
OMDoc: An Open Markup Format for

Mathematical Documents (Version 1.1)

Michael Kohlhase

Computer Science, Carnegie Mellon University

Pittsburgh, Pa 15213, USA

http://www.cs.cmu.edu/∼kohlhase

October 5, 2005

http://www.cs.cmu.edu/~kohlhase

Abstract

In this report we present a content markup scheme for (collections of) math-
ematical documents including articles, textbooks, interactive books, and
courses. It can serve as the content language for agent communication of
mathematical services on a mathematical software bus. We motivate and de-
scribe the OMDoc language and present an Xml document type definition
for it. Furthermore, we discuss applications and tool support.

This document describes version 1.1 of the OMDoc format. This version
is mainly a bug-fix release that has become necessary by the experiments of
encoding legacy material and theorem prover interfaces in OMDoc. The
changes are relatively minor, mostly adding optional fields. Version 1.1 of
OMDoc freezes the development so that version 2.0 can be started off.

In contrast to the OMDoc format which has not changed much, this
report is a total re-write, it closes many documentation gaps, clarifies various
remaining issues. and adds a multitude of new examples.

Contents

1 Introduction 1

2 Mathematical Markup Schemes 5

2.1 Document Markup for the Web 6

2.2 Xml, the eXtensible Markup Language 9

2.3 Mathematical Objects and Formulae 12

2.4 Meta-Mathematical Objects 17

2.5 An Active Web of Mathematical Knowledge 20

3 OMDoc Elements 22

3.1 Metadata for Mathematical Elements 23

3.1.1 The Dublin Core Elements 24

3.1.2 Roles in Dublin Core Metadata 28

3.2 Mathematical Statements . 31

3.2.1 Specifying Mathematical Properties 31

3.2.2 Symbols, Definitions, and Axioms 35

3.2.3 Assertions and Alternatives 38

3.2.4 Mathematical Examples in OMDoc 42

3.2.5 Representing Proofs in OMDoc 43

3.2.6 Abstract Data Types 49

3.3 Theories as Mathematical Contexts 52

3.3.1 Simple Inheritance . 54

3.3.2 Inheritance via Translations 56

3.3.3 Statements about Theories 58

3.3.4 Parametric theories in OMDoc 60

3.4 Auxiliary Elements . 64

3.4.1 Preservation of Text Structure 64

3.4.2 Non-Xml Data and Program Code in OMDoc 68

3.4.3 Applets in OMDoc 71

ii

3.4.4 Exercises . 73
3.5 Adding Presentation Information to OMDoc 74

3.5.1 Specifying Style Information for OMDoc Elements . . 75
3.5.2 Specifying the Notation of Mathematical Symbols . . 79

3.6 Identifying and Referencing OMDoc Elements 86
3.6.1 Locating OMS elements by the OMDoc Catalogue . . 88
3.6.2 A URI-based Mechanism for Element Reference 90
3.6.3 Uniqueness Constraints and Relative URI references . 92

4 OMDoc Applications, Tools, and Projects 95
4.1 Transforming OMDoc by XslT Style Sheets 96

4.1.1 OMDoc Interfaces for Mathematical Software Systems 97
4.1.2 Presenting OMDoc to Humans 99

4.2 QMath: An Authoring Tool for OMDoc 102
4.3 MBase, an Open Mathematical Knowledge Base 105
4.4 Project ActiveMath . 107

4.4.1 OMDoc Extensions . 107
4.4.2 Adaptive Presentation 108
4.4.3 Integration of External Systems 108
4.4.4 Current Status . 109

5 Conclusion 110

A Errata to the released Specification 133

B Changes from Version 1.0 139

C Quick-Reference Table to the OMDoc Elements 144

D Quick-Reference Table to the OMDoc Attributes 149

E The OMDoc Document Type Definition 155

iii

Chapter 1

Introduction

It is plausible to expect that the way we do (i.e. conceive, develop, commu-
nicate about, and publish) mathematics will change considerably in the next
nine1 years. The Internet plays an ever-increasing role in our everyday life,
and most of the mathematical activities will be supported by mathemat-
ical software systems (we will call them mathematical services) connected
by a commonly accepted distribution architecture, which we will call the
mathematical software bus. We will subsume all proposed architectures
and implementations of this idea [FHJ+99, FK99, DCN+00, AZ00] by the
term MathWeb. We believe that interoperability based on communication
protocols will eventually make the constructions of bridges between the par-
ticular implementations simple, so that the combined systems appear to the
user as one homogeneous web.

One of the tasks that have to be solved is to define an open markup
language for the mathematical objects and knowledge exchanged between
mathematical services. The OMDoc format presented in this report at-
tempts to do this by providing an infrastructure for the communication and
storage of mathematical knowledge.

In chapter 2 we will describe the status quo of mathematical markup
schemes before OMDoc and show that these markup schemes – while giving
a good basis – are not sufficient for content-based markup of mathematical
knowledge. They do not provide markup for mathematical forms like defi-
nitions, theorems, and proofs that have long been considered paradigmatic
of mathematical documents like textbooks and papers. They also leave im-
plicit the large-scale structure of mathematical knowledge. In particular, it

1In the release document of OMDoc1.0 [Koh00c] we claimed that it would change in
the next 10, and that is one year ago.

1

has traditionally been structured into mathematical theories that serve as a
situating context for all forms of mathematical communication.

In chapter 3, we define the OMDoc markup primitives and motivate
them from either particular structures in mathematical documents or from
processing needs of computer-supported mathematics. As all mathematical
communication is in the form of (or can be transcribed to) mathematical
documents such as publications, overhead slides, letters, e-mails, in/output
from mathematical software systems, OMDoc uses documents as a guiding
intuition for mathematical knowledge with the goal of providing a frame-
work, where all of these forms can be accommodated. In accordance with
this motivation OMDoc provides a rich mix of elements of informal and
formal mathematics. To model particular kinds of documents in OMDoc
usually only a subset will be needed, e.g. informal ones for traditional math-
ematical textbooks, or formal ones for communication of software systems.
However, availability of both kinds of markup primitives in OMDoc al-
low to develop novel kinds of mathematical documents, where formal and
informal elements are intimately intermixed.

We will discuss current and intended applications of the OMDoc format
in chapter 4 and discuss which applications will need which parts of the
OMDoc format.

Finally, the appendix contains useful materials like the OMDoc docu-
ment type definition, and a quick reference table.

OMDoc Version 1.1

This document describes version 1.1 of the OMDoc format. Version 1.0 has
been released on November 1. 2001, after about 18 Months of development,
to give developers a stable interface to base their systems on. It has been
adopted by various projects in automated deduction, algebraic specification
and computer-supported education. The experience from these projects has
uncovered a multitude of small deficiencies and extension possibilities of
the format, that have been discussed in the OMDoc community. Version
1.1 is an attempt to roll the uncontroversial and non-disruptive part of the
extensions and corrections into a consistent language format. We have tried
to keep the changes to version 1.0 conservative, adding optional attributes
or child elements.

In some cases we had to introduce non-conservative changes, to repair de-
sign flaws and inconsistencies of version 1.0. One example is the hpothesis
element that has received a required attribute discharged-in that is nec-

2

essary for specifying the scope of local assumptions in proofs, and cannot
be inferred from the context. To minimize disruption we have tried to keep
changes like this one to a minimum for the elements that are in frequent use
today. We are working on a new version (OMDoc2.0) that will incorporate
re-organizations of central features of OMDoc like the definition element.

We have however re-organized some parts of the OMDoc format that
are currently less used in the anticipation that this will make them more
effective. Examples are the representations of complex theories (see sec-
tions 3.3.2 to 3.3.4) or the organization of non-Xml data (section 3.4.2).

Finally, we have added new features that were missing from OMDoc1.0
and turned out to be important for the enterprise of representing mathemat-
ical knowledge. Examples of this are a new referencing scheme for OMDoc
elements in section 3.6 and a new way of specifying presentation for OM-
Doc elements. In both cases, the method that was used in OMDoc1.0 for
symbols is extended and generalized to arbitrary OMDoc elements. These
extensions have found their way into OMDoc1.1, even though they are not
totally fixed yet, since we anticipate to gain implementation experience for
OMDoc2.0. They are non-disruptive, since they are strictly additional.

An element-by-element account of the changes is tabulated in appendix
B.

Acknowledgments

Of course the OMDoc format has not been developed by one person alone,
the original proposal was taken up by several research groups, most no-
tably the Ωmega group at Saarland University, the InKa and ActiveMath
projects at the German Research Center of Artificial Intelligence (DFKI),
the RIACA group at the Technical University of Eindhoven, the In2Math
project at the University of Koblenz, and the CourseCapsules project at
Carnegie Mellon University. They have discussed the initial proposals, repre-
sented their materials in OMDoc and in the process refined the format with
numerous suggestions and discussions (see http://www.mathweb.org/∼mailists/omdoc
for the archive of the OMDoc mailing list.)

The author specifically would like to thank Serge Autexier, Olga Caprotti,
David Carlisle, Claudio Sacerdoti Coen, Arjeh Cohen, Armin Fiedler, An-
dreas Franke, George Goguadze, Dieter Hutter, Erica Melis, Paul Libbrecht,
Martijn Oostdijk, Alberto Palomo Gonzales, Martin Pollet, Julian Richard-
son, Manfred Riem, and Michel Vollebregt for their input, discussions and
feedback from implementations and applications.

3

http://www.mathweb.org/~mailists/omdoc

The work presented in this report was supported by the “Deutsche
Forschungsgemeinschaft” in the special research action “Resource-adaptive
cognitive processes” (SFB 378), and a five-year Heisenberg Stipend to the
author. Carnegie Mellon University and SRI International have supported
the author while working on revisions for version 1.1.

4

Chapter 2

Mathematical Markup

Schemes

Mathematical texts are usually very carefully designed to give them a struc-
ture that supports understanding of the complex nature of the objects dis-
cussed and the argumentations about them. Of course this holds not only
for texts in pure mathematics, but for any argumentative text that contains
mathematical notation, in particular for texts from the sciences and engi-
neering disciplines. In such texts the document is often structured according
to the argument made and specialized notation (mathematical formulae) is
used for the particular objects discussed. In contrast to this, the structure
of texts like novels or poems normally obey different (often esthetic) con-
straints. Therefore, we will use the adjective “mathematical” in an inclusive
way to make this distinction on text form, not strictly on the scientific la-
beling.

The observation, that the task of recovering the semantic structure from
the given representation as a written text or a recording is central to under-
standing, holds for any discourse. For mathematical discourses the structure
is so essential that the field has developed a lot of conventions about docu-
ment form, numbering, typography, formula structure, choice of glyphs for
concepts, etc. These conventions have evolved over a long scientific history
and carry a lot of the information needed to understand a particular text.
However, these conventions were developed for the consumption by humans
(mathematicians) and mainly with “ink-on-paper” representations (books,
journals, letters) in mind.

In the age of Internet publication and mathematical software systems
the “ink-on-paper” target turns out to be too limited in many forms. The

5

universal accessibility of the documents on the Internet breaks the assump-
tion implicit in the design of traditional mathematical documents, that the
reader will come from the same (scientific) background as the author and
will directly understand the notations and structural conventions used by
the author. We can also rely less and less on the assumption that mathe-
matical documents are primarily for human consumption as mathematical
software systems are more and more embedded into the process of doing
mathematics. This, together with the fact that mathematical documents
are primarily produced and stored on computers, has led to the develop-
ment of specialized markup schemes for mathematics.

In the next sections we will discuss some of the paradigmatic markup
schemes setting the stage with general document markup schemes for web-
deployed documents. In section 2.3 we will discuss representation formalisms
for mathematical objects. We will use section 2.4 to show that extend-
ing general document markup approaches with mathematical formulae is
not sufficient for a content-based markup of mathematical documents, as
it leaves many central aspects of mathematical knowledge and structure
implicit.

2.1 Document Markup for the Web

In this section we will discuss some of the paradigmatic markup schemes to
get a feeling for the issues involved. Of course, we will over-stress the issues
for didactic reasons; due to economic pressures, none of the markup schemes
survives in a pure form anymore.

