobbie and J.K. Slaney, editors. Proceedings of the 13th

Conference on Automated Deduction, number 1104 in LNAI, New
Brunswick, NJ, USA, 1996. Springer Verlag.

MSLK01. M. Murata, S. St. Laurent, and D. Kohn. Xml media types. RFC 3023,
January 2001.

MTea04. Robert Meersman, Zahir Tari, and Angelo Corsaro et al., editors. On
the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
number 3292 in LNCS. Springer Verlag, 2004.

Mül05. Normen Müller. OMDoc-Repräsentation von Programmen und Be-
weisen in VeriFun. Master’s thesis, Programmiermethodik, Technische
Universität Darmstadt, 2005.

MVW05. Jonathan Marsh, Daniel Veillard, and Norman Walsh. xml:id version
1.0. W3C recommendation, World Wide Web Consortium, September
2005.

NS81. Alan Newell and Herbert A. Simon. Computer science as empirical
inquiry: Symbols and search. Communications of the Association for
Computing Machinery, 19:113–126, 1981.

OAI02. The open archives initiative protocol for metadata harvesting, June
2002.

Odl95. A.M. Odlyzko. Tragic loss or good riddance? the impending demise
of traditional scholarly journals. International Journal of Human-
Computer Studies, 42:71–122, 1995.

OM . OpenMath. web page at http://www.openmath.org.
OMC08. OpenMath content dictionaries. web page at http://www.openmath.

org/cd/, seen June2008.
OMDa. The omdoc subversion repository. Repository at https://svn.omdoc.

org/repos/omdoc.
OMDb. The OMDoc wiki. http://www.mathweb.org/omdoc/wiki/.
Org. The Mozilla Organization. Mozilla. web page at http://www.mozilla.

org.

http://monet.nag.co.uk
http://www.openmath.org
http://www.openmath.org/cd/
http://www.openmath.org/cd/
https://svn.omdoc.org/repos/omdoc
https://svn.omdoc.org/repos/omdoc
http://www.mathweb.org/omdoc/wiki/
http://www.mozilla.org
http://www.mozilla.org

post.tex 8061 2008-09-24 11:38:54Z kohlhase

416 References

ORS92. S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype verification
system. In D. Kapur, editor, Proceedings of the 11th Conference on
Automated Deduction, volume 607 of LNCS, pages 748–752, Saratoga
Springs, NY, USA, 1992. Springer Verlag.

Pau94. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. LNCS.
Springer Verlag, 1994.

PB04. F. Piroi and B. Buchberger. An environment for building mathe-
matical knowledge libraries, 2004. http://citeseer.ifi.unizh.ch/

piroi04environment.html.
Pfe91. Frank Pfenning. Logic programming in the LF logical framework. In

Gérard P. Huet and Gordon D. Plotkin, editors, Logical Frameworks.
Cambridge University Press, 1991.

Pfe01. Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume I and II.
Elsevier Science and MIT Press, 2001.

Pie80. John R. Pierce. An Introduction to Information Theory. Symbols, Sig-
nals and Noise. Dover Publications Inc., 1980.

PN90. Lawrence C. Paulson and Tobias Nipkow. Isabelle tutorial and user’s
manual. Technical Report 189, Computer Laboratory, University of
Cambridge, January 1990.

PS99. F. Pfenning and C. Schürmann. System description: Twelf — A meta-
logical framework for deductive systems. In H. Ganzinger, editor, Pro-
ceedings of the 16th International Conference on Automated Deduction
(CADE-16), pages 202–206, Trento, Italy, 1999. Springer-Verlag LNAI
1632.

PSBKK04. Manfred Pinkal, Jörg Siekmann, Christoph Benzmüller, and Ivana
Kruijff-Korbayova. Dialog: Natural language-based interaction with a
mathematics assistance system. Project proposal in the Collaborative
Research Centre SFB 378 on Resource-adaptive Cognitive Processes,
2004.

QED96. The QED project. http://www-unix.mcs.anl.gov/qed/, 1996.
Rei87. Glenn C. Reid. PostScript, Language, Program Design. Addison Wesley,

1987.
RHJ98. Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Specifica-

tion. W3C Recommendation REC-html40, World Wide Web Consor-
tium, April 1998.

ROM. ROML, The RIACA OpenMath Library. web page at http://

crystal.win.tue.nl/download/.
RSG98a. J.D.C. Richardson, A. Smaill, and I. Green. System description: Proof

planning in higher-order logic with lambda-clam. In C. Kirchner and
H. Kirchner, editors, Conference on Automated Deduction (CADE’98),
volume 1421 of Lecture Notes in Computer Science, pages 129–133.
Springer-Verlag, 1998.

RSG98b. Julian D.C. Richardson, Alan Smaill, and Ian M. Green. System de-
scription: Proof planning in higher-order logic with λclam. In Claude
Kirchner and Hélène Kirchner, editors, Proceedings of the 15th Confer-
ence on Automated Deduction, number 1421 in LNAI. Springer Verlag,
1998.

http://citeseer.ifi.unizh.ch/piroi04environment.html
http://citeseer.ifi.unizh.ch/piroi04environment.html
http://www-unix.mcs.anl.gov/qed/
http://crystal.win.tue.nl/download/
http://crystal.win.tue.nl/download/

post.tex 8061 2008-09-24 11:38:54Z kohlhase

References 417

Rud92. Piotr Rudnicki. An overview of the mizar project. In Proceedings of
the 1992 Workshop on Types and Proofs as Programs, pages 311–332,
1992.

SBA05. Jörg Siekmann, Christoph Benzmüller, and Serge Autexier. Computer
supported mathematics with omega. Journal of Applied Logic, special
issue on Mathematics Assistance Systems, december 2005.

SBB+02. Jörg Siekmann, Christoph Benzmüller, Vladimir Brezhnev, Lassaad
Cheikhrouhou, Armin Fiedler, Andreas Franke, Helmut Horacek,
Michael Kohlhase, Andreas Meier, Erica Melis, Markus Moschner, Im-
manuel Normann, Martin Pollet, Volker Sorge, Carsten Ullrich, Claus-
Peter Wirth, and Jürgen Zimmer. Proof development with OMEGA.
In Andrei Voronkov, editor, Proceedings of the 18th International Con-
ference on Automated Deduction (CADE-18), number 2392 in LNAI,
pages 144–149, Copenhagen, Denmark, 2002. Springer.

SBB+06. Sebastian Schaffert, Diana Bischof, Tobias Bürger, Andreas Gruber,
Wolf Hilzensauer, and Sandra Schaffert. Learning with semantic wikis.
In Max Völkel, Sebastian Schaffert, and Stefan Decker, editors, Proceed-
ings of the 1st Workshop on Semantic Wikis, European Semantic Web
Conference 2006, volume 206 of CEUR Workshop Proceedings, Budva,
Montenegro, June 2006.

SBC+00. Jörg Siekmann, Christoph BenzMüller, Lassaad Cheikhrouhou, Armin
Fiedler, Andreas Franke, Helmut Horacek, Michael Kohlhase, Andreas
Meier, Erica Melis, Martin Pollet, Volker Sorge, Carsten Ullrich, and
Jürgen Zimmer. Adaptive course generation and presentation. In
P. Brusilovski and Chrisoph Peylo, editors, Proceedings of ITS-2000
workshop on Adaptive and Intelligent Web-Based Education Systems,
Montreal, 2000.

Sch04. Klaus Schneider. Verification of Reactive Systems. Springer Verlag,
2004.

Sch06. Sebastian Schaffert. IkeWiki: A semantic wiki for collaborative knowl-
edge management. Technical report, Salzburg Research Forschungsge-
sellschaft, 2006.

Sci. Design Science. Mathplayer ¡display math in your browser¿. web page
at http://www.dessci.com/en/products/mathplayer.

SHB+99. Jörg Siekmann, Stephan M. Hess, Christoph Benzmüller, Lassaad
Cheikhrouhou, Armin Fiedler, Helmut Horacek, Michael Kohlhase,
Karsten Konrad, Andreas Meier, Erica Melis, Martin Pollet, and Volker
Sorge. LOUI: Lovely Ωmega User Interface. Formal Aspects of Com-
puting, 11:326–342, 1999.

Smo95. G. Smolka. The Oz programming model. In Jan van Leeuwen, edi-
tor, Computer Science Today, volume 1000 of LNCS, pages 324–343.
Springer-Verlag, Berlin, 1995.

SPH97. J. Siekmann, F. Pfenning, and X. Huang, editors. Proceedings of the
First International Workshop on Proof Transformation and Presenta-
tion, Schloss DagstuhlGermany, 1997.

SS98. G. Sutcliffe and C. Suttner. The TPTP problem library: CNF release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

SSY94. Geoff Sutcliffe, Christian Suttner, and Theodor Yemenis. The TPTP
problem library. In Alan Bundy, editor, Proceedings of the 12th Con-

http://www.dessci.com/en/products/mathplayer

post.tex 8061 2008-09-24 11:38:54Z kohlhase

418 References

ference on Automated Deduction, number 814 in LNAI, Nancy, France,
1994. Springer Verlag.

Sta02. Richard M. Stallman. GNU Emacs Manual. GNU Press, 15 edition,
2002. online at http://www.gnu.org/manual/emacs-21.2.

Sut01. G. Sutcliffe. The CADE-17 ATP system competition. Journal of Au-
tomated Reasoning, 27(3):227–250, 2001.

Sut06. Klaus Sutner. Converting mathematica notebooks to OMDoc. In OM-
Doc – An open markup format for mathematical documents [Version
1.2], number 4180 in LNAI, chapter 26.17. Springer Verlag, 2006.

SZS04. G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP Data-Exchange Formats
for Automated Theorem Proving Tools. In W. Zhang and V. Sorge,
editors, Distributed Constraint Problem Solving and Reasoning in Multi-
Agent Systems, number 112 in Frontiers in Artificial Intelligence and
Applications, pages 201–215. IOS Press, 2004.

Tea. Coq Development Team. The Coq Proof Assistant Reference Manual.
INRIA. see http://coq.inria.fr/doc/main.html.

The. The Apache Software Foundation. Xalan-java. Web page at http:

//xml.apache.org/xalan-j.
Tho91. Simon Thompson. Type Theory and Functional Programming. Interna-

tional Computer Science Series. Addison-Wesley, 1991.
Tob. Richard Tobin. Rxp - an XML parser available under the GPL. System

Home page at http://www.cogsci.ed.ac.uk/~richard/rxp.html.
TS06. Robert Tolksdorf and Elena Paslaru Bontas Simperl. Towards wikis

as semantic hypermedia. In Dirk Riehle and James Noble, editors,
Proceedings of the 2006 International Symposium on Wikis, ACM Press,
August 2006.

Ull04. C. Ullrich. Description of an instructional ontology and its application
in web services for education. In Poster Proceedings of the 3rd Interna-
tional Semantic Web Conference, ISWC2004, pages 93–94, Hiroshima,
Japan, 2004.

Ull05. C. Ullrich. Tutorial planning: Adapting course generation to today’s
needs. In M. Grandbastian, editor, Young Researcher Track Proceedings
of 12th International Conference on Artificial Intelligence in Education,
pages 155–160, Amsterdam, 2005.

ULWM04. C. Ullrich, P. Libbrecht, S. Winterstein, and M. Mühlenbrock. A flexi-
ble and efficient presentation-architecture for adaptive hypermedia: De-
scription and technical evaluation. In Kinshuk, C. Looi, E. Sutinen,
D. Sampson, I. Aedo, L. Uden, and E. Kähkönen, editors, Proceedings
of the 4th IEEE International Conference on Advanced Learning Tech-
nologies (ICALT 2004), pages 21–25, 2004.

Vat. Irène Vatton. Welcome to amaya. web page at http://www.w3.org/

Amaya.
Veia. Daniel Veillard. The XML c parser and toolkit of gnome; libxml. System

Home page at http://xmlsoft.org.
Veib. Daniel Veillard. The xslt c library for gnome: libxslt. Web page at

http://xmlsoft.org/XSLT/.
VKS+07. Max Völkel, Malte Kiesel, Sebastian Schaffert, Björn Decker,

and Eyal Oren. Semantic wiki state of the art paper – on-
toworld. http://ontoworld.org/index.php/Semantic_Wiki_State_

of_The_Art_Paper, seen January 2007.

http://www.gnu.org/manual/emacs-21.2
http://coq.inria.fr/doc/main.html
http://xml.apache.org/xalan-j
http://xml.apache.org/xalan-j
http://www.cogsci.ed.ac.uk/~richard/rxp.html
http://www.w3.org/Amaya
http://www.w3.org/Amaya
http://xmlsoft.org
http://xmlsoft.org/XSLT/
http://ontoworld.org/index.php/Semantic_Wiki_State_of_The_Art_Paper
http://ontoworld.org/index.php/Semantic_Wiki_State_of_The_Art_Paper

post.tex 8061 2008-09-24 11:38:54Z kohlhase

References 419

VKV+06. Max Völkel, Markus Krötzsch, Denny Vrandečić, Heiko Haller, and
Rudi Studer. Semantic Wikipedia. In Proceedings of the 15th interna-
tional conference on World Wide Web, WWW 2006, Edinburgh, Scot-
land, May 23–26, 2006, May 2006.