Text processors and desktop publishing systems (think for example of
Microsoft Word) are software systems aiming to produce “ink-on-paper” or
“pixel-on-screen” representations of documents. They are very well-suited
to execute the typographic conventions mentioned above. Their internal
markup scheme mainly defines presentation traits like character position,
font choice, and characteristics, or page breaks. This is perfectly sufficient
for producing high-quality presentations of the documents on paper or on
screen, but does not support for instance document reuse (in other contexts
or across the development cycle of a text). The problem is that these ap-
proaches concentrate on the form and not the function of text elements.
Think e.g. of the notorious section renumbering problems in early (WYSI-
WYG) text processors. Here, the text form of a numbered section heading
was used to express the function of identifying the position of the respective
section in a sequence of sections (and maybe in a larger structure like a

6

chapter).

This perceived weakness has lead to markup schemes that concentrate
more on function than on form. We will take the TEX/LATEX [Knu84,
Lam94] approach as a paradigmatic example here. A typical section heading
would be specified by something like this:

\section[{\TeX}]{The Joy of {\indextoo{\TeX}}}\label{sec:TeX}

This specifies the function of the text element: The title of the section should
be “The Joy of TEX”, which (if needed e.g. in the table of contents) can
be abbreviated as “TEX”, the word “TEX” is put into the index, and the
section number can be referred to using the label sec:TeX. To determine
from this functional specification the actual form (e.g. the section num-
ber, the character placement and font information), we need a document
formatting engine, such as Donald Knuth’s TEX program [Knu84], and var-
ious style declarations, e.g. in the form of LATEX style files [Lam94]. This
program will transform the functional specification using the style informa-
tion into a markup scheme that specifies the form, like DVI [Knu84], or
PostScript [Rei87] that can directly be presented on paper or on screen.
Note that e.g. renumbering is not a problem in this approach, since the ac-
tual numbers are only inferred by the formatter at runtime. This, together
with the ability to simply change style file for a different context, yields much
more manageable and reusable documents, and has led to a wide adoption
of the function-based approach. So that even word-processors like MS Word
now include functional elements. Purely form-oriented approaches like DVI
or PostScript are normally only used for document delivery.

To contrast the two markup approaches we will speak of presentation
markup for markup schemes that concentrate on form and of content markup
for those that specify the function and infer the form from that. As we have
emphasized before, few markup schemes are pure in the sense of this distinc-
tion, for instance LATEX allows to specify traits such as font size information,
or using

{\bf proof}:. . . \hfill\Box

to indicate the extent of a proof (the formatter only needs to “copy” them to
the target format). The general experience in such mixed markup schemes is
that presentation markup is more easily specified, but that content markup
will enhance maintainability, and reusability. This has led to a culture of
style file development (specifying typographical and structural conventions),
which now gives us a wealth of style options to choose from in LATEX.

7

Another member of the content markup family that additionally takes
the problem of document metadata into account, i.e. the description of the
document itself and the relations to other documents (cf. section 3.1), is
the “Simple Generalized Markup Language” SGML [Gol90]. It tries to give
the markup scheme a more declarative semantics (as opposed to the purely
procedural – and rather baroque – semantics of TEX), to make it simpler to
reason about (and thus reuse) documents. It comes with its own style sheet
language DSSSL [DuC97] and formatter Jade.

The Internet, where screen presentation, hyperlinking, computational
limitations, and bandwidth considerations are much more important than
in the “ink-on-paper” world of publishing, has brought about a whole new
set of markup schemes. The problems that need to be addressed are that

i) the size, resolution, and color depth of a given screen are not known
at the time the document is marked up,

ii) the structure of a text is no longer limited to a linear text with (e.g.
numbered) cross-references as in a book or article as Internet docu-
ments are in general hypertexts,

iii) the computational resources of the computer driving the screen are
not known beforehand. Therefore the distribution of work (e.g. for-
matting steps) between the client and the server has to be determined
at runtime. Finally, the related problem that

iv) the bandwidth of the Internet is ever-growing but limited.

The “Hypertext Markup Language” (HtML [RHJ98]) is a presentation
markup scheme that shares the basic syntax with SGML and addresses the
problem of variable screen size and hyperlinking by exporting the decision of
character placement and page order to a browser running on the client. This
ensures the high degree of reusability of documents on the Internet, while
conserving bandwidth, so that HtML carries most of the markup on the
Internet today. Of course HtML has been augmented with its own (limited)
style sheet language CSS [Bos98] that is executed by the browser. The need
for content markup schemes for maintaining documents on the server, as well
as for specialized presentation of certain text parts (e.g. for mathematical
or chemical formulae), has led to a profusion of markup schemes for the
Internet, most of which share the basic SGML syntax with HtML. However,
due to its origin in the publishing world, full SGML is much too complex
for the Internet, and in particular the DSSSL formatter is too unwieldy and
resource-hungry for integration into web browsers.

8

2.2 Xml, the eXtensible Markup Language

This diversity problem has led to the development of the unifying Xml (eX-
tensible Markup Language) framework [BPSM97] for Internet markup lan-
guages, which we will introduce in more detail in this section. As OMDoc
and all mathematical markup schemes discussed here are Xml applications
(instances of the Xml framework), we will go more into the technical details
to supply the technical prerequisites for understanding the specification. We
will briefly mention Xml validation and transformation tools. Readers with
prior knowledge of Xml can safely skip this section, if the material reviewed
in this section is not enough, we refer the reader to [Har01].

Conceptually speaking, Xml views a document as a tree of so-called ele-
ments. For communication this tree is represented as a well-formed bracket-
ing structure (see Figure 2.5 for an example), where the brackets of an ele-
ment el are represented as <el> (opening) and </el> (closing); the leaves of
this tree are represented as empty elements <el></el>, which can be abbre-
viated as <el/>. The element nodes of this tree can be annotated by further
information in so-called attributes in opening brackets: <el visible="no">

might add the information for a formatting engine to hide this element. As
a document is a tree, the Xml specification mandates that there must be a
unique document root, which in OMDoc is the omdoc element. Note that
all Xml parsers will reject a document that is not well-formed Xml, e.g. if
it contains non-matching element brackets (e.g. a single
) or multiple
document roots.

Xml offers two main mechanisms for specifying a subset of trees (or
well-bracketed Xml documents) as admissible. A document type definition
DTD is a context-free grammar for trees1, that can be used by validating
Xml parsers to reject Xml documents that do not conform to the OMDoc
DTD (cf. appendix E). Note that DTDs cannot enforce all constraints that
a particular Xml application may want to impose on documents. Therefore
DTD validation is only a necessary condition for validity with respect to that
application. Recently Xml has added another grammar formalism: the Xml
schema language, which can express a slightly stronger set of constraints.
Since an Xml schema allows stronger document validation, it usually takes
normative precedence over the DTD in specifications.

Concretely, an OMDoc document has the general form shown in Fig-
ure 2.1. The first line identifies the document as an Xml document (version

1Actually, a recent extension of the Xml standard (XLink) also allows to express graph
structures, but the admissibility of graphs is not covered by the DTD. See also section 3.6
on cross-referencing in OMDoc.

9

<?xml version="1.0"?>

<!DOCTYPE omdoc PUBLIC "-//OMDoc//DTD OMDoc V1.1//EN"

"http://www.mathweb.org/omdoc/omdoc.dtd" []>

<omdoc>

...

</omdoc>

Figure 2.1: The Structure of an Xml document with DTD.

1.0 of the Xml specification). The second line specifies the DTD and the
document root OMDoc this it is intended for. In this case the omdoc ele-
ment starting in line three is the root element and will be validated against
the DTD found at the URL specified in line two. The last line contains
the end tag of the omdoc element and ends the file. Every Xml element
following this line would be considered as another document root.

<!DOCTYPE omdoc PUBLIC "-//OMDoc//DTD OMDoc V1.1//EN"

"http://www.mathweb.org/omdoc/omdoc.dtd"

[<!ENTITY % mathmldtd SYSTEM

"http://www.w3.org/Math/DTD/mathml1/mathml.dtd">

%mathmldtd;

<!ELEMENT el (math)><!ATTLIST el att CDATA #REQUIRED>]>

Figure 2.2: A Document Type Declaration with Internal Subset

A DTD specified in the <!DOCTYPE declaration can be enhanced or modi-
fied by adding declarations in the internal subset of the DOCTYPE declaration
(the empty [] in Figure 2.1). In Figure 2.2, we have modified the DTD
by declaring that the el element has a required attribute att and must
contain a single math child. The declarations for that are contained in the
MathMl DTD, which we have included by first declaring the parameter
entity %mathmldtd; and then referencing it. The internal subset allows to
change the DTD grammar for selected elements and to extend the admissi-
ble content of elements that were given the content type ANY in the original
DTD.

The Xml schema applicable to an Xml document is given by a different
mechanism. Xml assumes that all elements in a document belong to a given
namespace. Technically, an Xml namespace is simply a string that uniquely
identifies the intended semantics of the elements. It is a URI (uniform re-
source identifier; a special string that identifies resources on the Internet,

10

see [Har01]). Note that it need not be a valid URL (uniform resource loca-
tor; i.e. a pointer to a document provided by a web server.). Namespaces
are used to differentiate Xml vocabularies or languages, so they can be
safely mixed in documents. In principle, every element and attribute name
is prefixed by a namespace, i.e. it is a pair ns:n, where ns is a namespace
and n is a simple name (that does not contain a colon). We call such a
namespace/name pair a qualified name. In most cases, namespaces can be
elided or abbreviated when writing Xml. Namespaces can be declared on
any Xml element via the xmlns attribute: the element and all its descen-
dents are in this namespace, unless they have a namespace attribute of their
own or there is a namespace declaration in a closer ancestor that overwrites
it. Similarly, a namespace abbreviation can be declared on any element,
it is declared by an attribute declaration of the form xmlns:nsa="nsURI",
where nsa is a name space abbreviation, i.e. a simple name and nsURI is the
URI of the namespace. In the scope of this declaration (in all descendants,
where it is not overwritten) a qualified name nsa:n denotes the qualified
name nsURI:n.

<?xml version="1.0"?>

<omdoc xmlns="http://www.mathweb.org/omdoc"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="omdoc.xsd http://www.mathweb.org/omdoc">

...

</omdoc>

Figure 2.3: An Xml document with Xml Schema.

Let us now consider Figure 2.3, which shows the attributes, namespaces,
and namespace abbreviations necessary to associate an Xml document with
an Xml schema. The xmlns attribute in the omdoc element declares that
the URI http://www.mathweb.org/omdoc is the default namespace for the
document, i.e. all element and attribute names without a colon are in this
namespace. The attribute xmlns:xsi declares the namespace abbreviation
xsi for the namespace of Xml schema instances. Finally, the attribute
xsi:schemaLocation identifies the Xml schema that is relevant for this ele-
ment (and thus for the document). Note that with this mechanism schemata
can be associated with elements (in contrast to DTDs that can only be asso-
ciated with whole documents), which makes mixing Xml vocabularies much
simpler.

Since Xml elements only encode trees, the distribution of whitespace
(including s) in non-text elements has no meaning in Xml, and can therefore

11

http://www.mathweb.org/omdoc

be added and deleted without effecting the semantics.

Xml considers as comments anything between <!-- and --> in a docu-
ment. They should be used with care, since they are not even read by the
Xml parser, and therefore do not survive processing by Xml applications.
Material that is relevant to the document, but not valid Xml, e.g. binary
data or data that contains angle brackets or elements that are unbalanced
or not defined in the DTD can be embedded into CDATA sections. A CDATA

section begins with <[CDATA[and suspends the Xml parser until the string
]]> is found. Another way to include such material is to escape the Xml-
specific symbols “<”, “>”, and “&” to <, > and &. According
to the Xml specification a CDATA section is equivalent to directly includ-
ing the Xml-escaped contents. For instance <[CDATA[a<b³]]>
and a<b<sup>3</sup> are equivalent, as a consequence an
Xml application is free to choose the form of its output and the particular
form should not relied upon.

Xml comes with the XslT style language transformations [Dea99], that
is lightweight enough to allow integration of XslT-transformers into browsers
(they are present in version 6 of Microsoft’s Internet Explorer and in version
6 of the Netscape Navigator). XslT programs or style sheets consist of a
set of so-called templates (rules that match certain nodes in the Xml tree)
that are recursively applied to the input tree to produce the desired output.

2.3 Mathematical Objects and Formulae

The two best-known open markup formats for representing mathematics for
the Web are MathMl and OpenMath. There are various other formats
that are proprietary or based on specific mathematical software packages
like Wolfram Research’s Mathematica. We will not concern ourselves with
them, since we are only interested in open formats.

MathMl [CIMP01] is an Xml-based markup scheme for mathematical
formulae. It has developed out of the effort to include presentation primi-
tives for mathematical notation (in TEX quality) into HtML, and was the
first Xml application. Since the aim is to do most of the formatting inside
the browser, where resource considerations play a large role, it restricts it-
self to a fixed set of mathematical concepts – the so-called K-12 fragment of
mathematics (Kindergarten to 12th grade). K-12 is a large set of commonly
used glyphs for mathematical symbols and very general and powerful pre-
sentation primitives, as they make up the lower level of TEX. However it

12

does not offer the programming language features of TEX2 for the obvious
computing resource considerations. MathMl is supported by the current
versions of the primary commercial browsers MS Internet Explorer and
Netscape Navigator by special plug-ins, and natively by MathMl-enabled
versions of the open source browsers Mozilla and Amaya.

<semantics>

<mrow>

<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>

<mo>⁢</mo>

<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

</mrow>

<annotation-xml encoding="MathML-Content">

<apply><times/>

<apply><plus/><ci>a</ci> <ci>b</ci></apply>

<apply><plus/><ci>c</ci> <ci>d</ci></apply>

</apply>

</annotation-xml>

</semantics>

Figure 2.4: Mixing Presentation and Content MathMl

MathMl also offers content markup for mathematical formulae, a sub-
language called content MathMl to contrast it from the presentation MathMl
described above. Furthermore, it offers a specialized semantics element
that allows to annotate MathMl formulae with content markup, e.g. so
that they can be passed on to other mathematical software systems like
computer algebra systems. Figure 2.4 shows an example of this for the
arithmetical expression (a+ b)(c+ d). The outermost semantics element is
a MathMl primitive for annotating MathMl elements with other repre-
sentations. Here it is used for mixing presentation and content markup. The
first child of the semantics element is the presentation (this is used by the
MathMl-aware browser) which is annotated by annotation-xml element,
which contains the content markup. Let us first look at the presentation
markup. The mrow elements are a general grouping device the layout engine
uses for purposes of alignment and line-breaking. The mo elements marks its
content as a mathematical operator and the mi element marks its content
as a mathematical identifier. The entity reference ⁢ is a
character that is not displayed, but stands for the multiplication operator.

2TEX contains a full, Turing-complete – if somewhat awkward – programming language
that is mainly used to write style files. This is separated out by MathMl to the XslT
language it inherits from Xml.

13

For content markup, the logical structure of the formula is in the cen-
ter. MathMl uses the apply element for function application. In this
case the multiplication function times, which is applied to the results of
the addition function plus, applied to some identifiers. Both the elements
times and plus are modeled as empty elements. Note that brackets are not
explicitly represented, since they are purely presentational devices and the
information is implicit in the structure of the formula and can be deduced
from notational conventions. The mi element has content counterpart ci for
content identifier, which conceptually corresponds to a logical variable. The
concept of a domain constants is either modeled by a special element (if it
is in the K-12 range as plus and times, there are about 80 others) or by
the csymbol element.

In contrast to this very rich language that defines the meaning of ex-
tended presentation primitives, the OpenMath standard [CC98] builds on
an extremely simple kernel (mathematical objects represented by content
formulae), and adds an extension mechanism, the so-called content dic-
tionaries. These are machine-readable specifications of the meaning of the
mathematical concepts expressed by the OpenMath symbols. Just like the
library mechanism of the C programming language, they allow to external-
ize the definition of extended language concepts. As a consequence, K-12
need not be part of the OpenMath language, but can be defined in a set of
content dictionaries (see http://www.openmath.org/cdfiles/html/core).
Moreover, OpenMath is purely based on content markup.

The central construct of OpenMath is that of an OpenMath object
(OMOBJ), which has a tree-like representation made up of applications (OMA),
binding structures (OMBIND using OMBVAR to tag the bound variables), vari-
ables (OMV) and symbols (OMS). The OMS element carries attributes cd and
name attributes. The name attribute gives the name of the symbol. The cd

attribute specifies content dictionary, a document that defines the meaning
of a collection of symbols including the one referenced by the OMS itself. As
variables do not carry a meaning independent of their local content, OMV

only carries a name attribute. See Figure 2.5 for an example that uses most
of the elements.

For convenience, OpenMath also provides other basic data types useful
in mathematics: OMI for integers, OMB for byte arrays, OMSTR for strings,
and OMF for floating point numbers, and finally OME for errors. Just like
MathMl, OpenMath offers an element for annotating (parts of) formu-
lae with external information (e.g. MathMl or LATEX presentation): the

14

http://www.openmath.org/cdfiles/html/core

OMATTR3 element, which pairs an OpenMath object with an attribute-value
list. To attribute an OpenMath object, it is embedded as the second child
in an OMATTR element. The attribute-value list is specified by children of the
OMATP element, which is the first child, and has an even number of children:
children at even position must be OMS (specifying the attribute), and children
at odd positions are the values of the attributes given by their immediately
preceding siblings.

The content dictionaries that make up the extension mechanism provided
in OpenMath are tied into the object representation by the cd attribute of
the OMS element that specifies the defining content dictionary.

OpenMath and MathMl are well-integrated:

• the core content dictionaries of OpenMath mirror the MathMl con-
structs (see http://www.openmath.org/cdfiles/html/core); there
are converters between the two formats.

• MathMl supports the semantics element, that can be used to anno-
tate MathMl presentations of mathematical objects with their Open-
Math encoding. Analogously, OpenMath supports the presentation
symbol in the OMATTR element, that can be used for annotating with
MathMl presentation.

• OpenMath is the designated extension mechanism for MathMl be-
yond K-12 mathematics: content MathMl supports the csymbol el-
ement, which has an attribute definitionURL that points to a doc-
ument (an OpenMath CD) that defines the meaning of the symbol.
The content of the csymbol element is MathMl presentation markup
for the symbol.

Figure 2.5 shows OpenMath and content MathMl representations of
the law of commutativity for addition on the reals (the logical formula
∀a, b : R.a + b = b + a). The mathematical meaning of symbols (that of
applications and bindings is known from the folklore) is specified in a set of
content dictionaries, which contain formal (FMP “formal mathematical prop-
erty”) or informal (CMP “commented mathematical property”) specifications
of the mathematical properties of the symbols. For instance, the specifica-
tion in Figure 2.6 is part of the standard OpenMath content dictionary

3Note that the meaning of this element is somewhat underdefined, it is stated in the
standard, that any OpenMath compliant application is free to disregard attribuitions (so
they do not have a meaning), but in practice, they are often used for specifying e.g. type
information.

15

http://www.openmath.org/cdfiles/html/core

OpenMath MathMl
<OMOBJ>

<OMBIND>

<OMS cd="quant1" name="forall"/>

<OMBVAR>

<OMATTR>

<OMATP>

<OMS cd="sts" name="type"/>

<OMS cd="setname1" name="R"/>

</OMATP>

<OMV name="a"/>

</OMATTR>

<OMATTR>

<OMATP>

<OMS cd="sts" name="type"/>

<OMS cd="setname1" name="R"/>

</OMATP>

<OMV name="b"/>

</OMATTR>

</OMBVAR>

<OMA>

<OMS cd="relation" name="eq"/>

<OMA>

<OMS cd="arith1" name="plus"/>

<OMV name="a"/>

<OMV name="b"/>

</OMA>

<OMA>

<OMS cd="arith1" name="plus"/>

<OMV name="b"/>

<OMV name="a"/>

</OMA>

</OMA>

</OMBIND>

</OMOBJ>

<math>

<apply>

<forall/>

<bvar>

<ci type="real">a</ci>

<ci type="real">b</ci>

</bvar>

<apply>

<eq/>

<apply>

<plus/>

<ci type="real">a</ci>

<ci type="real">b</ci>

</apply>

<apply>

<plus/>

<ci type="real">b</ci>

<ci type="real">a</ci>

</apply>

</apply>

</apply>

</math>

Figure 2.5: ∀a, b : R.a + b = b + a. in OpenMath and MathMl format

arith1.ocd for the elementary arithmetic operations. The content of the
FMP element is actually the OpenMath object in the representation on the
left of Figure 2.5, we have abbreviated it here in the usual mathematical
notation, and we will keep doing this in the remaining document: wherever
an Xml element in a figure contains mathematical notation, it stands for
the corresponding OpenMath element.

16

<CDDefinition>

<Name>plus</Name>

<Description>

The symbol representing an n-ary commutative function plus.

</Description>

<CMP> for all a,b | a + b = b + a </CMP>

<FMP>∀ a, b.a + b = b + a</FMP>

</CDDefinition>

Figure 2.6: Part of the OpenMath CD arith1.

2.4 Meta-Mathematical Objects

The mathematical markup languages OpenMath and MathMl we have
discussed in the last section have dealt with mathematical objects and for-
mulae. This level of support is sufficient for representing very established
areas of mathematics like K-12 high school math, where the meaning of
concepts and symbols is totally clear, or for the communication needs of
symbolic computation services like computer algebra systems, which ma-
nipulate and compute objects like equations or groups. The formats either
specify the semantics of the mathematical object involved in the standards
document itself (MathMl) or in a fixed set of generally agreed-upon docu-
ments (OpenMath content dictionaries). In both cases, the mathematical
knowledge involved is relatively fixed. Eeven in the case of OpenMath,
which has an extensible library mechanism, it is not in itself an object of
communication (content dictionaries are mainly background reference for
the implementation of OpenMath interfaces).

There are many areas of mathematics, where this level of support is
insufficient, because the mathematical knowledge expressed in definitions,
theorems (stating properties of defined objects), their proofs, and even whole
mathematical theories becomes the primary “object” of mathematical com-
munication. We will call these “objects” meta-mathematical objects, since
they contain knowledge about mathematical objects. As a consequence it is
not the structure of the mathematical objects themselves, but the structure
of elements of mathematical knowledge and their interdependencies that is
communicated, between mathematicians.

Traditional mathematics has developed a rich set of conventions to mark
up the structure of mathematical knowledge in documents. For instance,
mathematical statements like theorems, definitions, and proofs like the ones
in Figure 2.7 are delimited by keywords (e.g. Lemma and) or by changes

17

in text font (claims are traditionally written in italics). We will collectively
refer to meta-mathematical objects like axioms, definitions, theorems, and
proofs as mathematical statements, since they state properties of mathe-
matical objects.

Definition 3.2.5 (Monoid)
A monoid is a semigroup S = (G, ◦) with an element e ∈ G,
such that e◦x = x for all x ∈ G. e is called a left unit of a S.

Lemma 3.2.5
A monoid has at most one left unit.
Proof: We assume that there is another left unit f . . . This
contradicts our assumption, so we have proven the claim.

Figure 2.7: A fragment of a traditional mathematical Document

The large-scale structure of mathematical knowledge is mapped to infor-
mal groups of mathematical statements called theories, and often mapped
into monographies (titled e.g. “Introduction to Group Theory”) or chapters
and sections in textbooks. The rich set of relations among such theories
is described in the text, sometimes supported by mathematical statements
called representation theorems. In fact, we can observe that mathemati-
cal texts can only be understood with respect to a particular mathematical
context given by a theory which the reader can usually infer from the docu-
ment. The context can be given explicitly, e.g. by the title of a book such as
“Introduction to the Theory of Finite Groups” or implicitly (e.g. by the fact
that the e-mail comes from a person that we know works on finite groups,
and we can see that she is talking about math).

Mathematical theories have been studied by meta-mathematicians and
logicians in the search of a rigorous foundation of mathematical practice.
They have been formalized as collections of symbol declarations giving names
to the mathematical objects that are particular to the theory and logical for-
mulae, which state the laws governing the properties of the theory. A key
research question was to determine conditions for the consistency of math-
ematical theories. In inconsistent theories (such that do not have models)
all statements are vacuously valid4, and therefore, only consistent theories
make interesting statements about mathematical objects. It is one of the key

4A statement is valid in a theory, iff it is true for all models of the theory. If there are
none, it is vacuously valid.

18

observations of meta-mathematics that more formulae can be added without
endangering consistency, if they can be proven from the formulae already
in the theory. As a consequence, consistency of a theory can be determined
by classifying the formulae into theorems, i.e. those that have a proof, and
axioms – those that do not – and examining consistency of the axioms only.
Thus the role of proofs is twofold, they allow to push back the assumptions
about the world to simpler and simpler assumptions, and they allow to test
the model by deriving consequences of these basic assumptions that can be
tested against the data.