Vli03. Eric van der Vlist. Relax NG. O’Reilly, 2003.
Wei97. Christoph Weidenbach. SPASS: Version 0.49. Journal of Automated

Reasoning, 18(2):247–252, 1997. Special Issue on the CADE-13 Auto-
mated Theorem Proving System Competition.

Wir. Wiris cas. web page at http://www.wiris.com/overview/products/

wiris-cas.html.
WM99. Norman Walsh and Leonard Muellner. DocBook: The Definitive Guide.

O’Reilly, 1999.
Wol00. Stephen Wolfram. Mathematical notation, past and future. In Inter-

national MathML Conference, 2000.
Wol02. Stephen Wolfram. The Mathematica Book. Cambridge University Press,

2002.
WR10. Alfred North Whitehead and Bertrand Russell. Principia Mathemat-

ica, volume I. Cambridge University Press, Cambridge, Great Britain;
second edition, 1910.

WS02. Christoph Walther and Stephan Schweitzer. The VeriFun Tutorial.
Technical Report VFR 02/04, Programmiermethodik, Technische Uni-
versität Darmstadt, 2002.

XML. XML schema. Web page at http://www.w3.org/XML/Schema.
XSL99. Xsl transformations (xslt) version 1.0. W3c recommendation, W3C,

1999.
Yac. The yacas computer algebra system. web page at http://www.xs4all.

nl/~apinkus/yacas.html.
Zim04. Jürgen Zimmer. A Framework for Agent-based Brokering of Reasoning

Services. In Raul Monroy, Gustavo Arroyo Figueroa, and L. Enrique
Sucar, editors, Proceedings of the Mexican International Conference on
Artificial Intelligence 2004. Springer-Verlag, 2004. to appear.

ZK02. Jürgen Zimmer and Michael Kohlhase. System Description: The Math-
web Software Bus for Distributed Mathematical Reasoning. In Andrei
Voronkov, editor, Automated Deduction — CADE-18, number 2392 in
LNAI, pages 247–252. Springer Verlag, 2002.

http://www.wiris.com/overview/products/wiris-cas.html
http://www.wiris.com/overview/products/wiris-cas.html
http://www.w3.org/XML/Schema
http://www.xs4all.nl/~apinkus/yacas.html
http://www.xs4all.nl/~apinkus/yacas.html

post.tex 8061 2008-09-24 11:38:54Z kohlhase

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index

Ωmega, XIII, 23, 25, 253, 300, 321–323,
326–329, 449

λµEµ
calculus, 170
T -theorem, 187
dc:*

element, 340
om:*

element, 343
-->, 8, 98, 229
.rnc, 246
.rng, 246
<!--, 8, 98, 229
&, 8
', 8
>, 8
<, 8
", 8
OpenMath

object, 114

639
ISO, 103
ISO (), 106, 130, 254

8601
ISO, 103
ISO (), 40, 105, 354, 355

abbreviation
namespace, 8, 245

Abelian
semigroup, 161

about data
data, 93, 98, 103

abstract, 105

data

type, 274

data type, 60, 165, 233

structure, 43

syntax, 43

abstract

attribute value

for type on omtext, 133

Abstract Data Types

RNC Module ADT, 378

spec Module ADT, 93, 155, 165, 166,
232, 233, 353–355, 358

ACL2, 293

action

attribute

on dc:date, 105, 347, 348, 351

on omlet, 220, 221, 349, 361

active

document, 215

ActiveMath, XIII, 37, 71, 73, 80, 96,
102, 257, 258, 261, 281–288, 307,
313

actual

parameter

theory, 62

actualization, 60

actuate

attribute, 220

on omlet, 220

acyclic, 160

directed (), 118, 119, 131, 169, 231

adt

post.tex 8061 2008-09-24 11:38:54Z kohlhase

422 Index

element, 146, 152, 165–168, 231, 332,
333, 339, 344, 347

ADT (Abstract Data Types)
RNC Module, 378
spec Module, 93, 155, 165, 166, 232,

233, 353–355, 358
advisor

thesis, 107
against

attribute value
for type on example, 47, 155

agent
web, 5

Alan
Bundy, 26

Algebra
Fundamental Theorem of, 14

Algebra, 265
algebra

system, 29
algebraic

hierarchy, 183
specification, 23, 27, 60, 337

all

attribute value
for crossref-symbol on
presentation, 208, 209

α-conversion, 125
alphabet, 156
alternative

attribute value
for type on omgroup, 349

alternative

element, 154, 155, 338, 347
alternative

element, 154
Amaya, 16
analysis

formal, 327
natural language, 327

Analytica, 217
analyzer, 311
anchor

named, 10
Andrzej

Trybulec, 27
animal, 72
annotated

semantically (), 328

annotation
semantic, 328

m:annotation

element, 122
m:annotation-xml

element, 17, 122, 211
answer

element, 224, 339
ant

attribute value
for role on dc:*, 107

antecedent
bibliographic, 107
scientific, 107

antithesis

attribute value
for type on omtext, 133

mq:anyorder

attribute, 269–271
applet, 219

Java, 221
application, 18, 114, 122

Xml, 6
web, 279
XML, 3, 14, 90, 228, 234

application

attribute value
for role on symbol, 145

application/omdoc+xml, 41
applied

attribute value
for role on presentation, 207, 349

apply

element, 270
m:apply

element, 16, 18, 122, 145, 207, 210,
252

archiving
document, 37

argument

element, 60, 167, 338, 347
arith1, 29, 233
arith1.ocd, 20
artefacts

electronic, 108
artificial

intelligence, 301
asked

frequently (), 237

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 423

assertion, 75, 169, 172, 321
level, 326

assertion

attribute value
for type on omtext, 134

assertion

element, 75, 76, 83, 147, 149–152,
154–157, 172, 174–176, 189, 195,
243, 298, 331, 333, 338, 347, 362,
368

assertion

attribute
on example, 50, 76, 155–157
on obligation, 189

assertion-level proof
underspecification, 329

assertional
element, 155, 156, 179, 181, 188

assertions
type, 152

assessment, 223
assistant

mathematical (), 25
proof, 326

assoc

attribute value
for fixity on presentation, 207

assumption, 172
local, 173

assumption

attribute value
for type on assertion, 151, 343
for type on omtext, 134

assumption

element, 132, 153, 176, 332, 339
ATP, 293
attribute, 7

CSS, 91, 100, 102, 136, 340, 344, 345,
372

default value, 243
node, 7
type, 9

attribute

element, 203, 339, 347
attribute-value

pair, 203
attributes

attribute
on use, 209, 351

attribution

attribute value
for role on symbol, 116, 145, 345

attribution

attribute
on cc:requirements, 110

attribute value, 145
augmented, 338
aural, 91
aut

attribute value
for role on dc:*, 107

author, 107
authoring

semantic (), 306
automated

concept formation
system, 81

deduction, 27, 337
proof

assistant, 81
theorem

prover, 25, 81
provers, 321

automated theorem prover, 29
AutoMath, 23
axiom, 23, 93, 133, 141, 172, 185, 233,

321
commutativity, 161
implicit, 147
inclusion, 190, 194
system, 143

axiom

attribute value
for type on omtext, 42, 133, 343

axiom

element, 73, 74, 146–148, 155, 161,
168, 173–176, 339, 347

axiom inclusion, 193
axiom-inclusion

element, 187, 191, 195, 196, 231, 297,
298, 339, 343, 347, 364, 365

axioms, 148
Peano, 142, 143, 165

background
scientific, 2

Backus Naur form
notation, 97

post.tex 8061 2008-09-24 11:38:54Z kohlhase

424 Index

backward
reasoning, 178

balanced
bracketing

structure, 7
base

content dictionary, 163
knowledge, 173, 301
morphism, 187
URI, 160

base

attribute
on morphism, 67, 187

Berners-Lee
Tim, 32

Bibliographic
Record

Schema, 262
bibliographic

antecedent, 107
binary

document model, 228
binary

attribute value
for format on data, 217

binder

attribute value
for role on symbol, 116, 145, 345

binder

attribute value
for role, 116

binding, 122, 125, 210
LaTeXML, 311
object, 145
operator, 116, 117

binding

attribute value
for role on presentation, 207, 349

binding structure, 18, 114
binomial

coefficient, 209
body, 116
bottom-up

proof
step, 178

bound
occurrence, 126
variable, 18, 114, 116, 125, 210

box

layout, 91
Boyer-Moore

corpus, 294
bracket-style

attribute
on presentation, 207
on use, 209

bracketing
balanced (), 7

brackets

attribute value
for crossref-symbol on
presentation, 208, 209

browser, 5, 249
browsing, 261
BugZilla, 238
building blocks, 89
bullet

symbol, 100
bulleted

list, 138
Bundy

Alan, 26
m:bvar

element, 18, 122, 126, 145, 207, 210
by pointing

semantics, 19
byte array, 117

C
programming

language, 18
calculus, 326
λµEµ, 170
formal, 30
logical, 169
process, 301

Carnegie Mellon University, 71
Cartesian

product, 45
CAS, 29, 277, 278, 280
CASC competition, 293
cascades

finite-state, 263
Cascading

Style Sheet, 91
cascading

style sheet, 338

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 425

Casl, 23, 59, 165, 233, 296, 297, 300,
303

catalog
XML, 9, 40, 239, 242

Catholic
church, 129

CC
license, 108
metadata, 108

CC (Creative Commons Metadata)
spec Module, 93, 103, 108, 355, 357,

358
cc:, 40, 109
cc:license

element, 108, 109
cc:permissions

element, 41, 109
cc:prohibitions

element, 41, 109
cc:requirements

element, 41, 109
CCaps, 305, 320
cd

attribute value
for module on omdoc, 44

cd

attribute
on om:OMS, 31, 114, 125
on OMS, 18, 45, 232
on term, 136, 345

cd*

attribute
on theory, 54

cd2omdoc.xsl, 249
CDATA, 77

section, 8
CDATA, 217
cdbase

attribute, 115
on om:OMOBJ, 19
on om:theory, 158
on OMS, 158
on term, 136
on theory, 160, 162, 163, 345

omcd:CDDefinition

element, 115
omcd:CDName

element, 54
cdreviewdate

attribute
on theory, 163, 345

cdrevision

attribute
on theory, 162, 345

cdstatus

attribute
on theory, 162, 345

omcd:CDURL

element, 54
cdurl

attribute
on theory, 163, 345

cdversion

attribute
on theory, 162, 345

chain
local, 193, 195

challenge problems
induction, 293, 294

change
management, 192, 233, 273, 275
management of, 299

changed, 337
chapter, 22, 100
character

hash, 10
lists of, 63

character data
parsed, 97

checking
proof, 30

chemistry
vernacular, 130

choice

element, 224, 339
church

Catholic, 129
m:ci

element, 16, 121, 126, 210, 252
cite

attribute value
for type on ref, 101

Clam, 293
clarity

conceptual, XI
class

CSS, 200
equivalence, 228

post.tex 8061 2008-09-24 11:38:54Z kohlhase

426 Index

class

attribute, 91, 92, 96, 100, 139, 200,
224, 338

on dc:title, 77
on omstyle, presentation, 200,

201
on phrase, 135, 201
on presentation, 201, 206
on ref, 78, 102

class definition
CSS, 77

classical
first-order

logic, 176
classid

old attribute on code (deprecated in
OMDoc 1.2), 340, 347

old attribute on private (deprecated
in OMDoc 1.2), 350

clause
copyleft, 41

clb

attribute value
for role on dc:*, 107

client, 279
clipboard

system, 261
closing

tag, 7, 41
cmml

attribute value
for format on use, 201

CMP

element, 7, 41, 42, 47, 49, 99, 104,
105, 130–135, 137, 138, 146, 148,
150, 155, 173, 174, 180, 188, 201,
205, 218, 219, 223, 224, 230, 231,
252, 254, 257, 288, 295, 339, 340,
343, 345, 347, 350, 351, 354, 355,
358, 359

omcd:CMP

element, 20
m:cn

element, 16, 121
co-reference, 17
code

country, 130, 254
fragment, 77, 130

code

element, 77, 174, 201, 216–218,
220–222, 231, 340, 347, 350, 366

codebase

old attribute on code (deprecated in
OMDoc 1.2), 340, 347

old attribute on private (deprecated
in OMDoc 1.2), 350

coefficient
binomial, 209

collaborator, 107
Collection as Dublin Core Type, 106
Collection, 106
collection

multi-format, 222
color

text, 91
comma, 208
comment, 98

persistent, 99
source, 98
XML, 8, 98, 229

comment

attribute value
for type on omtext, 99, 133

commented
mathematical

property, 20
commercial use

attribute
on cc:permission, 109

common
greatest (), IX

communication, 277, 326
standard, 256

community, 27, 337
commutativity

axiom, 161
comorphism, 302
competency

element, 283
complete

configuration, 274
Complex Theories

DG Module CTH, 380
RNC Module CTH, 379
spec Module CTH, 93, 183, 185, 187,

191, 192, 232, 233, 296, 303, 353,
355, 356, 358

Component

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 427

Presentation, 281
Tutorial, 281

component
reuse, 296
shared, 296

composition, 187
computation

request, 321
computer

graphics, IX
science, 71

computer algebra, IX
system, 19, 25, 29, 81, 117, 216, 217,

252, 321
computer science

vernacular, 130
computer-supported

education, 27, 337
concatenation

strings, 156
concept, 73, 75, 135, 144

extension, 73
mathematical, 144

concept formation
automated (), 81

conceptual
clarity, XI
structure, 256

conceptual clarity, 89
conclusion

attribute value
for type on derive, 172
for type on omtext, 133

conclusion

element, 132, 153, 176, 332, 340, 348
configuration

complete, 274
consistent, 274
management, 273

Conjecture
Kepler’s, IX

conjecture, 151
false, 157

conjecture

attribute value
for type on assertion, 151
for type on omtext, 134, 343

ConneXions, 271
consequence, 30

morphism, 297
relation, 30

conservative, 188
extension, 143, 154
principle of (), 23

conservative

attribute value
for conservativity, 188, 189
for definitional, 188

conservativity, 187
conservativity

attribute, 188
on axiom-inclusion, 339
on imports, 187, 341
on inclusion, 341
on theory-inclusion, 346

conservativity-just

attribute
on axiom-inclusion, 339
on imports, 187, 341
on inclusion, 341
on theory-inclusion, 346

consistency, 143, 185
consistency

attribute
on definition, 149
on morphism, 185, 342

consistent
configuration, 274

constant

attribute value
for role on symbol, 145

constitutive, 141, 233
property, 20
theory element, 142

constraint
solver, 81

construct
programming, 278

constructor, 45, 60
symbol, 165, 166
term, 165

constructor

element, 166, 167, 333, 340, 347
Content

markup, 30
content, 95, 116

dictionary, 18, 113, 125, 135, 278
language, 321

post.tex 8061 2008-09-24 11:38:54Z kohlhase

428 Index

management, 72
markup, 4, 28, 30, 31
navigation, 307
OMDoc, 72
search, 307
semantic, 327
structure, 134

content dictionary, 122
content dictionary, 249
content dictionaries

OpenMath (), 294
content dictionary, 18, 19, 21, 31, 45,

46, 114, 115, 130
base, 163
format, 162
metadata, 162
OMDoc, 44, 162, 232
OpenMath, 162
status, 162
version number, 162

Content in
PowerPoint, 305

content OMDoc, 231
Content MathML, 10, 15–19, 21,

22, 27, 29, 31, 37, 42, 43, 113,
120–123, 125–127, 132, 134, 136,
162, 201, 207, 211, 249, 251, 252,
270, 312, 321, 323, 337, 342

context, 151, 178
dynamic, 278, 279
dynamic (), 280
markup, 22, 28
mathematical, 134
static, 278, 279
static (), 280

context-free
grammar, 8, 241

contradictory-axioms

attribute value
for status on assertion, 153

contrast

attribute value
for type on omgroup, 349

dc:contributor

element, 104, 105, 107, 110, 340, 348
control

version, 273
controlled

refinement, 256

convention
structural, 2

copyleft
clause, 41

copyleft

attribute
on cc:requirements, 110

CoQ, 253, 321, 323, 324
Core, 326, 328, 329, 428
Core, 326
corollary, 151
corollary

attribute value
for type on assertion, 151
for type on omtext, 134, 343

corpus
Boyer-Moore, 294
Dmac, 294

correct, 72
correctness

management, 173
counter-equivalent

attribute value
for status on assertion, 153

counter-example, 76, 157
counter-satisfiable

attribute value
for status on assertion, 153

counter-theorem

attribute value
for status on assertion, 153

country
code, 130, 254

Course Capsules, 314
courseware, 71
CPoint, 71, 256, 305–309, 314
CPointAuthor, 307, 308
CPointBasic, 308
CPointGraphs, 307
CPointImport, 308
CPointNotes, 308
CPointStudent, 308
cr

attribute
on element, 206, 341

created

attribute value
for action on dc:date, 105

Creative Commons

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 429

Initiative, 98, 109
license, 41, 108
namespace, 40, 109

URI, 109
Creative Commons Metadata

spec Module CC, 93, 103, 108, 355,
357, 358

dc:creator

element, 104, 105, 107, 110, 340
cref

attribute
on om:*, 343

crid

attribute
on element, 206, 341

cross-reference, 5, 17, 72, 102, 104, 118,
131, 133, 139, 172, 175, 206, 208,
343, 349, 362

crossref-symbol

attribute
on presentation, use, 208
on presentation, 209

CSS
attribute, 91, 100, 102, 136, 340, 344,

345, 372
class, 200
class definition, 77
directive, 91, 338
markup, 219
property, 102
style sheet, 91, 238

CSS, 6, 15, 16, 77, 91, 92, 96, 100, 102,
135, 136, 173, 200, 219, 338, 340,
344, 345, 362, 372

m:csymbol

element, 121–123, 126, 134
CTH (Complex Theories)

DG Module, 380
RNC Module, 379
spec Module, 93, 183, 185, 187, 191,

192, 232, 233, 296, 303, 353, 355,
356, 358

Curry-Howard
isomorphism, 325

cyclic, 101

DAG, 118, 131, 169, 172, 174, 175
explosion, 118

data

about data, 93, 98, 103
abstract (), 274
table, 138

data

attribute value
for valuetype on param, 222

data

element, 77, 217, 218, 220, 222, 231,
340, 344, 347, 348, 350, 363, 365,
366

data

attribute
on omlet, 220, 221, 349

data type
abstract, 60, 165, 233

Dataset as Dublin Core Type, 105
Dataset, 40, 105, 106, 231
dataset

attribute value
for type on omgroup (deprecated in

OMDoc 1.2), 100, 342
date

review, 163
dc:date

element, 105, 110, 340, 347, 348, 351
dateTime, 105
dc

attribute
on action:date, 105

DC (Dublin Core Metadata)
RNC Module, 374
spec Module, 93, 103, 104, 232, 234,

354–359
dc:, 40, 104
dc:*

element, 340
dc:contributor

element, 104, 105, 107, 110, 340, 348
dc:creator

element, 104, 105, 107, 110, 340
dc:date

element, 105, 110, 340, 347, 348, 351
dc:description

element, 45, 54, 105, 146, 231, 339,
340, 345, 347, 350

dc:format

element, 106, 110
dc:identifier

element, 106

post.tex 8061 2008-09-24 11:38:54Z kohlhase

430 Index

dc:language

element, 106, 110
dc:publisher

element, 105, 340
dc:relation

element, 106
dc:rights

element, 106, 108, 110
dc:source

element, 54, 106, 110
dc:subject

element, 105, 146, 339, 340, 344, 345
dc:title

element, 77, 100, 104, 231, 345
dc:type

element, 105, 106, 110, 231
dd

element, 138
de, 106, 130
de-referencing, 6
decision

procedure, 25
declaration, 135

DOCTYPE, 243
document type, 9, 10, 243
local, 178
namespace, 7, 8, 40, 90
namespace prefix, 44
symbol, 22, 147, 162
term, 147, 346
type, 147

decomposition, 62, 194
decomposition

element, 195, 196, 340, 346, 348, 351
deduction

automated, 27, 337
natural, 180, 348
natural (), 85, 177

default
namespace, 90

default

attribute value
for format on use, 201

default value
attribute, 243

defined
symbol, 148

definiendum, 143, 148
definiens, 143, 157, 180

definiens

attribute value
for role on term, 45, 136

defining
occurrence, 125, 210

definite
description

operator, 66
definition, 23, 93, 133, 137, 141, 143,

157, 233, 321
document type, 44, 227, 241, 244
implicit, 143
inductive, 144
loose, 144
simple, 143

definition

attribute value
for type on omtext, 42, 133, 343

definition

element, 45, 49, 50, 148, 149, 154,
155, 158, 161, 173, 174, 180, 185,
281, 331, 333, 340, 342, 347, 348,
350

definition by description, 148
definitional, 188

form, 23
theory

inclusion, 188
definitional

attribute value
for conservativity, 188

definitionURL, 121
definitionURL

attribute
on m:annotation, 122
on m:ci, 126
on m:csymbol, 122, 126, 134

dependency
graph, 307

deprecated, 337
derivative works

attribute
on cc:permissions, 109

derive

attribute value
for type on omtext, 134

derive

element, 76, 85, 172–178, 332, 348
derived

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 431

inference
rule, 180

description
definite (), 66
list, 138
logic, 301
service, 321

dc:description

element, 45, 54, 105, 146, 231, 339,
340, 345, 347, 350

Deskzilla, 238
development

graph, 62, 192, 233, 296, 297, 299
proof (), 25
theory (), 216
time, 296

Development Graphs
RNC Module DG, 380
spec Module DG, 93, 183, 192, 195,

232, 303, 354, 357
sped Module DG, 296

DG (Development Graphs)
RNC Module, 380
spec Module, 93, 183, 192, 195, 232,

303, 354, 357
sped Module, 296

DG Module
CTH (Complex Theories), 380

Dgrl, 297, 299, 300
di

element, 138
dictionary

content, 18, 113, 125, 135, 278
didactic

figure, 79, 80
differential

equation, 14, 29
difficulty

element, 283
Digital

rights
management, 108

digital
universal (), X

Digital Media in Education, 305
directed

acyclic
graph, 118, 119, 131, 169, 231

directive

CSS, 91, 338
discharged-in

old attribute on hypothesis (dep-
recated in OMDoc 1.2), 341,
348

discourse
structure, 256

discourse theory, 141
display

attribute value
for action on omlet, 220, 221

display:none

attribute value
for style, 158

distinction
presentation vs. content, 95

distribution, 41
distribution

attribute
on cc:permissions, 109

distributivity, 20
m:divide

element, 16
dl

element, 130, 138
Dmac

corpus, 294
DOC (Document Structure)

RNC Module, 373
spec Module, 89, 93, 95, 130, 232,

234, 355–358
DocBook, 234, 278
DOCTYPE

declaration, 243
DOCTYPE, 242, 243, 245
document

active, 215
archiving, 37
fragment, 103
hypertext, 5
individualized, 256
interactive, 256
knowledge-centered, 72, 254
lexical (), 228
library, 262
management, 6, 103
manager, 279
markup, 1
mathematical, 2, 21, 326

post.tex 8061 2008-09-24 11:38:54Z kohlhase

432 Index

model, 228
multilingual, 254
narrative-structured, 72, 254
object model, 219, 227
preparation language, 256
retrieval, 37
reuse, 273
root, 7, 9, 89, 105, 232
semantic (), 328
server, 279
sharing, 273
source, 4
structure, 233, 275
structured, 276
target, 4
tree, 6
view, 262

document model
binary, 228

document object
model, 18

Document Structure
RNC Module DOC, 373
spec Module DOC, 89, 93, 95, 130,

232, 234, 355–358
document type, 242

declaration, 9, 10, 243
definition, 44, 227, 241, 244

document type definition, 8
document-unique, 9
documents

multilingual, 130
DOM, 295

JAXP, 295
domain

top-level, 109
dominate, 119
DRM, 108
DSSSL, 6
dt

element, 138
DTD, 8, 41, 44, 91, 96, 127, 227, 238,

241, 243, 369
module, 244
normalization, 243

DTD Module
PF (Proofs and Arguments), 244

DTD module, 242
Dublin Core, 98, 315

namespace, 40, 104
URI, 104

Dublin Core Metadata
RNC Module DC, 374
spec Module DC, 93, 103, 104, 232,

234, 354–359
DVI, 4
dynamic

context, 278, 279
manager, 280

HTML, 219
mathematical

context, 277

editing, 261
editor, 107

invasive, 256
scientific, 326

editorial
note, 308

edt

attribute value
for role on dc:*, 107

education, XII
computer-supported, 27, 337

Educational OMDoc, 234
effect

element, 77, 218, 340
effective

URI, 160
elaboration

attribute value
for type on omtext, 133

electronic
artefacts, 108

element, 6
assertional, 155, 156, 179, 181, 188
empty, 7
module, 244
theory-constitutive, 142
token, 121
top-level, 96

element

element, 202, 203, 206, 341, 346, 348,
361

element

attribute
on omstyle, 200
on use, 209, 351

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 433

elements
Euclid’s, XI

Emacs, 246, 256, 314–316, 326
emacs, 320
embed

attribute value
for show on omlet, 220

emitter, 311
empty

element, 7
namespace, 90
string, 156

en, 106, 130
en

attribute value
for xml:lang, 130

xml:en

attribute value
for lang, 41

encoding
UTF-8, 40

encoding

attribute
on m:annotation, 122
on om:OMFOREIGN, 117

endnote, 139
entailed-by

attribute
on alternative, 154

entailed-by-thm

attribute
on alternative, 154

entailment
system, 302

entails

attribute
on alternative, 154

entails-thm

attribute
on alternative, 154

entity
mnemonic, 10
module inclusion, 244
parameter, 44, 242, 243
XML, 8, 9, 241

entry
index, 139

enumeration

attribute value

for type on omgroup, 43, 100

equation

differential, 14, 29

recursive, 149

equivalence

class, 228

equivalent

attribute value

for status on assertion, 153

error

in-place (), 99, 117

mathematical, 99

operator, 117

semantic, 117

error

attribute value

for role on symbol, 117, 145, 345

escaping

XML, 8

Euclid, XI

Euclid’s

elements, XI

Euclid’s algorithm, IX

evaluation

semantics, 328

evidence

higher-level, 174

evidence

attribute value

for type on omtext, 133

evolutionary

process, 297

example, 74, 93

example

attribute value

for type on omtext, 42, 47, 133

example

element, 47, 50, 74–76, 155–157, 284,
341

execute

attribute value

for action on omlet, 220

exercise, 223

exercise

element, 223, 224, 341, 342

Exercises

RNC Module QUIZ, 384

rnc Module QUIZ, 370

post.tex 8061 2008-09-24 11:38:54Z kohlhase

434 Index

spec Module QUIZ, 93, 223, 232, 234,
353–356, 358

exhaustivity, 185
exhaustivity

attribute
on definition, 149
on morphism, 185, 342

exincl.xsl, 250
existence

attribute
on definition, 148, 331
on morphism, 185

expansion, 174
tree, 231

experimental

attribute value
for cdstatus on theory, 162

explicit
namespace

prefix, 121
explosion

DAG, 118
export

symbol, 145
expres.xsl, 250
EXT (Extensions)