A second important observation is that new symbols together with ax-
ioms defining their properties can be added to a theory without endangering
consistency, if they are of a certain restricted syntactical form. These so-
called definitional forms mirror the various types of mathematical definitions
(e.g. equational, recursive, implicit definitions). This leads to the so-called
principle of conservative extension, which states that conservative extensions
to theories (by theorems and definitions) are safe for mathematical theories,
and that possible sources for inconsistencies can be narrowed down to small
sets of axioms.

Even though all of this has theoretically been known to (meta)-mathema-
ticians for almost a century, it has only been an explicit object of formal
study and exploited by mathematical software systems in the last decades.
Much of the meta-mathematics has been formally studied in the context
of proof development systems like Automath [dB80] Nuprl [CAB+86],
HOL [GM93], Mizar [Rud92] and Ωmega [BCF+97] which utilize strong
logical systems that allow to express both mathematical statements and
proofs as mathematical objects. Some systems like Isabelle [PN90] and
Elf [Pfe91] even allow the specification of the logic language itself, in which
the reasoning takes place. Such semi-automated theorem proving systems
have been used to formalize substantial parts of mathematics and mechan-
ically verify many theorems in the respective areas. These systems usually
come with a library system that manages and structures the body of math-
ematical knowledge formalized in the system so far.

In software engineering, mathematical theories have been studied under
the label of (algebraic) specification. Theories are used to specify the behav-
ior of programs and software components. Under the pressure of industrial
applications, the concept of a theory (specification) has been elaborated
from a practical point of view to support the structured development of
specifications, theory reuse, and modularization. Without this additional
structure, real world specifications become unwieldy and unmanageable in
practice. Just as in the case of the theorem proving systems, there is a whole

19

zoo of specification languages, most of them tied to particular software sys-
tems. They differ in language primitives, theoretical expressivity, and the
level of tool support.

Even though there have been standardization efforts, the most recent
one being the Casl standard (Common Algebraic Specification Language;
see [CoF98]) there have been no efforts of developing this into a general
markup language for mathematics with attention to web communication
and standards. The OMDoc format attempts to provide a content-oriented
markup scheme that supports all the aspects and structure of mathematical
knowledge we have discussed in this section. Before we define the language
in the next chapter, we will briefly go over the consequences of adopting a
markup language like OMDoc as a standard for web-based mathematics.

2.5 An Active Web of Mathematical Knowledge

It is a crucial – if relatively obvious – insight that true cooperation of math-
ematical services is only feasible if they have access to a joint corpus of
mathematical knowledge. Moreover, having such a corpus would allow to
develop added-value services like

1. cut and paste on the level of computation (take the output from a web
search engine and paste it into a computer algebra system),

2. automatically proof checking published proofs,

3. math explanation (e.g. specializing a proof to an example that simpli-
fies the proof in this special case),

4. semantical search for mathematical concepts (rather than keywords),

5. data mining for representation theorems (are there unnoticed groups
out there),

6. classification: given a concrete mathematical structure, is there a gen-
eral theory for it?

As the online mathematical knowledge is presently only machine-readable,
but not machine-understandable, all of these services can currently only
be performed by humans, limiting the accessibility and thus the potential
value of the information. Services like this will transform the now passive
and human-centered fragement of the Internet that deals with mathematical

20

content, into an active (by the services) web of mathematical knowledge (we
will speak of mathweb for this vision).

Of course, this promise of activating a web of knowledge is in no way lim-
ited to mathematics, and the task of transforming the current presentation-
oriented world-wide web into a “semantic web” [Lee98] has been identified
as one of the main challenges by the world wide web consortium (W3C, the
fundamental standardizing body for the WWW, see http://www.w3c.org).

The direct applications of MathWeb (apart from the general effect to-
wards a semantic web) are by no means limited to mathematics proper. Un-
til now, the MathMl working group in the W3C has led the way in many
web technologies (presenting mathematics on the web taxes the current web
technology to its limits); the endorsement of the MathMl standard by the
W3 Committee is an explicit testimony to this. We expect that the effort of
creating an infrastructure for digital mathematical libraries will play a sim-
ilar role, since mathematical knowledge is the most rigorous and condensed
form of knowledge, and will therefore pinpoint the problems and possibilities
of the semantic web.

All modern sciences have a strongly mathematicised core, and will ben-
efit. The real market and application area for the techniques developed in
this project lies with high-tech and engineering corporations like Airbus In-
dustries, Daimler Chrysler, Phillips, ... that rely on huge formula databases.
Currently, both the content markup as well as the added-value services al-
luded to above are very underdeveloped, limiting the usefulness of the vital
knowledge. The content-markup aspect needed for mining this information
treasure and obtaining a competitive edge in development is exactly what
we are attempting to develop in OMDoc.

21

http://www.w3c.org

Chapter 3

OMDoc Elements

In this chapter, we define the OMDoc language features and their meaning.
We motivate them from either particular structures in mathematical doc-
uments or from processing needs of computer-supported mathematics and
give concrete examples based on these.

The content of this chapter is normative for the OMDoc format; an
OMDoc document is valid as an OMDoc document, iff it meets all the
constraints imposed in this chapter. OMDoc applications will normally
presuppose valid OMDoc documents, and only claim to exhibit the in-
tended behavior on such. Note that OMDoc validity does not yet imply
that documents make sense mathematically, only that they can be safely
processed by OMDoc applications.

Part of the constraints imposed by the OMDoc definition can be checked
by suitable Xml tools. The namespace URI for OMDoc is http://www.mathweb.org/omdoc,
referring to this specification that gives the OMDoc elements their mean-
ing. We have developed a document type definition (DTD) (cf. appendix E)
that can be used by an Xml parser to partially validate OMDoc documents.

In the rest of the chapter we will introduce the Xml elements used by
the OMDoc language grouped by thematic role. Before we come to the
mathematical elements proper, we detail OMDoc metadata in section 3.1.
This “data about data” can be used to annotate many OMDoc elements
by descriptive and administrative information that facilitates navigation and
organization.

In section 3.2 we define various mathematical statements, i.e. elements
that allow to mark up mathematical forms like definitions, theorems, proofs,
and examples; that have long been considered paradigmatic of mathematical
documents like textbooks and papers.

22

http://www.mathweb.org/omdoc

In section 3.3 we will introduce markup for simple mathematical theo-
ries, which group mathematical statements and provide a notion of context
for mathematical statements. Here we build on concepts from the field of
algebraic specification, where structured representation of large corpora of
formal scientific knowledge about the meaning of programs and the mathe-
matical structures used in them has been studied extensively.

But mathematical documents contain more than this: e.g. exercises,
applets, notation declarations are intermixed with explanatory text. We
deal with this in see section 3.4 to 3.5.2.

In section 3.6 we will address the problem of identifying and referencing
OMDoc elements in larger collections of documents. The approach will be
to use special uniform resource identifiers (URI), for the examples until then
we will only use local (intra-document) references, which are a special case.

The Xml root root element of the OMDoc format is the omdoc element,
it contains all other elements described in the rest of this chapter. We call
an OMDoc element a top-level element, if it can appear as a direct child
the omdoc element. The omdoc element has a required attribute id that can
be used to reference the whole document. The version attribute is used to
specify the version of the OMDoc format the file conforms to. It is fixed to
1.1 by the OMDoc document type definition in appendixE. This will pre-
vent validation with a different DTD. Similarly, the xmlns attribute fixes the
namespace URI for OMDoc to http://www.mathweb.org/omdoc. Further-
more, the omdoc element has the attributes type, which will be presented
in section 3.4.1 and catalogue (see section 3.6).

3.1 Metadata for Mathematical Elements

The World Wide Web was originally built for human consumption, and
although everything on it is machine-readable, most of it is not machine-
understandable. The accepted solution is to use metadata (data about data)
to describe the data contained on the Web. In OMDoc, we use one of
the best-known metadata schemas for documents – the Dublin Core (cf.
http://purl.org/dc/), which is the basis for many metadata formats, such
as the Xml resource description format (RDF). The purpose of annotating
metadata in OMDoc is to facilitate the administration of documents, e.g.
digital rights management, and to generate input for metadata-based tools,
e.g. RDF-based navigation and indexing of document collections.

The metadata element contains elements for Dublin Core metadata and
an optional extradata element for user-defined or application-specific meta-

23

http://www.mathweb.org/omdoc
http://purl.org/dc/

data. The extradata element may contain arbitrary well-formed Xml, as
long as its elements are declared in the internal subset of the document type
definition (see the discussion on page 10). Figure 3.1 shows an example of
pedagogical metadata in the extradata element. Note that other OMDoc
applications will not act on it since such data is application-specific; they
will preserve it verbatim if the output format allows it, and ignore it other-
wise. The OMDoc metadata element can be used to provide information

<!DOCTYPE omdoc PUBLIC "-//OMDoc//DTD OMDoc V1.1//EN"

"-//OMDoc/"http://www.mathweb.org/omdoc/omdoc.dtd"

[<!ELEMENT abstraction EMPTY><!ATTLIST abstraction level CDATA #REQUIRED>

<!ELEMENT difficulty EMPTY><!ATTLIST difficulty level CDATA #REQUIRED>]>

...

<metadata>

<extradata>

<abstraction level="high"/>

<difficulty level="simple"/>

</extradata>

</metadata>

Figure 3.1: Enabling application-specific extradata

about the document as a whole (as a child of the omdoc element), as well
as about specific fragments of the document, and even about the top-level
mathematical elements in OMDoc. We will use the fourth column labeled
“DC” in quick-reference tables like Figure 3.5 to indicate whether an OM-
Doc element can have a metadata element as the first child.

3.1.1 The Dublin Core Elements

In the following we will describe individual Dublin Core metadata elements.
The descriptions below are adapted from http://www.ietf.org/rfc/rfc2413.txt,
and augmented for the application in OMDoc where necessary. One partic-
ular adaption is that metadata can be used to annotate many mathematical
elements.

The OMDoc metadata element can contain any number of instances of
any Dublin Core element in any order. In fact, multiple instances of the same
element type (multiple Creator elements, for example) can be interspersed
with other elements without change of meaning.

Title The title of the element. The Title element can contain mathe-
matical formulae as OMOBJ elements. In fact, it may contain the same

24

http://www.ietf.org/rfc/rfc2413.txt

children as the CMP defined in section 3.2.1 (we call this content math-
ematical text).

The Title element has an xml:lang attribute that specifies the lan-
guage of the content. Multiple Title elements inside a metadata

element are assumed to be translations of each other; they have to be
unique per xml:lang attribute.

Creator A primary creator or author of the publication. Additional con-
tributors whose contributions are secondary to those listed in Creator

elements should be named in Contributor elements. Document with
multiple co-authors should provide multiple Creator elements, each
containing one author. The order of Creator elements is presumed to
define the order in which the creators’ names should be presented.

As markup for names across cultures is still un-standardized, OMDoc
recommends that the content of the Creator elements hold the text for
a single name as it would be presented to the user. The OMDoc DTD
supplies a parameter entity %DCperson that can be suitably redefined
for application-specific markup schemes.

The Creator elements has an optional attribute id so that it can
be cross-referenced and a role, which can take the values defined in
the next section to further classify the concrete contribution to the
element.

Contributor A party whose contribution to the publication is secondary to
those named in Creator elements. Apart from the significance of con-
tribution, the semantics of this element is identical to that of Creator,
it has the same restriction content and carries the same attributes plus
an optional xml:lang attribute that specifies the target language in
case the contribution is translation (i.e. if the role is ’trl’).

Subject This element includes an arbitrary phrase or keyword, the xml:lang
is used for the language. Multiple instances of the Subject element
are supported per xml:lang for multiple keywords.

Description A mathematical text describing the containing element’s con-
tent; the xml:lang is used for the language. This metadata element is
only recommended for omdoc elements that do not have a CMP group
(see section 3.2.1), or if the description is significantly shorter than the
one in the CMPs.

25

Publisher The entity for making the document available in its present
form, such as a publishing house, a university department, or a cor-
porate entity. This element only applies if the metadata is directly
inside the root element (omdoc) of a document.