RNC Module, 382
rnc Module, 370
spec Module, 93, 130, 215, 232, 234,

354, 355, 357
extension

concept, 73
conservative, 143, 154

Extensions
RNC Module EXT, 382
rnc Module EXT, 370
spec Module EXT, 93, 130, 215, 232,

234, 354, 355, 357
external

mathematical
service, 278

object, 219
subset, 243

external

attribute value
for original on data, 217, 340

factual
knowledge, 25

false
conjecture, 157

false

attribute value
for verdict on answer, 224

false-conjecture

attribute value
for type on assertion, 151
for type on omtext, 134, 343

family
font, 91

FAQ, 237
feature, 116

symbol, 123
field

element, 283
figure

didactic, 79, 80
rhetoric/didactic, 79, 80

file
style, 4, 16

finite-state
cascades, 263

FireFox, 83, 261, 264, 284
first-order

classical (), 176
logic, 29, 49, 132, 293
theorem

prover, 83, 293
fixity

attribute
on presentation, use, 207
on use, 209

flatten, 101
FMP

element, 50, 76, 85, 99, 131–135, 146,
148, 153, 173, 174, 176, 218, 223,
224, 231, 256, 257, 339, 340, 348

omcd:FMP

element, 19, 20
font

family, 91
variant, 91

footnote, 139
footnote

attribute value
for type on note, 139

for

attribute value

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 435

for type on example, 47, 155
for

attribute, 364, 365
on alternative, 154
on assertion, 338
on axiom, 74, 146, 339
on decomposition, 195, 340, 348,

351
on definition, 45, 148, 331
on example, 47, 75, 155
on hint, 341
on insort, 166
on mc, 342
on note, 139
on omstyle, presentation, 200
on omtext, 133, 349
on path-just, 196, 343
on presentation, 205–207
on private, code, 216
on private, 350
on proof, 84, 172, 177, 332, 344
on solution, 223
on type, 147, 351

foreign
namespace, 90

form, 3
definitional, 23

formal
analysis, 327
calculus, 30
mathematical

document, 327
property, 19

mathematics, 30
parameter

theory, 62
representation, 327
semantics, 327
software

development, 273, 296, 297
system, 30

formalism

attribute
on legacy, 127

formalization, 301
format

content dictionary, 162
migration, 31

dc:format

element, 106, 110
format

attribute
on data, 77, 217, 347, 348, 350
on legacy, 127
on use, xslt, style, 201, 209
on use, 252

old attribute on CMP (deprecated in
OMDoc 1.1), 347

formula, 113
mathematical, 14, 21

formula

attribute value
for type on assertion, 151
for type on omtext, 134, 343

formulae as
types, 21

forward
reasoning, 178

Four-Colour
Theorem, IX

fr, 106, 130
fragment, 243

code, 77, 130
document, 103
identifier, 10

frame, 91
framework

logical, 21, 293
free, 165
free

attribute value
for type on adt, 166

frequently
asked

questions, 237
from

attribute
on axiom-inclusion, 191
on imports, 45, 159
on omtext, 133, 349
on theory-inclusion, 189

frontend
human-oriented (), 256

frozen

attribute value
for action on dc:date, 105

function, 3, 14
partial, 167

post.tex 8061 2008-09-24 11:38:54Z kohlhase

436 Index

predecessor, 60, 165, 166
recursive, 149, 165
successor, 165, 167
total, 167

Fundamental Theorem of
Algebra, 14

Fundamentals of Computer Science, 71
future-proof, X

Gödel’s
Incompleteness

Theorem, IX
gap

steps, 173
gap

attribute value
for type on derive, 173

generated, 165
generated

attribute value
for type on adt, 166

generated-by

old attribute on alternative

(deprecated in OMDoc 1.1), 347
old attribute on assertion (depre-

cated in OMDoc 1.2), 347
old attribute on axiom (deprecated in

OMDoc 1.2), 347
old attribute on definition

(deprecated in OMDoc 1.2), 348
old attribute on symbol (deprecated

in OMDoc 1.2), 350
generated-from

attribute, 191, 364
on alternative, 338
on assertion, 151
on axiom-inclusion, 339
on axiom, 146, 168
on decomposition, 340
on example, 341
on exercise, 341
on hint, 341
on mc, 342
on omdoc, 342
on omgroup, 342
on omstyle, 342
on omtext, 343
on private, 340, 344
on proofobject, 344

on proof, 344
on solution, 344
on theory-inclusion, 346
on type, 346

generated-via

attribute, 191
on adt, 339
on alternative, 338
on assertion, 338–340
on axiom-inclusion, 339
on decomposition, 340
on example, 341
on exercise, 341
on hint, 341
on mc, 342
on omdoc, 342
on omgroup, 342
on omstyle, 342
on omtext, 343
on private, 340, 344
on proofobject, 344
on proof, 344
on solution, 344
on symbol, 345
on theory-inclusion, 346
on type, 346

generator
model, 81

mq:generic

attribute, 269–271
global, 159, 190

link, 28, 297
theorem

link, 298
global

attribute value
for scope on symbol, 145, 167
for type on imports, 159, 191

globals

attribute
on axiom-inclusion, 195
on path-just, 195

glyph, 145
mathematical, 308

goal
learning, 281

GoTo, 307
grammar

context-free, 8, 241

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 437

normative (), 242
graph, 188

dependency, 307
development, 62, 192, 233, 296, 297,

299
theory, 188

graphics
computer, IX

greatest
common

divisor, IX
grounded, 176
group, 14

multi-logic, 131, 146, 223
multi-system, 146
multilingual, 41, 42, 130, 131, 135,

146, 155, 173, 218, 223, 230, 254
group, 144, 160, 161
group representation, 29

hash
character, 10

head
template, 204

header
table, 138

height

old attribute on omlet (deprecated in
OMDoc 1.2), 347, 349, 350

HetCasl, 303
heterogeneous

specification, 301
Hets, 276, 300, 302–304
hiding

attribute
on morphism, 68, 186, 342

hierarchy
algebraic, 183

higher-level
evidence, 174
structure, 42

higher-order
logic, 132, 297

hint, 223
hint

element, 223, 224, 341
Hol, 23, 38
home

theory, 142

href

attribute
on data, 217, 340, 348, 365
on link, 139
on om:OMR, 118, 119
on OMR, 50
on ref, 368

old attribute on premise (deprecated
in OMDoc 1.1), 349

xlink:href

attribute
on in MathML, 17

HTML
dynamic, 219

HTML, 5, 6, 10, 14, 15, 201–203, 206,
208, 209, 219, 254, 266, 284, 285,
287, 288

html

attribute value
for format on legacy, 127
for format on use, 201

HTTP, 81, 83
human-oriented

frontend
format, 256

hyperlink, 138
hyperref.sty, 208
hypertext

document, 5
Hypertext Markup Language, 5
hypothesis

inductive, 132, 173, 178
hypothesis

attribute value
for type on omtext, 133

hypothesis

element, 173, 177, 178, 341, 346, 348

icmap, 285
ICOM, 294, 295
ID

system, 238
type, 10, 27, 90, 91, 101, 337

ID, 9
dc:id

attribute
on xml:creator, 104
on xml:subject, 344
on xml:title, 345

post.tex 8061 2008-09-24 11:38:54Z kohlhase

438 Index

id

attribute, 91, 338
on CMP, 347
on decomposition, 348
on FMP, 348
on m:bvar, 126
on om:*, 343
on type, 351
on with, 351

attribute (in MathML), 17
attribute (in OpenMath objects),

118, 119
xml:id

attribute, 7, 10, 90, 91, 132, 173, 200,
224, 338, 363

on assertion, 151
on code, 221
on derive, 172, 177
on description, 340
on effect, 340
on idx, 139
on imports, 196, 341
on inclusion, 341
on input, 341, 343
on legacy, 127
on measure, 342
on obligation, 342
on omdoc, 40, 54, 96
on omgroup, 43
on omtext, 42, 102, 133
on ordering, 343
on phrase, 135
on private, code, 216
on proof, 172
on ref, 100, 344
on symbol, 343
on term, 136
on theory, 158, 160, 162, 345

ID-type, 10
ide

element, 139
Identifier

public, 9
identifier, 121

fragment, 10
public, 40, 239, 242
system, 239

dc:identifier

element, 106

idp

element, 139
IDREF

type, 347
IDREF, 9
idt

element, 139
idx

element, 130, 139
ignore

element, 99, 101, 130
IkeWiki, 289, 290
image/gif

attribute value
for format on data, 217

image/jpeg

attribute value
for format on data, 217

implicit
axiom, 147
definition, 143
knowledge, 305

implicit

attribute value
for type on definition, 50, 148,

149
import

local, 159
imported

attribute value
for action on dc:date, 105

imports

element, 45, 46, 49, 62, 68, 159–161,
185–188, 191, 196, 297, 322, 341

Imps, 188, 322
in scope of

theory, 175
in-place

error
markup, 99, 117

in-the-large, 300
structuring, 274
verification, 296, 300

in-the-small, 300
verification, 297, 300

INCLUDE, 245
include

attribute value
for type on ref, 101

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 439

included
structurally, 187

inclusion
axiom, 190, 194
theory, 61, 63, 183, 187, 190, 191,

193, 194
inclusion

element, 62, 190, 341
incomplete

proof, 173
Incompleteness

Gödel’s (), IX
inconsistent, 23, 142
index

entry, 139
markup, 139
phrase, 139
text, 139

index

attribute
on ide, 139
on in module RT, 139
on phrase, 135

individualized
document, 256

induced-by

attribute, 361
on obligation, 189

induction
challenge problems, 293, 294
theorem prover, 293, 294
theorem provers, 293, 294

inductive
definition, 144
hypothesis, 132, 173, 178
proof, 178
step, 178

inductive

attribute value
for type on definition, 149, 340

inductive

attribute
on assumption, 132, 339
on hypothesis, 173

inductively defined
set, 60

inference
derived (), 180
rule, 174

infix

attribute value
for fixity on presentation, 207,

331
infixl

attribute value
for fixity on presentation, 207,

331
infixr

attribute value
for fixity on presentation, 207,

331
informal

mathematics, 30
informal

attribute value
for type on definition, 150

information
retrieval, IX
set, 243
style, 200

infoset, 18
inherit, 185
inheritance, 233

relation, 160, 183
semantic (), 313
theory, 79

inherited, 159, 161
inherits

attribute
on metadata, 348

Initiative
Creative Commons, 98, 109

ink-on-paper, 2, 3
InKa, 253, 293, 297, 321, 323, 324
input, 77
input

element, 77, 218, 221, 341
insertion

set, 165
insort

element, 166
instance

schema, 246
theory, 60

institution, 302
integer, 117
integration

protocol-based, 321

post.tex 8061 2008-09-24 11:38:54Z kohlhase

440 Index

theory, 322
type, 299

integrity condition, 154
intellectual

property, 108
intelligence

artificial, 301
interactive

document, 256
mathematical

document, 277
interactivity, 277
interface, 255

theory, 323
interlingua, 251, 321
internal

subset, 44, 243
DTD, 243

international
mathematics

community, X
internationalization, 254
Internet

publication, 2
MS Internet Explorer , 249
Internet Explorer, 16, 83, 249, 440
interpretation

theory, 183
interrelation

semantic, 273
intersection

set, 132
introduction

attribute value
for type on omtext, 133

intuitive
knowledge, 25

inv, 161
invariant

under a document model X , 228
invasive

editor, 256
inverse

left, 191
right, 191

“is a” relation, 75
Isabelle, 23, 175
ISBN, 106
ISO

639, 103
norm, 106, 130, 254

8601, 103
norm, 40, 105, 354, 355

isomorphism
Curry-Howard, 325

ISSN, 106
itemize

attribute value
for type on omgroup, 78, 100

JAVA, 295, 330
Java, 77, 218

applet, 221
JavaScript, 219
JAXP

DOM, 295
jEdit, 287
jEditOQMath, 287, 288
jurisdiction

attribute
on cc:license, 109

just-by

attribute
on assertion, 76, 152, 153, 338,

347
on type, 147, 346

justification, 174

K-14, 15, 18, 120
mathematics, 122

Kepler’s
Conjecture, IX

key, 116
key

attribute value
for role on presentation, 207, 349

kind

old attribute on ref (deprecated in
OMDoc 1.2), 350

old attribute on symbol (deprecated
in OMDoc 1.1), 345

Kindergarten, 15, 120
Knowledge

Mathematical (), X, 255
knowledge

base, 173, 301
factual, 25
implicit, 305

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 441

intuitive, 25
management, XII, 73
mathematical, IX, XI, 1
mathematical (), XI, 192, 256, 326
presentation, 73
representation, 73