Date The date and time a certain action was performed on the document.
The content is in the format defined by Xml Schema data type date-
Time (see http://www.w3.org/TR/xmlschema-2/#dateTime for a dis-
cussion), which is based on the ISO 8601 norm for dates and times.
Concretely, the format is CCYY-MM-DDThh:mm:ss where “CC” repre-
sents the century, “YY” the year, “MM” the month and “DD” the day,
preceded by an optional leading “-” sign to indicate a negative num-
ber. If the sign is omitted, “+” is assumed. The letter “T” is the
date/time separator and “hh”, “mm”, “ss” represent hour, minute and
second respectively. Additional digits can be used to increase the pre-
cision of fractional seconds if desired i.e the format “ss.sss...” with
any number of digits after the decimal point is supported. The Date

element has the attributes action and who to specify who did what.
The value of who is a reference to a Creator or Contributor element
and action is a keyword for the action undertaken. Recommended
values include ’updated’, ’new’, ’imported’, ’frozen’, ’normed’.

Type Dublin Core defines a vocabulary for the document types in http://dublincore.org/documen

The best fit for OMDoc is one of the following

Dataset Dublin Core defines this as “A dataset is information encoded
in a defined structure (for example lists, tables, and databases),
intended to be useful for direct machine processing”

Text Dublin Core defines this as “A text is a resource whose content
is primarily words for reading. For example – books, letters, dis-
sertations, poems, newspapers, articles, archives of mailing lists.
Note that facsimiles or images of texts are still of the genre text.”

The more appropriate should be selected for the element described. If
it is mainly as formal mathematical formulae, then Dataset is better,
if it is mainly given as text, then Text should be used.

Format The physical or digital manifestation of the resource. Dublin core
suggests using MIME types. Following [MSLK01] we fix this to the
string application/omdoc+xml as a (non-registered) MIME type for
OMDoc.

26

http://www.w3.org/TR/xmlschema-2/#dateTime
http://dublincore.org/documents/dcmi-type-vocabulary

Identifier A string or number used to uniquely identify the element. This
is a string that uniquely identifies this document or element. As this is
largely superseded by the identification scheme discussed in section 3.6
it should only be used for public identifiers like ISBN or ISSN numbers.
The numbering scheme can be specified in the scheme attribute (it has
’isbn’ as a default).

Source Information regarding a prior resource from which the publication
was derived. We recommend using either a URI or a scientific reference
including identifiers like ISBN numbers.

Relation Information regarding the relation of this document to others.

Language If there is a primary language of the document, this can be spec-
ified here. The content must be an ISO 639 two-letter language spec-
ifier.

Rights Information about rights held in and over the resource or a reference
to a such a statement. Typically, a Rights element will contain a
rights management statement for the resource, or reference a service
providing such information. Rights information often encompasses
Intellectual Property Rights (IPR), Copyright, and various Property
Rights. If the Rights element is absent, no assumptions can be made
about the status of these and other rights with respect to the resource.

Note that Dublin Core also defines a Coverage element that specifies the
place or time which the publication’s contents addresses. This does not
seem appropriate for the mathematical content of OMDoc, which is largely
independent of time and geography.

The metadata elements can be added to many of the OMDoc elements
described in this chapter, including grouping elements that can contain
others that contain metadata. To avoid duplication, OMDoc assumes a
priority-union semantics of Dublin Core metadata. A Dublin Core element,
e.g. Creator that is missing in in a lower metadata declaration (i.e. there
is no element of the same name and with the same attributes) is inherited
from the upper ones. So in Figure 3.2, the two boxes are equivalent, since
the metadata in theory th1 and in definition d1 is inherited from the main
declaration in the top-level omdoc element. If there is a metadata element
of the same name present, nothing is inherited.

27

<omdoc id="o1">

<metadata>

<Creator>MiKo</Creator>

</metadata>

<theory id="th1">

<symbol id="s1"/>

<definition id="d1"/>

</theory>

<theory id="th2">

<metadata>

<Creator>Paul</Creator>

</metadata>

<symbol id="s2">

<definition id="d1">

<metadata>

<Creator>MiKo</Creator>

</metadata>

</definition>

</theory>

</omdoc>

←→

<omdoc id="o1">

<metadata>

<Creator>MiKo</Creator>

</metadata>

<theory id="th1">

<metadata>

<Creator>MiKo</Creator>

</metadata>

<symbol id="s1"/>

<definition id="d1">

<metadata>

<Creator>MiKo</Creator>

</metadata>

</definition>

</theory>

<theory id="th2">

<metadata>

<Creator>Paul</Creator>

</metadata>

<symbol id="s2">

<definition id="d1">

<metadata>

<Creator>MiKo</Creator>

</metadata>

</definition>

</theory>

</omdoc>

Figure 3.2: Inheritance of metadata

3.1.2 Roles in Dublin Core Metadata

Because the Dublin Core metadata fields for Creator and Contributor do
not distinguish roles of specific contributors (such as author, editor, and
illustrator), we will follow the Open eBook [Gro99] specification and use op-
tional role attributes for this purpose. The attribute values role attribute
is adapted for OMDoc from the MARC relator code list (Machine-Readable
Cataloging Record, see http://www.loc.gov/marc/relators/re0002r1.html)

’aut’ (Author) Use for a person or corporate body chiefly responsible for
the intellectual or artistic content of an element. This term may also
be used when more than one person or body bears such responsibility.

28

http://www.loc.gov/marc/relators/re0002r1.html

’ant’ (Scientific antecedent) Use for the author responsible for a work upon
which the element is based.

’clb’ (Collaborator) Use for a person or corporate body that takes a lim-
ited part in the elaboration of a work of another author or that brings
complements (e.g., appendices, notes) to the work of another author.

’edt’ (Editor) Use for a person who prepares a document not primarily
his/her own for publication, such as by elucidating text, adding intro-
ductory or other critical matter, or technically directing an editorial
staff.

’ths’ (Thesis advisor) Use for the person under whose supervision a de-
gree candidate develops and presents a thesis, memoir, or text of a
dissertation.

’trc’ (Transcriber) Use for a person who prepares a handwritten or type-
written copy from original material, including from dictated or orally
recorded material. This is also the role (on the Creator element)
for someone who prepares the OMDoc version of some mathematical
content.

’trl’ (Translator) Use for a person who renders a text from one language
into another, or from an older form of a language into the modern
form. The target language can be specified by the xml:lang.

<metadata>

<Title>The Joy of Jordan C∗ Triples</Title>

<Creator role="aut">A</Creator>

<Contributor role="edt">R</Contributor>

<Contributor role="trc">S</Contributor>

</metadata>

Figure 3.3: A Document with editor (edt) and transcriber (trc)

Let us now consider two examples to fortify our intuition. As OMDoc
documents are often used to formalize existing mathematical texts for use
in mechanized reasoning and computation systems, it is sometimes subtle to
specify authorship. We will discuss some typical examples to give a guiding
intuition. Figure 3.3 shows metadata for a situation where editor R gives the
sources (e.g. in LATEX) of a document D written by author A to secretary S

for conversion into OMDoc format. In Figure 3.4 researcher R formalizes

29

<metadata>

<Title>Natural Numbers</Title>

<Creator role="aut">R</Creator>

</metadata>

<metadata>

<Title>Natural Numbers</Title>

<Creator role="aut">R</Creator>

<Contributor role="ant">A</Contributor>

<Source>B</Source>

</metadata>

Figure 3.4: A formalization with scientific antecedent (ant)

the theory of natural numbers following the standard textbook B (written
by author A). In this case we recommend something like the left declaration
for the whole document and the right one for specific math elements, e.g. a
definition inspired by or adapted from one in book B.

Element Attributes D Content

Required Optional C

metadata id inherits,

style

– (dc-element)*, extradata

extradata – ANY

Creator id, style,

role

– %DCperson

Contributor id, style,

role

– %DCperson

Title xml:lang – CMP content

Subject xml:lang – CMP content

Description xml:lang – CMP content

Publisher id, style – ANY

Date action,

who

– ISO 8601

Type – fixed: "Dataset" or
"Text"

Format – fixed: "xml,x-omdoc"

Identifier scheme – ANY

Source – ANY

Language – ISO 8601

Relation – ANY

Rights – ANY

Figure 3.5: The OMDoc metadata

30

3.2 Mathematical Statements

In this section we will define the OMDoc elements for mathematical state-
ments. We call mathematical forms like axioms, definitions, theorems, and
examples statements, since they are the basic units used to state proper-
ties about mathematical objects. Axioms and definitions state the meaning
of symbols, that can later be used to build up other mathematical objects.
Theorems state properties about objects that can be proven from the axioms
and definitions, and are therefore safe to assume.

Before we go into the particular features of the different classes of state-
ments, let us discuss their common parts.

3.2.1 Specifying Mathematical Properties

As we have said before, all mathematical statements state properties of
mathematical objects. This is done either informally (given in the rigorous
version of natural language interspersed with mathematical formulae some-
times called mathematical vernacular) or formally (as logical formulae), or
both. For the informal representation of the content of mathematical state-
ments, we use groups of CMP elements, for the formal content groups of FMP
elements.

Element Attributes D Content

Required Optional C

FMP logic – (assumption*,

conclusion*) | OMOBJ

assumption id style + CMP*, OMOBJ?

conclusion id style + CMP*, OMOBJ?

CMP xml:lang – ANY

with id style – CMP content

omtext id type, for,

style

+ CMP+, FMP*

Figure 3.6: The OMDoc elements for specifying mathematical properties

An FMP element is the general element for representing formal mathemat-
ical content as OpenMath objects1. FMPs always appear in groups, which
can differ in the value of their logic attribute, which specifies the logical
formalism. The value of this attribute specifies the logical system used in
formalizing the content. All members of the multi-logic FMP group have to

1The name is taken from OpenMath content dictionaries for continuity reasons

31

formalize the same mathematical object or property, i.e. they have to be
translations of each other.

As logical formulae often come as sequents, i.e. as sets of conclusions
drawn from a set of assumptions, OMDoc also allows the content of an
FMP to be a (possibly empty) set of assumption elements followed by a
conclusion. The intended meaning is that the FMP asserts that one of the
conclusions is entailed by the assumptions in the current context. As a
consequence, <FMP><conclusion>A</conclusion></FMP> is equivalent to
<FMP>A</FMP>, where A is an OpenMath representation of a mathematical
formula. The assumption and conclusion elements allow to specify the
content by an OpenMath object or in natural language (using CMPs).

CMP elements may contain arbitrary text interspersed with the elements
OMOBJ, omlet, ref and with, no other elements are allowed.2 The OMOBJ

elements are used for mathematical objects, the omlet elements for applets
(see section 3.4.3), and the with elements for supplying text fragments with
attributes for referencing and presentation. In particular, presentation ele-
ments like paragraphs, emphases, itemizes, . . . are forbidden, since OMDoc
is concerned with content markup. Generating presentation markup from
this is the duty of specialized presentation components, e.g. XslT style
sheets, which can base their decisions on presentation information (see sec-
tion 3.5.2). The with element is new in OMDoc1.1, it allows the same
content as the CMP element, so that it can be transparently nested in there.
It has the attributes id for referencing the text fragment (e.g. for creating
an index) and style to associate presentation information with it. We an-
ticipate further development on the usage of this element, so that the set of
attributes is likely to be extended.

CMP elements have an xml:lang attribute that specifies the language
they are written in. Thus using multilingual groups of CMP elements with
different languages can promote OMDoc internationalization. Conforming
with the Xml recommendation, we use the ISO 639 two-letter country codes
(en =̂ English, de =̂ German, fr =̂ French, nl =̂ Dutch,. . .). This optional
attribute has the default “’en’”, so that if no xml:lang is given, then
English is assumed. Of course it is forbidden to have more than one CMP

per value of xml:lang per mathematical statement, moreover, CMPs that
are siblings must be translations of each other, and must carry the same
meaning as the logical formula in the FMP they are sibling to.

2The DTD provides a parameter entity!parameter %alsoinCMP that can be specialized
in the local subset of the DTD to accomodate for additional elements. Note that these
will not be supported by the generic tools.

32

<metadata>

<Creator role="aut">Michael Kohlhase</Creator>

<Contributor role="trl" xml:lang="de">Michael Kohlhase</Contributor>

<Contributor role="trl" xml:lang="fr">Paul Libbrecht</Contributor>

</metadata>

<CMP xml:lang="en" format="omtext">

Let <OMOBJ id="set"><OMV name="V"/></OMOBJ> be a set.