knowledge-based
proof

planning, 25
knowledge-centered

document, 72, 254
view, 95

knowledge-structured, 95

labeled-dataset

attribute value
for type on omgroup (deprecated in

OMDoc 1.2), 100, 342
λClam, 253, 321, 323
dc:lang

attribute
on xml:*, 107
on xml:contributor, 105
on xml:description, 105
on xml:subject, 105
on xml:title, 104

xml:lang

attribute, 7, 130
on CMP, 41, 130
on description, 45
on use, xslt, style, 201, 209

language
content, 321
markup, 2
natural, 129
style sheet, 6

dc:language

element, 106, 110
language definition

theory, 252
languages

multiple, 130, 254
larg-group

old attribute on use (deprecated in
OMDoc 1.2), 346

LATEX, 4
LaTeXML

binding, 311
LaTeXML, 311, 312

Latin, 129
laymen, 129
layout

box, 91
schema, 17

lbrack

attribute value
for crossref-symbol on
presentation, 208, 209

lbrack

attribute
on map, 203
on presentation, use, 208, 209
on presentation, 331

Learner
Model, 281

learning, 281
goal, 281

left
inverse, 191
unit, 191

legacy, 126
legacy

element, 42, 113, 127, 130, 132, 174,
180, 222, 341, 372

lemma, 151
lemma

attribute value
for type on assertion, 151, 331
for type on omtext, 42, 134, 343

level
assertion, 326

lexical
document

model, 228
li

element, 138
library

document, 262
libxml2, 239
license

CC, 108
Creative Commons, 41, 108

cc:license

element, 108, 109
lightweight

mechanism, X
line-feed, 8
lingua franca, IX

post.tex 8061 2008-09-24 11:38:54Z kohlhase

442 Index

link
global, 28, 297
local, 28, 297
simple, 139

link

element, 130, 138
links

attribute
on decomposition, 195
on idp,ide, 139
on idp, 139

LISP, 207
lisp

attribute value
for bracket-style on
presentation, 207

list
bulleted, 138
description, 138
ordered, 138
semicolon-separated, 91
unordered, 138

lists of
character, 63

local, 159, 161
assumption, 173
chain, 193, 195
declaration, 178
import, 159
link, 28, 297
name, 90, 244
theory

inclusion, 190, 191
local

attribute value
for original on data, 217, 340
for scope on symbol, 145, 167
for type on imports, 62, 159, 191

local

attribute
on path-just, 195

locale (XSLT parameter), 254
localization, 254
logic

description, 301
first-order, 29, 49, 132, 293
higher-order, 132, 297
morphism, 325
propositional, 180

translation, 302
logic

attribute
on FMP, 131

logical
calculus, 169
framework, 21, 293
system, 131

logically
redundant, 233

loose, 165
definition, 144

loose

attribute value
for type on adt, 166

m:, 121
m:annotation

element, 122
m:annotation-xml

element, 17, 122, 211
m:apply

element, 16, 18, 122, 145, 207, 210,
252

m:bvar

element, 18, 122, 126, 145, 207, 210
m:ci

element, 16, 121, 126, 210, 252
m:cn

element, 16, 121
m:csymbol

element, 121–123, 126, 134
m:divide

element, 16
m:math

element, 113, 121, 127, 130, 132, 174,
180, 341, 342

m:mathml

element, 222
m:mfence

element, 15
m:mfrac

element, 15
m:mi

element, 15
m:mn

element, 15
m:mo

element, 15

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 443

m:mover

element, 15
m:mroot

element, 15
m:mrow

element, 15
m:mstyle

element, 15
m:msub

element, 15
m:msubsup

element, 15
m:msup

element, 15
m:munder

element, 15
m:munderover

element, 15
m:plus

element, 16
m:semantics

element, 17, 122, 123, 211
machine-readable, 18, 113
macro

semantic, 312
magma, 50
Makefiles, 250
management

change, 192, 233, 273, 275
configuration, 273
content, 72
correctness, 173
document, 6, 103
knowledge, XII, 73
rights, 98, 103

management of
change, 299

manager
document, 279

Mandelbrot
set, IX

map

element, 203, 341, 342, 344, 346
Maple™, 29, 263, 264, 321
markup

Content, 30
content, 4, 28, 30, 31
context, 22, 28
CSS, 219

document, 1
index, 139
language, 2
parallel, 17
presentation, 3
semantic, 30, 31, 305
semantic (), 30

match

attribute, 204
math

attribute value
for bracket-style on
presentation, 207

m:math

element, 113, 121, 127, 130, 132, 174,
180, 341, 342

math

element, 270
math-enabled

web
browser, 279

MathDox, 257, 277–280
Mathematica

notebook, 201
Mathematica, 217
mathematica

attribute value
for format on use, 201

Mathematical
Knowledge

Management, X, 255
mathematical

assistant
system, 25

commented (), 20
concept, 144
context, 134
document, 2, 21, 326
dynamic (), 277
error, 99
external (), 278
formal (), 19, 327
formula, 14, 21
glyph, 308
interactive (), 277
knowledge, IX, XI, 1

base, 256
dissemination, XI
management, XI, 192

post.tex 8061 2008-09-24 11:38:54Z kohlhase

444 Index

repository, 326
object, 14
practice, 326
proofs, 173
publication, 329
service, 81, 280, 321
software

system, 2, 216
software bus, 81
statement, 21, 22, 133, 134, 141, 191
symbol, 327
text, 105, 244, 327
text-editors, 326
theory, 22, 141, 297
verified (), 327
vernacular, 29, 38, 48, 104, 129, 133,

137, 138, 169
Mathematical Objects

RNC Module MOBJ, 372
spec Module MOBJ, 93, 96, 113, 130,

232, 234
Mathematical Statements

RNC Module ST, 375
rnc Module ST, 369
spec Module ST, 93, 141, 158, 232,

353–358
Mathematical Text

RNC Module MTXT, 372
spec Module MTXT, 93, 129, 130,

232, 234, 353–355, 357–359
Mathematica®, 14, 29, 201, 256, 263,

264, 277, 314, 315, 318–321
mathematics, XII

formal, 30
informal, 30
international (), X
K-14, 122

MathML
content, 10, 15–19, 21, 22, 27, 29, 31,

37, 42, 43, 113, 120–123, 125–127,
132, 134, 136, 162, 201, 207, 211,
249, 251, 252, 270, 312, 321, 323,
337, 342

presentation, 10, 15–17, 121, 122,
126, 201, 206, 209, 210, 241

MathML, VIII, 1, 10, 14–19, 21, 28,
32, 90, 91, 93, 113, 116, 121–126,
162, 201, 206, 209, 210, 228, 241,
245, 254, 256, 258, 261–263, 268,

270, 271, 284, 285, 312, 318, 321,
372, 388, 390, 394, 444

MathML, 209
m:mathml

element, 222
MathPlayer, 16
MathWeb, XI, 81, 83, 237, 266, 295
MathWeb OMDoc, 234
MathWeb-SB, 26, 81, 83
MathWeb-WS, 81, 83, 85
Maxima, 263, 264, 284
Maya, XIII, 256, 296–300, 303
MBase, 37, 73, 83, 84, 256, 266, 267,

295, 298, 321
mc

element, 223, 224, 342
measure

element, 149, 150, 185, 342, 348
measure function, 149
mechanism

lightweight, X
membership

namespace, 7
mental

representation, 145
meta-data, 39
metadata, 40, 54, 98, 103

CC, 108
content dictionary, 162

metadata

element, 39, 43, 54, 77, 97, 98, 100,
103–106, 108, 110, 133, 146, 158,
217, 231, 305, 340, 341, 344, 347,
348, 350

method, 174
proof, 174, 188

method

element, 85, 173–175, 332, 348, 349
m:mfence

element, 15
m:mfrac

element, 15
m:mi

element, 15
Microsoft

Internet Explorer, 16, 83, 249, 440
Word, 3

migration
format, 31

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 445

MIME
type, 41, 106, 117, 217, 219, 220, 363

misconception

element, 283
Mizar, 22, 23, 27, 38
MMiSS, 257, 273, 274, 276
m:mn

element, 15
mnemonic

entity, 10
m:mo

element, 15
MOBJ (Mathematical Objects)

RNC Module, 372
spec Module, 93, 96, 113, 130, 232,

234
mode

nXML, 246
Model

Learner, 281
model

document, 228
document object, 18
generator, 81

modularization, 244
module, 89

DTD, 244
element, 244

module

attribute
on omdoc, 44

module inclusion
entity, 244

modules

attribute, 89, 96, 97, 232
on omdoc, 40, 54, 97
on omgroup, 342

monograph, 22
monoid, 66, 146
monoid, 161
monomorphism

attribute value
for conservativity, 188

Moore’s Law, IX
morphism, 184

base, 187
consequence, 297
logic, 325
theory, 183, 233

morphism

element, 61, 67, 68, 185, 187, 189, 342
motivation

attribute value
for type on omtext, 133

m:mover

element, 15
MoWGLI, 170
mOZart, 266
Mozilla, 16, 249, 256, 261, 263–265,

284
MP3

recording, 108
mq:anyorder

attribute, 269–271
mq:generic

attribute, 269–271
m:mroot

element, 15
m:mrow

element, 15
MS

Internet Explorer, 16, 83, 249, 440
m:mstyle

element, 15
m:msub

element, 15
m:msubsup

element, 15
m:msup

element, 15
MTXT (Mathematical Text)

RNC Module, 372
spec Module, 93, 129, 130, 232, 234,

353–355, 357–359
multi-format

collection, 222
multi-logic

group, 131, 146, 223
multi-system

group, 146
multilingual, 135, 148

document, 254
documents, 130
group, 41, 42, 130, 131, 135, 146, 155,

173, 218, 223, 230, 254
parallel (), 135, 139
support, 130, 254
text, 233

post.tex 8061 2008-09-24 11:38:54Z kohlhase

446 Index

multiple
languages, 130, 254

Multiple-choice exercise, 224
m:munder

element, 15
m:munderover

element, 15

omcd:Name

element, 115
name

local, 90, 244
qualified, 7, 8, 200, 202, 244
simple, 8, 9

name

attribute
on attribute, 203
on constructor, 167
on definition, 45
on element, 203
on om:OMS, 31, 114
on om:OMV, om:OMS, 125
on om:OMV, 115
on OMS, 18, 45
on OMV, 19, 45
on param, 222
on recognizer, 167
on selector, 167
on sortdef, 166, 350
on symbol, 45, 145, 146, 167, 331
on term, 136, 345

named
anchor, 10

namespace, 7, 130, 200, 202
abbreviation, 8, 245
Creative Commons, 40, 109
Creative Commons (), 109
declaration, 7, 8, 40, 90
default, 90
Dublin Core, 40, 104
Dublin Core (), 104
empty, 90
explicit (), 121
foreign, 90
membership, 7
OMDoc, 40, 89
OMDoc (), 89
OpenMath, 40, 114
OpenMath (), 114

prefix, 90, 104, 109, 114, 121
declaration, 40, 90

prefixed, 44
URI, 96, 244
XML, 7, 8, 244

namespace prefix
declaration, 44

namespace-aware, 121
narrative, 133, 230

OMDoc, 72
structure, 256

narrative

attribute value
for type on omgroup, 349

narrative

attribute value
for type on omgroup (deprecated in

OMDoc 1.2), 101
narrative-centered, 101

view, 95
narrative-structured, 95, 230, 231

document, 72, 254
natural

deduction, 180, 348
calculus, 85
proof, 177
style, 177

language, 129
number, 165
positive (), 166

natural language
analysis, 327

navigation, 308
content, 307

nb2omdoc, 318
neut, 161
new

symbol, 143
new

attribute value
for show on omlet, 220

nl, 106, 130
no

attribute value
for crossref-symbol on
presentation, 208

for inductive on hypothesis, 173
for total on selector, 167, 350

no-consequence

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 447

attribute value

for status on assertion, 153

node

attribute, 7

text, 7

non-applied

occurrence, 212

normal form

ref, 101

normalization

DTD, 243

URI, 160

normalized, 241

normative

grammar

formalism, 242

precedence, 9

normed

attribute value

for action on dc:date, 105

notation, 2

Backus Naur form, 97

Polish, 114

prefix, 114

note, 139

editorial, 308

note

attribute value

for type on omtext, 133, 402

note

element, 130, 139

notebook

Mathematica, 201

NotebookML, 318

notice

attribute

on cc:requirements, 110

NqThm, 293, 294

ns

attribute

on attribute, 203, 339

on element, 203, 341

NS.prefixed, 245

number, 121

natural, 165

NuPrL, 23, 38, 175

nXML

mode, 246

o:, 245
object

OpenMath, 18, 114
binding, 145
external, 219
mathematical, 14
proof, 180
symbol, 252

object

attribute value
for role on selector, 344
for role on symbol, 145, 167
for type on constructor, 340
for type on recognizer, 344
for valuetype on param, 222