A unary operation on <OMOBJ xref="set"/> is a function

<OMOBJ id="func"><OMV name="F"/></OMOBJ> with

<OMOBJ id="im">

<OMA>

<OMS cd="relations1" name="eq"/>

<OMA><OMS cd="fns1" name="domain"/><OMV name="F"/></OMA>

<OMV name="V"/>

</OMA>

</OMOBJ> and

<OMOBJ id="ran">

<OMA>

<OMS cd="relations1" name="eq"/>

<OMA><OMS cd="fns1" name="range"/><OMV name="F"/></OMA>

<OMV name="V"/>

</OMA>

</OMOBJ>.

</CMP>

<CMP xml:lang="de" format="omtext">

Sei <OMOBJ xref="set"/> eine Menge.

Eine unäre Operation ist eine Funktion <OMOBJ xref="fun"/>,

so daß <OMOBJ xref="im"/> und <OMOBJ xref="ran"/>.

</CMP>

<CMP xml:lang="fr" format="omtext">

Une opération unaire sûr <OMOBJ xref="set"/> est une

fonction <OMOBJ xref="fun"/> avec <OMOBJ xref="im"/> et

<OMOBJ xref="ran"/>.

</CMP>

<FMP>∀V , F .binop(F , V) ⇔ Im(F) = V ∧ Dom(F) = V </FMP>

Figure 3.7: A multilingual group of CMP elements with FMP and metadata

Figure 3.7 shows an example of such a multilingual group. It also shows
an extension that OMDoc makes to OpenMath elements. OMDoc adds
(optional) attributes id and xref attributes to the OpenMath elements
OMOBJ, OMA, OMBIND and OMATTR for the purpose of cross-referencing (see
section E). This facility is convenient in two ways:

• it facilitizes multi-language support: Only the language-dependent
parts of the text have to be re-written, the (language-independent)

33

formulae can simply be re-used by cross-referencing.

• formulae can be represented as directed acyclic graphs (DAG) pre-
venting exponential blowup of the encoding, since formula parts can
be re-used.

Note that the extension (which MathMl provides by default) is licensed
by the OpenMath standard, since pure OpenMath trees can be generated
automatically from it.

Mathematical documents often contain text passages that cannot strictly
be classified into the mathematical statements defined in the rest of this
section. Such passages can be motivations, further explanations, historical
remarks, and the like, and are modeled with a special element omtext in
OMDoc.

omtext elements can appear at the top level (i.e. inside omdoc, omgroup,
and theory elements). They have an id attribute, so that they can be
cross-referenced. omtext elements basically serve to group CMP elements into
multilingual groups and supply them with metadata information. Finally,
omtext elements may contain (optional) FMP elements with an OpenMath
object or a logical sequent that formally represents the meaning of the de-
scriptive text in the CMPs (if that is feasible). In this light, the OMDoc
fragment in Figure 3.7 could also be the content of an omtext element; the
only difference to a mathematical statement is, that the purpose as a math-
ematical statement cannot be determined as one of the above. The purpose
can be described by the optional attribute type, which can take the val-
ues ’abstract’, ’introduction’, ’conclusion’, ’comment’, ’thesis’,
’antithesis’, ’elaboration’, ’motivation’, ’evidence’ with the obvi-
ous meanings. In the last five cases omtext also has the extra attribute for,
since these are in reference to another OMDoc element.

As Xml comments (i.e. anything between “<!--” and “-->” in a doc-
ument) are not even read by the Xml parser, anything that would nor-
mally go into comments should be modeled with an omtext element (type
’comment’) or with the ignore element for persistent comments, i.e. com-
ments that survive processing.

This element should be used if the author wants to comment the OMDoc
representation, but the end user should never see their content, so that
OMDoc text elements are not suitable.

34

3.2.2 Symbols, Definitions, and Axioms

Now we come to the mathematical statements that determine the meaning
of mathematical objects. Axioms and definitions fix the meaning of (groups
of) symbols. It is sufficient to determine the semantics of symbols, since they
are the atomic units from which complex mathematical objects are built up.

The symbol element specifies a symbol for a mathematical concept, such
as 1 for the natural number “one”, + for addition, = for equality, or group
for the property of being a group. It has an id attribute which uniquely
identifies it in a theory (see section 3.3) and an attribute kind that can
take the values ’type’ (for objects that denote sets that are used in type
systems), ’sort’ (for sets that are inductively built up from constructor
symbols; see section 3.2.6), and ’object’ (the default; for all other sym-
bols). The attribute scope takes the values ’global’ and ’local’, and
allows a simple specification of visibility conditions: if a symbol has scope

’local’ then it is not exported outside the theory.

The children of the symbol element consist of a multilingual group of
commonname elements (parameterized by a xml:lang attribute) and a set of
type elements (parameterized by the system attribute).

The commonname elements contain keyword or simple phrases, they have
the same content model as the CMP elements. If the document containing
their parent symbol element were stored in a data base system, it could
be looked up by the content of its commonname children. As a consequence
of the presence of the commonname, the symbol id need only be used for
identification. In particular, it need not be mnemonic, though it can be,
and it need not be language-dependent, since this can be done by suitable
commonname elements. In Figure 3.8 we have a symbol declaration for the
property of being monoid.

The type elements allow to specify type information for the symbol they
are contained in. They can also appear outside of symbol elements on top-
level, then they specify type information for the symbol referenced in its
for attribute. The attribute system contains a token string that names the
type system which interprets the content. The content of a type element is a
formal representation of the type of the symbol as a mathematical object of
the type system specified by the attribute system. It is not an error to have
more than one type declaration per system attribute in a symbol element,
this just means that the object has more than one type in the respective
type system. In the example in Figure 3.8, the type of monoid characterizes
a monoid as a three-place predicate (taking as arguments the base set, the
operation and a neutral element).

35

The relation between the components of a monoid would typically be
specified by a set of axioms (e.g. stating that the operation is commuta-
tive). For this purpose OMDoc uses the axiom element, which allows a
multilingual set of CMPs and an (optional) FMP as children, which express
the mathematical content of the axiom. Apart from the id attribute, axiom
elements may have a generated-by attribute, which points to another OM-
Doc element (e.g. an adt, see section 3.2.6) which subsumes it, since it is
a more succinct representation of the same mathematical content.

<symbol id="monoid">

<commonname xml:lang="en">monoid</commonname>

<commonname xml:lang="de">Monoid</commonname>

<commonname xml:lang="it">monoide</commonname>

<type system="simply-typed">

set[any]→(any→any→any)→any→bool

</type>

</symbol>

<definition id="mon.d1" for="monoid" type="implicit">

<CMP xml:lang="en">

A structure (M, ∗, e), in which (M, ∗) is a semi-group

with unit e is called a monoid.

</CMP>

</definition>

Figure 3.8: An OMDoc symbol Declaration with definition

The definition elements give meanings to (groups of) symbols (de-
clared in a symbol element elsewhere) in terms of already defined ones. For
example the number 1 can be defined as the successor of 0 (specified by the
Peano axioms). Addition is usually defined recursively, etc.

Both axioms and definitions can be used to give meaning to sets of
symbols. Both contain a multilingual CMP group to describe the meaning in
natural language. The also contain a multi-logic FMP group that expresses
this as a logical formula. In contrast to axioms which only constrain the pos-
sible interpretations of a symbol, definitions are used with the intention
that they totally fix the meaning. As a consequence OMDoc definition

elements are more complex, since they provide an infrastructure to ensure
this. In particular, the definition element supports several kinds of defi-
nition mechanisms specified in the type attribute:

’simple’ In this case, the definition contains an OpenMath object that
can be substituted for the symbol specified in the for attribute of the

36

Element Attributes D Content

Required Optional C

symbol id kind,

scope,

style

+ CMP*, (commonname | type

| selector)*

commonname xml:lang – CMP content

type system id, for,

style

– CMP*, OMOBJ

axiom id generated-by,

style

+ symbol*,CMP*,FMP*

definition id, for just-by,

type,

generated-by,

style

+ CMP*, (FMP* | requation+

| OMOBJ)?, measure?,

ordering?

requation id, style – pattern, value

pattern – OMOBJ

value – OMOBJ

measure – OMOBJ

ordering – OMOBJ

Figure 3.9: Symbols, Axioms, and Definitions in OMDoc

definition. Figure 3.10 gives an example of a (simple) definition of a
the number one from the successor function and zero.

’inductive’ The OpenMath object contains a formula, but in contrast
to the case of ’simple’ definitions this can contain occurrences of the
symbol specified in the for attribute of the definition. To guar-
antee termination of the recursive instantiation (this is necessary to
ensure well-definedness), it is possible to specify a measure function
in the form of an OpenMath object and well-founded ordering. The
optional measure and ordering elements allow to do this in form of
OpenMath objects. Alternatively, a termination proof can be speci-
fied in the just-by attribute of the definition.

’recursive’ This is a variant of the ’inductive’ case above. It defines
functions by a set of recursive equations (in requation elements)
whose left and right hand sides are specified by the pattern and value

elements. Both elements pattern and value hold an OpenMath ele-
ment. The intended meaning of the defined symbol is, that the content
of the value element (with the variables suitably substituted) can be
substituted for a formula that matches the content of the pattern

element. Figure 3.11 gives an example of a a recursive definition of

37

<symbol id="one"/>

<definition id="one.def" for="one" type="simple">

<CMP><OMOBJ><OMS cd="nat" name="one"/></OMOBJ> is the successor of

<OMOBJ><OMS cd="nat" name="zero"></OMOBJ>.</CMP>

<FMP>

<OMOBJ>

<OMA><OMS cd="relation1" name="eq"/>

<OMS cd="nat" name="one"/>

<OMA xref="one.1"/>

</OMA>

</OMOBJ>

</FMP>

<OMOBJ>

<OMA id="one.1">

<OMS cd="int" name="suc"/>

<OMS cd="nat" name="zero">

</OMA>

</OMOBJ>

</definition>

Figure 3.10: A simple OMDoc definition.

addition on the natural numbers.

Evidence of termination of the recursive replacement of values for pat-
terns can be provided in the measure and ordering elements or the
just-by attribute of the dominating definition.

’implicit’ Here, the FMP elements contain a set of logical formulae that
uniquely determines the value of the symbols that are specified in the
for attribute of the definition. The necessary proof of unique existence
can be specified in the just-by attribute. We give an example of an
implicit definition in Figure 3.12.

3.2.3 Assertions and Alternatives

OMDoc uses the assertion element for all statements (proven or not)
about mathematical objects (see Figure 3.13). Traditional mathematical
documents discern various kinds of these: theorems, lemmata, corollaries,
conjectures, problems, etc. These all have the same structure (formally, a
closed logical formula). Their differences are largely pragmatic (theorems are
normally more important in some theory than lemmata) or proof-theoretic
(conjectures become theorems once there is a proof). Therefore, we represent

38

<definition id="rec-plus" for="plus" type="recursive">

<commonname>addition</commonname>

<CMP>Addition is defined by recursion on the second argument</CMP>

<requation>

<pattern>

<OMOBJ>

<OMA>

<OMS cd="nat" name="plus"/>

<OMV name="X"/>

<OMS cd="nat" name="zero"/>

</OMA>

</OMOBJ>

</pattern>

<value><OMOBJ><OMV name="X"/></OMOBJ></value>

</requation>

<requation>

<pattern>

<OMOBJ>

<OMA>

<OMS cd="nat" name="plus"/>

<OMV name="X"/>

<OMA><OMS cd="nat" name="succ"/><OMV name="Y"/></OMA>

</OMA>

</OMOBJ>

</pattern>

<value>

<OMOBJ>

<OMA>

<OMS cd="nat" name="succ"/>

<OMA><OMS cd="nat" name="plus"/><OMV name="X"/><OMV name="Y"/></OMA>

</OMA>

</OMOBJ>

</value>

</requation>

</definition>

Figure 3.11: A recursive definition of addition

<definition id="exp-def" type="implicit" just-by="exp-well-def">

<FMP>exp′ = exp ∧ exp(0) = 1</FMP>
</definition>

<assertion id="exp-well-def">

<CMP>

There is at most one differentiable function that solves the

differential equation in Definition <ref xref="exp-def"/>.

</CMP>

</assertion>

Figure 3.12: An implicit definition of the exponential function

39

them in the general assertion element and leave the type distinction to a
type attribute, which can have the following values (note that this is only a
soft classification of assertions, based more on mathematical practice than
on hard distinctions).

’theorem’, ’proposition’ (an important assertion with a proof) Note
that the meaning of the type (in this case the existence of a proof) is
not enforced by OMDoc applications. It can be appropriate to give
an assertion the type ’theorem’, if the author knows of a proof (e.g.
in the literature), but has not formalized it in OMDoc yet.

’lemma’ (a less important assertion with a proof) The difference of impor-
tance specified in this type is even softer than the other ones, since
e.g. reusing a mathematical paper as a chapter in a larger monograph,
may make it necessary to downgrade a theorem (e.g. the main the-
orem of the paper) and give it the status of a lemma in the overall
work.

’corollary’ (an simple consequence) An assertion is sometimes marked as
a corollary to some other statement, if the proof is considered simple.
This is often the case for important theorems that are simple to get
from technical lemmata.

’postulate’, ’conjecture’ (an assertion without proof or counter-exam-
ple) Conjectures are assertions, whose semantic value is not yet de-
cided, but which the author considers likely to be true. In particular,
there is no proof or counter-example (see section 3.2.4).

’false-conjecture’ (an assertion with a counter-example) A conjecture
that has proven to be false, i.e. it has a counter-example. Such asser-
tions are often kept for illustration and historical purposes.

’obligation’, ’assumption’ (an assertion on which the proof of another
depends) These kinds of assertions are convenient during the explo-
ration of a mathematical theory. They can be used and proven later
(or assumed as an axiom).

’formula’ (if everything else fails) This type is the catch-all, if none of the
others applies.

Since there can be more than one definition per symbol, OMDoc has
the alternative element. Conceptually, an alternative definition or axiom

40

<assertion id="ida.c6s1p4.l1" type="lemma">

<CMP> A semi-group has at most one unit.</CMP>

<FMP>∀S.sgrp(S) → ∀x, y.unit(x, S)∧ unit(y, S) → x = y</FMP>

</assertion>

Figure 3.13: An assertion about semigroups

is just a group of assertions that specify the equivalence of logical formu-
lae. Of course, alternatives can only be added in a consistent way to a
body of mathematical knowledge, if it is guaranteed that it is equivalent to
the existing ones. Therefore, alternative has the attributes entails and
entailed-by, that specify assertions that state the necessary entailments.
It is an integrity condition of OMDoc that any alternative element ref-
erences at least one definition or alternative element that entails it
and one that it is entailed by (more can be given for convenience). The
entails-thm, and entailed-by-thm attributes specify the corresponding
assertions. This way we can always reconstruct equivalence of all definitions
for a given symbol.

Element Attributes D Content

Required Optional C

symbol id kind,

scope,

style

+ CMP*, (commonname | type

| selector)*

commonname xml:lang – CMP content

type system id, for,

style

– CMP*, OMOBJ

axiom id generated-by,

style

+ symbol*,CMP*,FMP*

definition id, for just-by,

type,

generated-by,

style

+ CMP*, (FMP* | requation+

| OMOBJ)?, measure?,

ordering?

requation id, style – pattern, value

pattern – OMOBJ

value – OMOBJ

measure – OMOBJ

ordering – OMOBJ

Figure 3.14: Assertions, Examples, and Alternatives in a OMDoc

41

3.2.4 Mathematical Examples in OMDoc

In mathematical practice, examples play an equally great role as proofs, e.g.
in concept formation as witnesses for definitions or as either supporting evi-
dence, or as counter-examples for conjectures. Therefore, examples are given
status as primary objects in OMDoc. Conceptually, we model an example
E as a pair (W,A), whereW = (W1, . . . ,Wn) is an n-tuple of mathematical
objects, A is an assertion. If E is an example for a mathematical concept
given as an OMDoc symbol S, then A must be of the form S(W1, . . . ,Wn).

If E is an example for a conjecture C, then we have to consider the
situation more carefully. We assume that C is of the form QD for some
formula D, where Q is a sequence Q1W1, . . . ,QmWm of m ≥ n = #W
quantifications of using quantifiers Qi like ∀ or ∃. Now let Q′ be a subse-
quence of m − n quantifiers of Q and D′ be D only that all the Wij such
that the Qij are absent from Q′ have been replaced by Wj for 1 ≤ j ≤ n. If
E = (W,A) supports C, then A = Q′D′ and if E is a counter-example for
C, then A = ¬Q′D′.

OMDoc specifies this intuition in an example element that contains a
set of OpenMath objects (the witnesses), and has the attributes

for for what concept or assertion it is an example. This is a reference to a
definition or assertion element.

type specifying the aspect, the value is one of the keywords ’for’ or
’against’

assertion a reference to the assertion A mentioned above that formally
states that the witnesses really form an example for the concept of
assertion. In many cases even the statement of this is non-trivial and
may require a proof.

In Figure 3.15 we show an example of the usage of an example element
in OMDoc: We declare a symbol string-struct for the structure W: =
(A∗, ◦), where A∗ is the set of words over an alphabet A and ◦ is word
concatenation. Then we state that W is a monoid with the empty word
as the neutral element in an assertion with id string-struct-monoid.
Then example element with id="mon.ex1" in Figure 3.15 is an example
for the concept of a monoid, since it encodes the pair (W,A) where W
is encoded as the corresponding OMDoc symbol and A by reference to
the assertion string-struct-monoid in the assertion attribute. Example
mon.ex2 uses the pair (W,A′), as a counter-example to the false conjecture

42

<symbol id="monoid"/>

<definition id="monoid-def" for="monoid">...</definition>

...

<symbol id="string-struct"/>

<definition id="sst-def" for="string-struct">...</definition>

...

<assertion id="string-struct-monoid" type="lemma">

<CMP>(Aˆ∗, ◦) is a monoid.</CMP>

<FMP>mon(Aˆ∗, ◦)</FMP>
</assertion>

...

<example id="mon.ex1" for="monoid" type="for"

assertion="string-struct-monoid">

<CMP>The set of strings with concatenation is a monoid.</CMP>

<OMOBJ><OMS cd="strings" name="strings-struct"/></OMOBJ>

</example>

<example id="mon.ex2" for="monoids-are-groups" type="against"

assertion="strings-isnt-group">

<CMP>The set of strings with concatenation is not a group.</CMP>

<OMOBJ><OMS cd="strings" name="strings-struct"/></OMOBJ>

</example>

<assertion id="monoid-are-groups" type="false-conjecture">

<CMP>Monoids are groups</CMP>

<FMP>∀ V.mon(V) → group(V)</FMP>
</assertion>

<assertion id="strings-isnt-group">...</assertion>

Figure 3.15: An OMDoc representation of a mathematical example

that all monoids are groups using the assertion strings-isnt-group for
A′.

3.2.5 Representing Proofs in OMDoc

Proofs form an essential part of mathematics and modern sciences. Concep-
tually they are a representation of uncontroversial evidence for the truth of
an assertion.

The question of what exactly constitutes a proof has been controversially
discussed. The clearest (and most radical) definition is given by theoretical
logic, where a proof is a sequence, or tree, or directed acyclic graph (DAG)
of applications of inference rules from a formally defined logical calculus,
that meets a certain set of well-formedness conditions. There is a whole zoo

43

of logical calculi that are optimized for various applications. They have in
common that they are extremely explicit and verbose, and that the proofs
even for simple theorems can become very large. The advantage of having
formal and fully explicit proofs is that they can be very easily verified, even
by simple computer programs.

In OMDoc, the notion of fully formal proofs is accommodated by the
proofobject element. It contains an optional multilingual group of CMP

elements which describe the formal proof as well as a proof object. This
will normally be a complex λ-term encoded as an OpenMath object via
the Curry/Howard/DeBruijn Isomorphism (see e.g. [Tho91] for an introduc-
tion). λ-terms are the most succinct representations of calculus-level proofs,
since they only document the inference rules (which are encoded as Open-
Math symbols in OMDoc). Since they are fully formal, they are very
difficult to read and need specialized proof presentation systems for human
consumption. In mathematical practice the notion of a proof is more flexi-

[A ∧B]
∧ER

B

[A ∧B]
∧EL

A
∧I

B ∧A
⇒I

A ∧B ⇒ B ∧A

<proofobject id="ac.p" for="and-comm">

<OMOBJ>

<OMBIND>

<OMS cd="ND(FOL)" name="impliesI"/>

<OMBVAR>

<OMATTR>

<OMATP>

<OMS cd="openproof" name="type"/>

A ∧ B

</OMATP>

<OMV name="X"/>

</OMATTR>

</OMBVAR>

<OMA>

<OMS cd="ND(FOL)" name="andI" >

<OMA>

<OMA>

<OMS cd="ND(FOL)" name="andEr">

<OMV name="X"/>

</OMA>

<OMA>

<OMS cd="ND(FOL)" name="andEl">

<OMV name="X"/>

</OMA>

</OMA>

</OMA>

</OMBIND>

</OMOBJ>

</proofobject>

Figure 3.16: A Proof Object for the commutativity of conjunction

44

ble, and more geared for consumption by humans: any line of argumentation
is considered as a proof, if it convinces its readers that it can be expanded
to a formal proof in the sense given above. As the expansion process is
extremely tedious, this option is very seldom really carried out explicitly
in practice. Moreover, as proofs are geared towards communication among
humans, they are given at vastly differing levels of abstraction. From a very
informal proof idea to the initiated specialist of the field, who can fill in the
details himself, down to a very detailed account for skeptics or novices. Note
that such a proof will normally be still well above the formal level. Further-
more, proofs will normally be tailored to the specific characteristics of the
audience, who may be specialists in one part of a proof while unfamiliar to
the material in others. Typically such proofs have a sequence/tree/DAG-
like structure, where the leaves are natural language sentences interspersed
with mathematical formulae (often called “mathematical vernacular”).

To reconcile these notions of “proof” and to provide a common markup
system for them, OMDoc concentrates on the tree/DAG-like structure of
proofs. It supports a proof format whose structural and formal elements
are derived from hierarchical data structures developed for semi-automated
theorem proving (satisfying the logical side), but which also allows natural
language representations at every level (allowing for natural representation
of mathematical vernacular at multiple levels of abstraction.) This proof
representation (see [BCF+97] for a discussion and pointers) is a DAG of
nodes which represent the proof steps. The proof steps contain a repre-
sentation of the local claim and a justification by either a logical inference
rule or higher-level evidence for the truth of the claim. This evidence can
consist either of a proof method that can be used to prove the assertion,
or by a separate subproof, that could be presented if the consumer was un-
convinced. Conceptually, both possibilities are equivalent, since the method
can be used to compute the subproof (called its expansion).

Expansions of nodes justified by method applications are computed, but
the information about the method itself is not discarded in the process as
in tactical theorem provers like Isabelle or NuPrL. Thus proof nodes
may have justifications at multiple levels of abstraction in a hierarchical
proof data structure. Note that the assertions in the nodes can be given
as mathematical vernacular (in CMPs) or as logical formulae (in FMPs). This
mixed representation enhances multi-modal proof presentation [Fie97], and
the accumulation of proof information in one structure. Informal proofs
can be formalized [Bau99]; formal proofs can be transformed to natural lan-
guage [HF96]. The first is important, since it will be initially infeasible to
totally formalize all mathematical proofs needed for the correctness man-

45

agement of the knowledge base. Moreover, the hierarchical format allows
to integrate various other proof representations like proof scripts (Ωmega
replay files, Isabelle proof scripts,. . .), references to published proofs, res-
olution proofs, etc, to enhance the coverage.

Element Attributes D Content

Required Optional C

proof id, for,

theory

style + symbol*, CMP*,

(metacomment | derive

| hypothesis)*, conclude

proofobject id, for,

theory

style + CMP*, OMOBJ

metacomment id – CMP*

hypothesis id,

discharged-in

style – symbol*,CMP*,FMP*

derive id style – CMP*, FMP*, method?,

premise*, (proof |

proofobject)?

conclude id style – CMP*, method?, premise*,

(proof | proofobject)?

method xref – OMOBJ*

premise xref – EMPTY

Figure 3.17: The OMDoc Proof Elements

Let us now come to the concrete markup scheme for proofs provided by
OMDoc (see Figure 3.17 for an overview). Due to the complex hierarchical
structure of proofs, we cannot directly utilize the tree-like structure provided
by Xml, but use cross-referencing (see the discussion in section 3.6). Proofs
are specified by proof elements in OMDoc that have the attributes id,
for, and theory. The for attribute points to the assertion that is justified
by this proof (this can be an assertion element or a derive proof step,
thereby making it possible to specify expansions of justifications and thus
hierarchical proofs). Note that there can be more than one proof for a given
assertion.