xhtml:object

element, 219, 220, 342
object model

document, 219, 227
object-oriented

programming, 72
obligation

proof, 188, 296–298
obligation

attribute value
for type on assertion, 151
for type on omtext, 134, 343

obligation

element, 61, 189, 191, 193, 196, 231,
342, 346–348

obsolete

attribute value
for cdstatus on theory, 162

occurrence
bound, 126
defining, 125, 210
non-applied, 212

official

attribute value
for cdstatus on theory, 162

ol

element, 130, 138
om:, 40, 114
om:*

element, 343
om:OMA

element, 18, 45, 114, 115, 118–120,
207, 252

om:OMATP

post.tex 8061 2008-09-24 11:38:54Z kohlhase

448 Index

element, 116, 117
om:OMATTR

element, 116–118, 122, 123, 125, 145,
207, 210

om:OMB

element, 117
om:OMBIND

element, 18, 114–116, 118, 125, 145,
204, 207, 210, 252

om:OMBVAR

element, 18, 114, 116, 125, 203, 204,
210

om:OME

element, 117
om:OMF

element, 117
om:OMFOREIGN

element, 117, 211, 343
om:OMI

element, 117
om:OMOBJ

element, 7, 18, 45, 49, 50, 113, 114,
118, 127, 130, 132, 174, 180, 222,
230, 295, 341, 348, 349

om:OMR

element, 50, 118–120, 231, 343
om:OMS

element, 7, 18, 45, 114–116, 125, 136,
158, 162, 232

om:OMSTR

element, 117, 348
om:OMV

element, 18, 19, 45, 114, 115, 125, 252
om:OMA

element, 18, 45, 114, 115, 118–120,
207, 252

om:OMATP

element, 116, 117
om:OMATTR

element, 116–118, 122, 123, 125, 145,
207, 210

om:OMB

element, 117
om:OMBIND

element, 18, 114–116, 118, 125, 145,
204, 207, 210, 252

om:OMBVAR

element, 18, 114, 116, 125, 203, 204,
210

omcd:CDDefinition

element, 115
omcd:CDName

element, 54
omcd:CDURL

element, 54
omcd:CMP

element, 20
omcd:FMP

element, 19, 20
omcd:Name

element, 115
OMDoc

content, 72
content dictionary, 44, 162, 232
namespace, 40, 89

URI, 89
narrative, 72

OMDoc
version 1.0, 118
version 1.1, 27, 91, 100, 101, 118, 170,

249, 337, 338
version 1.2, 27, 28, 40, 100, 104, 118,

244, 337, 338, 342
version 1, VIII, 27, 337

OMDoc, V, VIII, X–XIII, 1–3, 6, 7, 9,
10, 14, 18, 20, 23–35, 37, 39–45,
47, 50, 53, 54, 56, 60–62, 67,
71–81, 83–85, 87, 89–93, 96–110,
113, 114, 116, 117, 121–123,
126, 127, 129, 130, 132–139, 141,
142, 144–148, 150–152, 154–156,
158–162, 165–167, 170–176,
179–181, 183–187, 189–192, 195,
196, 199–207, 210, 212, 215–220,
222–225, 227–235, 237–239,
241–246, 249–263, 265, 266, 276,
278, 281–298, 301, 303–305, 307,
308, 310, 311, 313–316, 318, 320,
321, 323–325, 329–333, 337, 338,
340, 343, 344, 346, 348–350, 353,
361, 365, 367–373, 375, 376, 378,
383, 387

omdoc

element, 9, 41, 54, 89, 90, 96–98, 100,
101, 105, 110, 232, 246, 291, 342

omdoc-basic, 44
omdoc.cat, 239
omdoc.prefix, 245

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 449

omdoc1.1adapt1.2.xsl, 249
omdoc2html.xsl, 254
omdoc2pvs.xsl, 252
omdoc2share.xsl, 254
omdoc2sys.xsl, 252
omdoc2tex.xsl, 254
omdoc:, 245
OMDOM, 227
om:OME

element, 117
Ωmega, 326
om:OMF

element, 117
om:OMFOREIGN

element, 117, 211, 343
omgroup

element, 43, 77, 78, 96, 97, 100, 101,
158, 232, 305, 342, 349

om:OMI

element, 117
omlet

element, 77, 130, 219–222, 244, 342,
347, 349, 350, 361, 363

om:OMOBJ

element, 7, 18, 45, 49, 50, 113, 114,
118, 127, 130, 132, 174, 180, 222,
230, 295, 341, 348, 349

om:OMR

element, 50, 118–120, 231, 343
om:OMS

element, 7, 18, 45, 114–116, 125, 136,
158, 162, 232

om:OMSTR

element, 117, 348
omstyle

element, 200–203, 205, 206, 231, 250,
342, 349–351, 363

omtext

element, 7, 41–43, 46, 47, 77, 91, 99,
133, 134, 157, 172, 230, 232, 281,
342, 343, 349

om:OMV

element, 18, 19, 45, 114, 115, 125, 252
onLoad

attribute value
for action on omlet, 220

onPresent

attribute value
for action on omlet, 220

onRequest

attribute value
for action on omlet, 220

ontologically
promiscuous, 325

ontology, 273
op, 161, 230
Open eBook, 107
opening

tag, 7
OpenMath

content dictionaries
a, 294

namespace, 40, 114
URI, 114

OpenMath
object, 18

OpenMath, VIII, 1, 7, 8, 10, 14, 15,
17–22, 26–31, 34, 37, 40, 42–46,
50, 53, 54, 56, 59, 90, 91, 93, 95,
98, 99, 113–127, 130–132, 136,
145, 162, 163, 204, 209–212, 228,
232, 233, 245, 249, 251–253, 258,
263, 264, 268, 270, 277, 278, 280,
284–287, 294, 295, 315, 319–321,
323, 324, 331, 332, 342, 343, 345,
349, 361, 362, 372, 387, 415, 416

OpenMath elements
extra attributes id and xref, 118

OpenOffice, 265
operator

binding, 116, 117
error, 117

OQMath, 258, 287, 288
ordered

list, 138
ordering, 144, 149
ordering

element, 149, 185, 342, 343, 348, 349
original

attribute
on data, 217, 340

other

attribute value
for action on omlet, 220
for show on omlet, 220

outfix

attribute value
for fixity on presentation, 331

post.tex 8061 2008-09-24 11:38:54Z kohlhase

450 Index

output, 77
output

element, 77, 218, 343
Owl, 291
Oz, 266

p

element, 130, 138
packing

sphere, IX
padding, 91
swim:page

element, 291
pair, 46

attribute-value, 203
paragraph, 100, 138
parallel

markup, 17
multilingual

markup, 135, 139
param

element, 219, 221, 222
parameter, 60, 174, 254

XSLT, 254
actual (), 62
entity, 44, 242, 243
formal (), 62

parameter

element, 348
parameter entity, 245

reference, 243
parameters

attribute
on adt, 166, 332, 339

parametric
theory, 60

parent

old attribute on presentation

(deprecated in OMDoc 1.2), 349
parsed

character data, 97
parser, 77

validating, 8, 241
XML, 8, 98, 252

partial
function, 167

partial

attribute value, 350
path-just

element, 195, 196, 339, 343
pattern, 149
pattern

attribute value
for type on definition, 150, 340
for type on morphism, 185

pattern

element, 349
PDF, 4, 284
Peano

axioms, 142, 143, 165
permission, 41
permissions, 109
cc:permissions

element, 41, 109
permitted

attribute value, 109
persistent

comment, 99
PF (Proofs and Arguments)

DTD Module, 244
RNC Module, 378
rnc Module, 370
spec Module, 93, 169, 170, 232,

354–357
phrase, 134, 135

index, 139
phrase

element, 92, 130, 132, 134, 135, 157,
201, 203, 339, 340, 343, 346

physical
representation, 145

pickling, 266
picture, 108
pixel-on-screen, 3
plug-in, 219, 220
plus, 29
m:plus

element, 16
pmml

attribute value
for format on legacy, 127
for format on use, 201

pointer, 125, 126
pointing

semantics by, 31
Polish

notation, 114
polynomial, 29

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 451

positioning, 91
positive

natural
number, 166

postfix

attribute value
for fixity on presentation, 207,

331
PostScript, 4
postulate

attribute value
for type on assertion, 151
for type on omtext, 134, 343

postulated
theory

inclusion, 188
PowerPoint

Content in , 305
PowerPoint, 314
MS PowerPoint, 305–308
practice

mathematical, 326
precedence

normative, 9
precedence

attribute
on map, 203
on presentation, 207

predecessor
function, 60, 165, 166

predefined
symbol, 252

predicate, 167
recognizer, 167

prefix
namespace, 90, 104, 109, 114, 121
namespace (), 40, 90
notation, 114

prefix

attribute value
for fixity on presentation, 207,

331
prefixed

namespace, 44
preloading

semantic, 312
premise

element, 76, 85, 174–176, 349
preparation language

document, 256
PRES (Presentation)

RNC Module, 383
rnc Module, 369
spec Module, 93, 126, 199, 232, 233,

353, 355, 357–359
Presentation

Component, 281
RNC Module PRES, 383
rnc Module PRES, 369
spec Module PRES, 93, 126, 199, 232,

233, 353, 355, 357–359
presentation, 95, 254, 305

knowledge, 73
markup, 3
proof, 173, 257
proof (), 180, 216
semantics-induced, 307
slides, 72

presentation

element, 200, 205, 206, 208–210, 231,
249, 250, 252, 253, 331, 333, 343,
349–351, 367

Presentation MathML, 10, 15–17,
121, 122, 126, 201, 206, 209,
210, 241

P.Rex, 326
primitive

symbol, 73, 74, 148
principal

type, 147
principle of

conservative
extension, 23

priority-union, 110
private

attribute value
for cdstatus on theory, 162

private

element, 73, 174, 216–218, 220,
222, 231, 340, 344, 346, 347,
349, 350, 363, 366

problem, 151
procedure

decision, 25
process

calculus, 301
evolutionary, 297
reasoning, 123, 147

post.tex 8061 2008-09-24 11:38:54Z kohlhase

452 Index

processing instruction
style sheet, 92

processor
Xml, 6
XML, 239

product
Cartesian, 45

program, 216
programming

C (), 18
construct, 278
object-oriented, 72

prohibited

attribute value, 109
prohibitions, 109
cc:prohibitions

element, 41, 109
Prolog, 207
promiscuous

ontologically, 325
proof, 141, 169, 188, 321

assistant, 326
automated (), 81
bottom-up (), 178
checking, 30
development
environment, 25

incomplete, 173
inductive, 178
knowledge-based (), 25
method, 174, 188
object, 180
obligation, 188, 296–298
presentation, 173, 257
system, 180, 216

sequent, 176
top-down (), 178
verification, 30

proof

attribute value
for type on omtext, 133

proof

element, 76, 84, 171, 173–179,
181, 195, 332, 333, 341, 344,
350

proof assistance
system, 326

proof-theoretic, 324
proofobject

element, 174, 175, 180, 181, 344,
350

proofs
mathematical, 173

Proofs and Arguments
DTD Module PF, 244
RNC Module PF, 378
rnc Module PF, 370
spec Module PF, 93, 169, 170,

232, 354–357
property

constitutive, 20
CSS, 102
intellectual, 108

proposition

attribute value
for type on assertion, 151
for type on omtext, 134, 343

propositional
logic, 180

protocol-based
integration, 321

ws:prove

element, 83
prover

theorem, 216, 217
pto

attribute
on data, 217, 340, 344

pto-version

attribute
on data, 217, 340, 344

public
Identifier, 9
identifier, 40, 239, 242

publication, 326
Internet, 2
mathematical, 329

dc:publisher

element, 105, 340
Pvs, 59, 252, 253, 321–324

QMath, 256, 258–261, 263–265, 287,
292

qmath

attribute value
for format on legacy, 127

qualified
name, 7, 8, 200, 202, 244

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 453

QUIZ (Exercises)
RNC Module, 384
rnc Module, 370
spec Module, 93, 223, 232, 234,

353–356, 358

rank

attribute
on premise, 349

rarg-group

old attribute on use (dep-
recated in OMDoc 1.2),
346

rbrack

attribute value
for crossref-symbol on
presentation, 208, 209

rbrack

attribute
on map, 203
on presentation, use, 208, 209
on presentation, 331

RDF, 80, 98, 110, 262, 289, 291
reasoning

backward, 178
forward, 178
process, 123, 147
system, 81

recognizer
predicate, 167

recognizer

element, 167, 344, 347, 350
recommendation, 6, 14
Record

Bibliographic (), 262
recording

MP3, 108
recurse

element, 202, 203, 346, 350
recursive

equation, 149
function, 149, 165

recursive

attribute value
for type on morphism, 185

reducible
ref, 101

reduction
ref, 101

redundant
logically, 233

ref

attribute value
for valuetype on param, 222

ref

element, 78, 80, 100–102, 130,
132, 231, 250, 344, 348, 350,
368

ref-normal form, 101
ref-reducible, 101
ref-reduction, 101
ref-target

ref-target, 101
ref-target, 101
ref-valid, 101
reference

parameter entity, 243
URI, 10, 45, 74, 96, 100, 121, 127,

139, 148, 152, 159, 187, 195,
200, 201, 216, 217, 220, 222

referencing, 90
refinement

controlled, 256
reformulates

attribute
on private, 73, 217, 344

relation, 45
“is a”, 75
consequence, 30
inheritance, 160, 183

dc:relation

element, 106
relative

URI, 160
RelaxNG, 8, 9, 238, 241, 242, 245,

246, 369–372, 387, 388
renaming

variable, 116, 125
renumbering, 4
replace

attribute value
for show on omlet, 220

replaces

old attribute on private (dep-
recated in OMDoc 1.2), 344,
350

report-errors, 250
representation

post.tex 8061 2008-09-24 11:38:54Z kohlhase

454 Index

formal, 327
knowledge, 73
mental, 145
physical, 145
static, 328
theorem, 22

representational
rigor, XI

reproduction, 41
reproduction

attribute
on cc:permissions, 109

requation

element, 149, 150, 185, 231, 342
request

computation, 321
requirement

specification, 274, 296
requirements, 109
cc:requirements

element, 41, 109
requires

attribute
on code, 77
on private, code, 216
on use, xslt, style, 201, 209

resource
uniform (), 5, 7

resource description format, 98
Resource Description Framework,

98
retrieval

document, 37
information, IX

reuse
component, 296
document, 273
theory, 23

review
date, 163

review-on

attribute value
for action on dc:date, 105

revision, 163
rhetoric

role, 133
rhetoric/didactic

figure, 79, 80
Rich Text Structure

RNC Module RT, 381
spec Module RT, 93, 100, 129,

130, 137–139, 232, 234, 342,
354–359, 364, 368

right
inverse, 191
unit, 191

rights
Digital (), 108
management, 98, 103

dc:rights

element, 106, 108, 110
rigor

representational, XI
rigorous, 129
RNC, 379, 380
RNC Module

ADT (Abstract Data Types),
378

CTH (Complex Theories), 379
DC (Dublin Core Metadata), 374
DG (Development Graphs), 380
DOC (Document Structure), 373
EXT (Extensions), 382
MOBJ (Mathematical Objects),

372
MTXT (Mathematical Text),

372
PF (Proofs and Arguments), 378
PRES (Presentation), 383
QUIZ (Exercises), 384
RT (Rich Text Structure), 381
ST (Mathematical Statements),

375
rnc Module

EXT (Extensions), 370
PF (Proofs and Arguments), 370
PRES (Presentation), 369
QUIZ (Exercises), 370
ST (Mathematical Statements),

369
role, 116

rhetoric, 133
role

attribute, 104, 348
on constructor, 340
on dc:*, 107
on presentation, 206, 349
on recognizer, 344

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 455

on selector, 344
on sortdef, 344
on symbol, 116, 145, 167, 345
on term, 45, 136

root
document, 7, 9, 89, 105, 232

row
table, 138

rrl, 293
RT (Rich Text Structure)

RNC Module, 381
spec Module, 93, 100, 129,

130, 137–139, 232, 234, 342,
354–359, 364, 368

rule
inference, 174

rule

attribute value
for type on omtext, 134

satisfiable

attribute value
for status on assertion, 153

saxon, 249
schema, 96, 238, 241, 246

instance, 246
layout, 17
XML, 8, 41, 91, 227, 241, 369

xsi:schemaLocation

attribute
on omdoc, 246

Scheme, 326
scheme

attribute
on dc:identifier, 106

science, XII
computer, 71

scientific
antecedent, 107
background, 2
editor, 326

scope, 175
scope

attribute
on symbol, 145, 167

search
content, 307

searching, 261
section, 22, 100

CDATA, 8
sectioning

attribute value
for type on omgroup, 100

see

attribute
on idp,ide, 139

seealso

attribute
on idp,ide, 139

select

attribute
on attribute, 203, 339
on map, 203
on recurse, 203
on value-of, 203

selector
symbol, 165–167

selector

element, 121, 167, 344, 345, 350
selfinclusion

theory, 66, 68
Semantic

Web, 301
semantic

annotation, 328
authoring
tool, 306

content, 327
document
format, 328

error, 117
inheritance
relation, 313

interrelation, 273
macro, 312
markup, 30, 31, 305
format, 30

preloading, 312
Semantic MediaWiki, 290
semantic-attribution

attribute value
for role on symbol, 145, 345

semantically
annotated
documents, 328

semantics
by pointing, 19
evaluation, 328

post.tex 8061 2008-09-24 11:38:54Z kohlhase

456 Index

formal, 327
m:semantics

element, 17, 122, 123, 211
semantics by

pointing, 31
semantics-induced

presentation, 307
semicolon-separated

list, 91
semigroup, 66

Abelian, 161
semigroup, 161
Sentido, 256, 260–265
separator

attribute value
for crossref-symbol on
presentation, 208, 209

separator

element, 203, 341
separator

attribute
on presentation, use, 208

sequence

attribute value
for type on omgroup, 100, 101,
349

sequent, 132, 348
proof, 176
style, 176
proof, 177

server
document, 279

service
description, 321
mathematical, 81, 280, 321
web, 6

set
inductively defined, 60
information, 243
insertion, 165
intersection, 132
Mandelbrot, IX
theory, 321

set, 161
setname1, 123
SGML, 6, 242
shared

component, 296
sharing

document, 273

structure, 118

shorthand

xpointer, 10

show

attribute, 220

on omlet, 220

side-effect, 77

Siette, 283

simple

definition, 143

link, 139

name, 8, 9

simple

attribute value

for type on definition, 49, 148,
150

Simple Generalized Markup
Language, 6

size

attribute

on data, 217, 348

slicing, 42

slide, 72

slide

attribute value

for type on omgroup, 77

slide presentation, 72

Soap, 81–84

software

formal (), 273, 296, 297

mathematical (), 2, 216

software bus

mathematical, 81

solution, 223

solution

element, 223, 224, 231, 344

solver

constraint, 81

sort, 60, 147, 165, 166

symbol, 166

sort

attribute value

for role on selector, 344

for role on symbol, 145, 167

sort

attribute

on argument, 347

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 457

old attribute on argument

(deprecated in OMDoc 1.2),
338

sort-by

attribute

on idp, 139

sortdef

element, 60, 166, 167, 231, 339,
344, 346, 350

source, 4

comment, 98

document, 4

theory, 61, 159, 185, 187, 191

dc:source

element, 54, 106, 110

Spass, 81–85

spec Module

ADT (Abstract Data Types),
93, 155, 165, 166, 232, 233,
353–355, 358

CC (Creative Commons Meta-
data), 93, 103, 108, 355, 357,
358

CTH (Complex Theories), 93,
183, 185, 187, 191, 192, 232,
233, 296, 303, 353, 355, 356,
358

DC (Dublin Core Metadata), 93,
103, 104, 232, 234, 354–359

DG (Development Graphs), 93,
183, 192, 195, 232, 303, 354,
357

DOC (Document Structure), 89,
93, 95, 130, 232, 234, 355–358

EXT (Extensions), 93, 130, 215,
232, 234, 354, 355, 357

MOBJ (Mathematical Objects),
93, 96, 113, 130, 232, 234

MTXT (Mathematical Text), 93,
129, 130, 232, 234, 353–355,
357–359

PF (Proofs and Arguments), 93,
169, 170, 232, 354–357

PRES (Presentation), 93, 126,
199, 232, 233, 353, 355, 357–359

QUIZ (Exercises), 93, 223, 232,
234, 353–356, 358

RT (Rich Text Structure), 93,
100, 129, 130, 137–139, 232,
234, 342, 354–359, 364, 368

ST (Mathematical Statements),
93, 141, 158, 232, 353–358

specification, 59, 233
algebraic, 23, 27, 60, 337
heterogeneous, 301
requirement, 274, 296
system, 296

specifications
structured, 296

sped Module
DG (Development Graphs), 296

sphere
packing, IX

ST (Mathematical Statements)
RNC Module, 375
rnc Module, 369
spec Module, 93, 141, 158, 232,

353–358
standalone

attribute
on ?xml, 243

standard
communication, 256

start
tag, 40, 44

state, 278
statement, 137

mathematical, 21, 22, 133, 134,
141, 191

static
context, 278, 279
manager, 280

representation, 328
status

content dictionary, 162
status

attribute
on assertion, 152, 153, 338, 366

STEM, XII
step

inductive, 178
steps

gap, 173
strict, 165
string, 117

empty, 156

post.tex 8061 2008-09-24 11:38:54Z kohlhase

458 Index

strings, 156
concatenation, 156

structural
convention, 2
theory
inclusion, 188

structurally
included, 187

structure
abstract, 43
conceptual, 256
content, 134
discourse, 256
document, 233, 275
higher-level, 42
narrative, 256
sharing, 118
XML (), 228

structured
document, 276
specifications, 296

structuring
in-the-large, 274

sts, 123, 124
style

file, 4, 16
information, 200
sequent, 176
sequent (), 177

style

element, 201, 202, 204, 205, 209,
210, 344, 350, 351

style

attribute, 91, 92, 96, 100, 139,
224, 338

on definition, 158
on omlet, 219
on omtext, 91
on phrase, 135
on ref, 78, 102
on with, 351

attribute (meaning changed in
1.2), 338

attribute (new meaning 1.2), 338
Style Sheet

Cascading, 91
style sheet, 4, 6, 199, 238, 249

cascading, 338
CSS, 91, 238

language, 6
processing instruction, 92
XSL, 238

Subversion, 237
dc:subject

element, 105, 146, 339, 340, 344,
345

subset
external, 243
internal, 44, 243
internal (), 243

successor
function, 165, 167

support
multilingual, 130, 254

svg, 284
svn, 237
SWiM, 289, 290, 292
swim:page

element, 291
symbol, 18, 114, 121, 142, 144, 232

bullet, 100
constructor, 165, 166
declaration, 22, 147, 162
defined, 148
export, 145
feature, 123
mathematical, 327
new, 143
object, 252
predefined, 252
primitive, 73, 74, 148
selector, 165–167
sort, 166

symbol

element, 45, 74, 116, 144–147,
152, 155, 161, 168, 173, 174,
204, 231, 252, 253, 331, 333,
339, 341, 342, 345, 350, 351

syntax
abstract, 43
XML (), 228

system
algebra, 29
axiom, 143
clipboard, 261
computer algebra, 19, 25, 29, 81,

117, 216, 217, 252, 321
entailment, 302

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 459

formal, 30
ID, 238
identifier, 239
logical, 131
proof assistance, 326
reasoning, 81
specification, 296
type, 147
visualization, 321

system

attribute
on type, 147, 346

table, 138
data, 138
header, 138
row, 138

table

element, 130, 138
tag

closing, 7, 41
opening, 7
start, 40, 44

target, 4, 101, 119
ref, 101
document, 4
theory, 61, 159, 185, 187, 191

TargetLanguage, 254
tautologous-conclusion

attribute value
for status on assertion, 153

tautology

attribute value
for status on assertion, 153

taxonomy, 72, 77
td

element, 138
teaching, X
technical

term, 135
technology, XII
template, 199

xslt, 250
head, 204

term
constructor, 165
declaration, 147, 346
technical, 135

term

element, 45, 130, 134, 136, 345
terminating

attribute
on measure, 149
on ordering, 343

termination, 144
TeX

attribute value
for format on legacy, 127
for format on use, 201

TEX, 4, 14
TEXmacs, 326
TexPoint, 308
Text as Dublin Core Type, 105
Text, 40, 105, 106, 231
text

color, 91
index, 139
mathematical, 105, 244, 327
multilingual, 233
node, 7

text

element, 202, 203, 346, 350
text-editors

mathematical, 326
text/plain

attribute value
for format on data, 217

textbook, 22
tgroup

element, 158, 345
th

element, 138
Theorem

Four-Colour, IX
theorem, 23, 93, 137, 141, 151, 187,

188
automated (), 25, 81, 321
first-order (), 83, 293
global (), 298
prover, 216, 217
representation, 22

theorem

attribute value
for status on assertion, 153
for type on assertion, 151
for type on attribute, 157
for type on omtext, 42, 134, 343

theorem prover, 293

post.tex 8061 2008-09-24 11:38:54Z kohlhase

460 Index

theorem link, 297
theorem prover, 29

induction, 293, 294
theorem provers

induction, 293, 294
Theorema, 265
theory, 59, 72, 151, 297

definitional (), 188
development
system, 216

graph, 188
home, 142
in scope of, 175
inclusion, 61, 63, 183, 187, 190,

191, 193, 194
inheritance, 79
instance, 60
integration, 322
interface, 323
interpretation, 183
language definition, 252
local (), 190, 191
mathematical, 22, 141, 297
morphism, 183, 233
parametric, 60
postulated (), 188
reuse, 23
selfinclusion, 66, 68
set, 321
source, 61, 159, 185, 187, 191
structural (), 188
target, 61, 159, 185, 187, 191

theory

element, 44, 45, 54, 101, 142, 152,
154, 158–163, 166, 190, 252,
291, 313, 331, 345, 346, 349,
350, 364

theory

attribute
on alternative, 154, 338
on assertion, 83, 151
on axiom-inclusion, 339
on decomposition, 340
on example, 341
on exercise, 341
on hint, 341
on mc, 342
on omdoc, 342
on omgroup, 158, 342

on omtext, 343
on presentation, 349
on private, code, 216
on private, 340, 344
on proof, 172, 350
on solution, 344
on statement, 142, 162
on theory-inclusion, 346
on type, 152, 346

old attribute on presentation

(deprecated in OMDoc 1.2),
343

theory element
constitutive, 142

theory-constitutive, 147, 152, 166
element, 142

theory-inclusion

element, 187, 189, 191, 195, 297,
298, 340, 346, 348, 351, 364,
365

thesis
advisor, 107

thesis

attribute value
for type on omtext, 133

ths

attribute value
for role on dc:*, 107

Tim
Berners-Lee, 32

time
development, 296

timestamp

old attribute on axiom-inclusion

(deprecated in OMDoc 1.2),
347

old attribute on
theory-inclusion (depre-
cated in OMDoc 1.1), 351

dc:title

element, 77, 100, 104, 231, 345
to

attribute
on axiom-inclusion, 191
on theory-inclusion, 189

token
element, 121

toolbar, 306
top-down

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 461

proof
step, 178

top-level, 158, 189, 195
domain, 109
element, 96

total, 168
function, 167

total

attribute
on selector, 167, 350

attribute value, 350
TPS, 253, 321–323
TPTP, 293
tr

element, 138
Tramp, 85
trang, 246
transcriber, 107
transition

attribute value
for type on omtext, 133

translation, 139
logic, 302

translation-equivalent, 20
translator, 40, 107
trc

attribute value
for role on dc:*, 107

tree, 73, 169, 175
document, 6
expansion, 231

trl

attribute value
for role on dc:*, 107

true

attribute value
for verdict on answer, 224

Trybulec
Andrzej, 27

Turing, 16
Tutorial

Component, 281
tutoring, 326
Twelf, 23, 293
type, 123, 147, 166

assertions, 152
attribute, 9
declaration, 147
ID, 10, 27, 90, 91, 101, 337

IDREF, 347
integration, 299
MIME, 41, 106, 117, 217, 219, 220,

363
principal, 147
system, 147

type, 123
attribute value
for role on symbol, 145, 167

dc:type

element, 105, 106, 110, 231
type

element, 146, 147, 152, 155, 167,
333, 338, 346, 351

type

attribute, 100
on adt, 166, 339
on assertion, 151, 243, 331, 347
on attribute, 157
on axiom, 146, 339
on definition, 29, 49, 50, 148
on derive, 172
on example, 47, 76, 155
on ignore, 99
on imports, 62, 159, 191
on m:cn, 121
on morphism, 185, 342
on note, 139
on omdoc, 97
on omgroup, 43, 77, 100, 349
on omtext, 42, 43, 99, 133–135,
343, 349

on phrase, 135
on ref, 101, 350

attribute (on MathML objects),
123

old attribute on code (depre-
cated in OMDoc 1.1), 340,
344

old attribute on omlet (dep-
recated in OMDoc 1.2),
349

old attribute on selector

(deprecated in OMDoc 1.1),
350

old attribute on sortdef (dep-
recated in OMDoc 1.2),
344

types

post.tex 8061 2008-09-24 11:38:54Z kohlhase

462 Index

formulae as, 21

ul

element, 130, 138
underspecification

assertion-level proof, 329
Unicode, 6, 228, 229
Unicode, 7, 9, 10, 15, 228, 241, 258,

264, 331
uniform

resource
identifier, 5
locator, 5, 7

uniqueness, 90
uniqueness

attribute
on definition, 148
on morphism, 185

unit
left, 191
right, 191

universal
digital
mathematics library, X

Unix, 239, 250
unordered

list, 138
unsatisfiable

attribute value
for status on assertion, 153

unsatisfiable-conclusion

attribute value
for status on assertion, 153

updated

attribute value
for action on dc:date, 105

URI, 5, 9, 31, 40, 105, 106, 115, 146,
147, 155, 160, 162, 242, 243

base, 160
effective, 160
namespace, 96, 244
normalization, 160
reference, 10, 45, 74, 96, 100,

121, 127, 139, 148, 152, 159,
187, 195, 200, 201, 216, 217,
220, 222

relative, 160
URL, 5, 7, 238, 239
use

element, 206, 208–210, 252, 253,
331, 346, 351

UTF-8
encoding, 40

valid
ref, 101

validating
parser, 8, 241
XML
parser, 9, 246

validation, 241
validity, 9, 241
value, 116, 149
value

attribute
on param, 222

value-of

element, 203, 346, 351
valuetype

attribute
on param, 222

variable, 18, 114, 121
bound, 18, 114, 116, 125, 210
renaming, 116, 125

variant, 276
font, 91

verbalizes

attribute
on omtext, 134, 343
on phrase, 135, 157

verdict

attribute
on answer, 224

verification
in-the-large, 296, 300
in-the-small, 297, 300
proof, 30

verified
mathematical
document, 327

vernacular
chemistry, 130
computer science, 130
mathematical, 29, 38, 48, 104,

129, 133, 137, 138, 169
version, 163

control, 273
version

post.tex 8061 2008-09-24 11:38:54Z kohlhase

Index 463

attribute, 89
on cc:license, 109
on omdoc, 40, 96, 243

version number
content dictionary, 162

via

attribute
on inclusion, 190

via a morphism, 185
view

document, 262
knowledge-centered, 95
narrative-centered, 95

visualization
system, 321

VSE-SL, 296, 297

W3C, 6, 14, 32, 81, 245
Web

Semantic, 301
World Wide, 5, 13, 97
World Wide (), 6

web
agent, 5
application, 279
math-enabled (), 279
service, 6

well-defined, 143
well-formed, 243
whitespace, 8
whitespace-separated list, 146, 155
who

attribute
on dc:date, 105, 340, 348

width

old attribute on omlet (depre-
cated in OMDoc 1.2), 347,
349, 350

Windows, 239
Wiris, 284
with

element, 351
Wolfram Research, 14
Word

Microsoft, 3
workflow, 311
World Wide

Web, 5, 13, 97
Consortium, 6

ws:prove

element, 83
WYSIWYG, 3, 326

xalan, 249
XHTML, 138, 220, 228, 234, 254,

256, 262, 263, 284
xhtml:object

element, 219, 220, 342
XLink, 220, 241
xlink, 139
xlink:href

attribute, 362
XML

application, 3, 14, 90, 228, 234
catalog, 9, 40, 239, 242
comment, 8, 98, 229
entity, 8, 9, 241
escaping, 8
namespace, 7, 8, 244
parser, 8, 98, 252
processor, 239
schema, 8, 41, 91, 227, 241, 369
structure
document model, 228

syntax
document model, 228

validating (), 9, 246
XML, XII, 2, 3, 6–11, 14–16, 18–20,

26, 27, 34, 37, 39–41, 77, 81–83,
90–92, 96, 98, 99, 104, 105,
114, 115, 117, 119, 120, 122,
125, 127, 130, 142, 145, 160,
175, 199, 202, 203, 209, 215,
216, 227–230, 234, 238, 239,
241–246, 249, 252, 260, 261,
266, 269, 270, 277, 278, 287,
288, 293, 310, 311, 318, 331,
337, 338, 343, 346–348, 361,
363, 369, 382

XML-RPC, 81, 234, 282
xml:id

attribute, 7, 10, 90, 91, 132, 173,
200, 224, 338, 363

attribute (in module RT), 139
attribute (on Dublin Core

elements), 340
xml:lang

attribute, 7, 130

post.tex 8061 2008-09-24 11:38:54Z kohlhase

464 Index

XML CATALOG FILES, 239
xmllint, 242, 246
xmllint, 239
xmlns, 8, 243, 244
XPath, 10, 203, 204, 206, 261, 339,

362, 366
XPointer, 10
xpointer

shorthand, 10
xref

attribute, 118, 364
on idx, 139
on method, 85, 174, 348
on omstyle, presentation, use,

xslt, style, 200
on omstyle, presentation, 200,
342, 349

on premise, 174, 349
on presentation, 206
on ref, 78, 100, 101

XSL

style sheet, 238
XSLT, 11, 16, 90, 199, 201–206, 209,

210, 228, 245, 249–252, 254,
262, 286, 338, 346, 347, 350,
351, 359, 442, 450

xslt

element, 201, 202, 204, 205, 209,
210, 346, 351

xsltproc, 239, 249

Yacas, 263, 264, 284
yes

attribute value
for crossref-symbol on
presentation, 208, 209

for cr on element, 206
for inductive on hypothesis,
173

for total on selector, 167, 350

zero, 165

	Foreword
	Preface
	Part I Setting the Stage for Open Mathematical Documents
	Document Markup for the Web
	Structure vs. Appearance in Markup
	Markup for the World Wide Web
	XML, the eXtensible Markup Language

	Markup for Mathematical Knowledge
	Mathematical Objects and Formulae
	Mathematical Texts and Statements
	Large-Scale Structure and Context in Mathematics

	Open Mathematical Documents
	A Brief History of the OMDoc Format
	Three Levels of Markup
	Situating the OMDoc Format
	The Future: An Active Web of (Mathematical) Knowledge

	Part II An OMDoc Primer
	Textbooks and Articles
	Minimal OMDoc Markup
	Structure and Statements
	Marking up the Formulae
	Full Formalization

	OpenMath Content Dictionaries
	Structured and Parametrized Theories
	A Development Graph for Elementary Algebra
	Courseware and the Narrative/Content Distinction
	A Knowledge-Centered View
	A Narrative-Structured View
	Choreographing Narrative and Content OMDoc
	Summary

	Communication between Systems

	Part III The OMDoc Document Format
	OMDoc as a Modular Format
	The OMDoc Namespaces
	Common Attributes in OMDoc

	Document Infrastructure
	The Document Root
	Metadata
	Document Comments
	Document Structure
	Sharing Document Parts

	Metadata
	The Dublin Core Elements (Module DC)
	Roles in Dublin Core Elements
	Managing Rights
	Inheritance of Metadata

	Mathematical Objects
	OpenMath
	Content MathML
	Representing Types in Content-MathML and OpenMath
	Semantics of Variables
	Legacy Representation for Migration

	Mathematical Text
	Multilingual Mathematical Vernacular
	Formal Mathematical Properties
	Text Fragments and their Rhetoric/Mathematical Roles
	Phrase-Level Markup of Mathematical Vernacular
	Technical Terms
	Rich Text Structure

	Mathematical Statements
	Types of Statements in Mathematics
	Theory-Constitutive Statements in OMDoc
	The Unassuming Rest
	Mathematical Examples in OMDoc
	Inline Statements
	Theories as Structured Contexts

	Abstract Data Types
	Representing Proofs
	Proof Structure
	Proof Step Justifications
	Scoping and Context in a Proof
	Formal Proofs as Mathematical Objects

	Complex Theories
	Inheritance via Translations
	Postulated Theory Inclusions
	Local/Required Theory Inclusions
	Induced Assertions
	Development Graphs

	Notation and Presentation
	Styling OMDoc Elements
	A Restricted Style Language
	Notation of Symbols
	Presenting Bound Variables

	Auxiliary Elements
	Non-XML Data and Program Code in OMDoc
	Applets and External Objects in OMDoc

	Exercises
	Document Models for OMDoc
	XML Document Models
	The OMDoc Document Model
	OMDoc Sub-Languages

	Part IV OMDoc Applications, Tools, and Projects
	OMDoc resources
	The OMDoc Web Site, Wiki, and Mailing List
	The OMDoc distribution
	The OMDoc bug tracker
	An XML catalog for OMDoc
	External Resources

	Validating OMDoc Documents
	Validation with Document Type Definitions
	Validation with RelaxNG Schemata
	Validation with XML Schema

	Transforming OMDoc
	Extracting and Linking XSLT Templates
	Interfaces for Systems
	Presenting OMDoc to Humans

	Applications and Projects
	Introduction
	QMath Parser
	Sentido Integrated Environment
	MBase
	A Search Engine for Mathematical Formulae
	Semantic Interrelation and Change Management
	MathDox
	ActiveMath
	Authoring Tools for ActiveMath
	SWiM -- An OMDoc-based Semantic Wiki
	Induction Challenge Problems
	Maya
	Hets
	CPoint
	STeX: A LaTeX-Based Workflow for OMDoc
	An Emacs mode for editing OMDoc Documents
	Converting Mathematica Notebooks to OMDoc
	Standardizing Context in System Interoperability
	Proof Assistants in Scientific Editors
	VeriFun

	Part V Appendix
	Changes to the specification
	Changes from 1.1 to 1.2
	Changes from 1.0 to 1.1

	Quick-Reference
	Table of Attributes
	The RelaxNG Schema for OMDoc
	The Sub-Language Drivers
	Common Attributes
	Module MOBJ: Mathematical Objects and Text
	Module MTXT: Mathematical Text
	Module DOC: Document Infrastructure
	Module DC: Dublin Core Metadata
	Module ST: Mathematical Statements
	Module ADT: Abstract Data Types
	Module PF: Proofs and Proof objects
	Module CTH: Complex Theories
	Module DG: Development Graphs
	Module RT: Rich Text Structure
	Module EXT: Applets and non-XML data
	Module PRES: Adding Presentation Information
	Module QUIZ: Infrastructure for Assessments

	The RelaxNG Schemata for Mathematical Objects
	The RelaxNG Schema for OpenMath
	The RelaxNG Schema for MathML

	The Errata
	References
	Index