The content of a proof consists of a sequence of proof steps, whose DAG
structure is given by cross-referencing. These proof steps are specified in
four kinds of OMDoc elements:

derive elements specify normal proof steps that derive a new claim from
already known ones, from assertions or axioms in the current theory,
or from the assumptions of the assertion that is under consideration
in the proof. We will explain it in detail below.

46

<derive id="2.1.2.proof.a.proof.D2.1">

<CMP>By <OMOBJ><OMS cd="reals" name="A2"/></OMOBJ>

we have z + (a + (−a)) = a + (−a)
</CMP>

<FMP>(z + a) + (−a) = z + (a + (−a))</FMP>
<method xref="x-mbase:omega-base-calc#foralli*"/>

<OMOBJ><OMV name="z"/></OMOBJ>

<OMOBJ><OMV name="a"/></OMOBJ>

<OMOBJ>−a</OMOBJ>

</method>

<premise xref="A2"/>

</derive>

Figure 3.18: A derive proof step

hypothesis elements allow to specify local assumptions, well-known from
calculi like Gentzen’s Natural Deduction calculus [Gen35]. They allow
the hypothetical reasoning discipline needed for instance to specify
proof by contradiction, by case analysis, or simply to show that A

implies B, by assuming A and then deriving B from this local hy-
pothesis. To specify the locality of the assumption, it has the required
attribute discharged-in that points to a proof step which discharges
this hypothesis. The hypothesis is inaccessible for inference outside
the subproof delimited by the hypothesis and the step where it is
discharged. The hypothesis element can contain a multilingual CMP
group and a FMP for the formalization of the local assumption.

conclude This element is a variant of derive that does not contain a local
claim, it is reserved for the last step in a proof, which states the con-
clusion of the assertion. This is advantageous, since it is error-prone
to repeat the claim and in mathematical vernacular, the last step is
often explicitly verbalized to mark the end of the proof.

metacomment OMDoc supplies this element to allow for intermediate text
that does not have a logical correspondence to a proof step, but e.g.
guides the reader of the proof. Examples for this are remarks by the
proof author, e.g. an explanation why some other proof method will
not work. This element has an optional id for cross-reference and a
multilingual CMP group for the text.

Since we have covered the hypothesis and metacomment elements for
proof steps and conclusion is only a trimmed-down version, we now need

47

<proof id="t1_p1" for="t1" theory="sets">

<conclude id="t1_p1_c">

<CMP> We prove the assertion by a case analysis.</CMP>

<proof id="t1_p1_c_p" for="t1_p1_c" theory="sets">

<derive id="l1">

<CMP>If a ∈ U, then a ∈ U ∪ V .</CMP>

<FMP>

<assumption id="l1_A"><CMP>a ∈ U.</CMP></assumption>

<conclusion id="l1_C"><CMP>a ∈ U ∪ V .</CMP></conclusion>

</FMP>

<method xref="x-mbase://sets#Method-1"/>

<proof id="l1_p" for="l1" theory="sets">

<conclude id="l1_p_d1">

<CMP>a ∈ U ∪ V by definition of ∪.</CMP>

</conclude>

</proof>

</derive>

<derive id="l2">

<CMP>If a ∈ V , then a ∈ U ∪ V .</CMP>

<FMP>

<assumption id="l2_A"><CMP>a ∈ V .</CMP></assumption>

<conclusion id="l2_C"><CMP>a ∈ U ∪ V .</CMP></conclusion>

</FMP>

<method xref="x-mbase:sets#Method-2"/>

<proof id="l2_p" for="l2" theory="sets">

<conclude id="l2_p_d1">

<CMP>a ∈ U ∪ V by definition of ∪.</CMP>

</conclude>

</proof>

</derive>

<conclude id="t1_p_c_c1">

<CMP> We have considered both cases, so we have a ∈ U ∪ V .

</CMP>

</conclude>

</proof>

</conclude>

</proof>

Figure 3.19: A OMDoc representation of a proof by cases.

to define the derive elements. They contain an informal (natural language)
representation of the proof step in a multilingual CMP group and a specifi-
cation of the step in the formal proof data structure. This is given by the
following elements:

FMP This gives a formal representation of the claim made by this proof step

48

(as we have seen above, this is essentially a Gentzen-style sequent).
Local assumptions from the FMP should not be referenced to outside
the derive step they were made in. Thus, the derive step serves as a
grouping device for local assumptions. In Figure 3.19, the first derive
step is used to show a ∈ U ∪V from the local assumption a ∈ U , while
the second one introduces the implication.

method is an element that specifies a proof method or inference rule that
justifies the assertion made in the FMP element. It has an xref at-
tribute that points to the OMDoc definition id of the inference rule
or proof method.3 A method may have children, which are OMOBJ

elements, these act as parameters to the method, e.g. the repeated
universal instantiation method in Figure 3.18, where the parameters
are the terms to instantiate for the bound variables.

premise These are empty elements whose xref attribute is used to refer to
the proof- or local assumption nodes that the method was applied to
to yield this result. These attributes specify the DAG structure of the
proof.

proof If a derive step is a logically (or even mathematically) complex step
that can be expanded into sub-steps, then the embedded proof ele-
ment can be used to specify the sub-derivation.

This embedded proof allows us to specify generic markup for the
hierarchic structure of proofs. Note that the same effect as embedding
the proof element into a derive or conclude step can be obtained by
specifying the proof at top-level and using the for attribute to refer
to the identity of the enclosing proof step (given by its id attribute).

3.2.6 Abstract Data Types

Most specification languages for mathematical theories support definition
mechanisms for sets that are inductively generated by a set of constructors.
OMDoc supports abstract data types as a convenient shorthand for sets of
inductively defined objects and recursive functions on these.

3At the moment OMDoc does not provide markup for such objects, so that they should
best be represented by symbols with definition where the inference rule is explained in
the CMP, and (if appropriate) the FMP holds the corresponding sequent. A good alterna-
tive is to encapsulate system-specific encodings of the inference rules in private or code

elements and have the xref attribute point to these.

49

The adt element for abstract data types is a piece of special syntax
for the concise statement of such sets that follows the model used in the
emerging Casl (Common Abstract Specification Language [CoF98]) stan-
dard. There, abstract data types declare a set of sorts (inductively defined
sets), constructors (the sorts contain exactly the objects constructed only
by constructors), and selectors (partial inverses of the constructors) together
with type/sort information for the latter two.

An abstract data type is called free, iff there are no identities between
constructor terms, i.e. two objects represented by different constructor
terms can never be equal. An example of a free abstract data type is the
theory of natural numbers. It has a single sort Nat, two constructors zero

and suc for the successor function, and the selector pred for the predecessor
function. An example of an abstract data type that is not free is the theory
of finite sets given by the constructors emptyset and insert, since the set
{a} can be obtained by inserting a into the empty set an arbitrary (positive)
number of times. This kind of abstract data type is called generated, since it
only contains elements that are expressible in the constructors. An abstract
data type is called loose, if it contains elements besides the ones generated
by the constructors.

Element Attributes D Content

Required Optional C

adt id type,

style

+ CMP*, commonname*,

sortdef+

sortdef id kind,

scope,

style

– commonname*,

(constructor | insort)*,

recognizer?

constructor id type,

scope,

style

+ commonname*, argument*

argument sort + selector?

insort for –

selector id type,

scope,

kind,

total,

style

– commonname*

recognizer id type,

scope,

kind,

style

– commonname*

Figure 3.20: Abstract Data Types in OMDoc

50

In OMDoc, we use the adt element to specify abstract data types. It
has a type attribute that can have the values ’free’, ’generated’, and
’loose’ and contains one or more sortdef elements. For instance, we can
express the theory of natural numbers by the adt element in Figure 3.21.

A sortdef element is a highly condensed piece of syntax that declares
a sort (an inductively defined set, i.e. one that contains all objects that can
be written by a set of constructors). A sortdef element contains a set of
constructor and insort elements. The latter are empty elements which
refer to a sort declared elsewhere in a sortdef with their for attribute.
They specify that all the constructors that sort are also constructors for the
one defined in the parent sortdef.

The constructor elements specify the symbols that can be used to con-
struct the elements of its sort. Since a constructor is in general an n-ary
function, a constructor element contains n argument children that give the
argument sorts of this function. Note that n may be 0 and thus the construc-
tor element may be empty. Sometimes it is convenient to specify the inverses
of a constructor. For this OMDoc offers the possibility to add an empty
selector element to an argument, its attribute total specifies whether this
symbol is a total (value ’yes’) or a partial (value ’no’) function. Finally,
a sortdef element can contain a recognizer child that specifies a symbol
for a predicate that is true, iff its argument is of the respective sort.

Note that the sortdef, constructor, selector, and recognizer ele-
ments define symbols of the name specified by their id element in the con-
taining theory. To govern the visibility, they carry the attribute scope (with
values ’global’ and ’local’) and the attribute kind (with values ’type’,
’sort’, ’object’). Furthermore, they can have commonname children that
specify their common names.

To fortify our intuition, let us come back to our example of an abstract
data type for the natural numbers in Figure 3.21. The abstract data type
nat-adt is free and defines two sorts pos-nats and nats for the (positive)
natural numbers. The positive numbers (pos) are generated by the successor
function (which is a constructor) on the natural numbers (all positive natu-
rals are successors). On pos, the inverse pred of succ is total. The set nats
of all natural numbers is defined to be the union of pos and the constructor
zero. Note that this definition implies the five well-known Peano Axioms:
the first two specify the constructors, the third and fourth exclude identi-
ties between constructor terms, while the induction axiom states that nats
is generated by zero and succ. The document that contains the nat-adt

could also contain the symbols and axioms defined implicitly in the adt el-
ement explicitly as symbol and axiom elements for reference. These would

51

<adt id="nat-adt" type="free">

<metadata>

<Title>Natural Number Theory</Title>

<Description>The Peano Axiomatization of Natural Numbers</Description>

</metadata>

<sortdef id="pos-nats">

<commonname>The set of positive natural numbers</commonname>

<constructor id="succ">

<commonname>The successor function</commonname>

<argument sort="nats">

<selector total="yes" id="pred">

<commonname>The predecessor function</commonname>

</selector>

</argument>

<recognizer id="positive" scope="global">

<commonname>

The recognizer predicate for positive natural numbers.

</commonname>

</recognizer>

</constructor>

</sortdef>

<sortdef id="nats">

<commonname>The set of natural numbers</commonname>

<constructor id="zero">

<commonname>The number zero</commonname>

</constructor>

<insort for="pos-nats"/>

</sortdef>

</adt>

Figure 3.21: The Natural numbers using adt in OMDoc

then carry the generated-by attribute with value nat-adt.

3.3 Theories as Mathematical Contexts

It is a key observation that mathematical texts can only be understood with
respect to a particular mathematical context. In current (non-OMDoc)
documents the reader has to infer the context from the document. Since
OMDoc is concerned with semantic markup, it makes the notion of math-
ematical context explicit in the familiar notion of a mathematical theory:
OMDoc requires that all mathematical statements explicitly reference a
mathematical theory which situates them into an explicit context.

Theories are specified by the theory element in OMDoc, which has

52

a required id attribute and contains a commonname element that specifies
short keywords or key phrases. After these any top-level OMDoc element
can occur, except theory elements themselves: OMDoc1.1 does not allow
theories to nest; moreover, theory elements can contain imports elements
to specify inheritance (see section 3.3.1).

Element Attributes D Content

Required Optional C

theory id style + commonname*, CMP*,

(statement | inclusion,

imports)*

imports id, from type,

hiding,

style

– CMP*, morphism?

morphism id, base,

style

– requation*

inclusion for –

theory-inclusion id, from,

to, by

style + (morphism,

decomposition?)

axiom-inclusion id, from,

to

style + morphism?, (path-just |

obligation*)

obligation induced-by,

assertion

– EMPTY

decompo-sition links – EMPTY

path-just local,

globals

– EMPTY

Figure 3.22: Complex Theories in OMDoc

We say that symbol, axiom, definition, and type elements are con-
stitutive for a given theory, since changing this information will yield a
different theory (with different mathematical properties, see the discussion
in section 2.4). Therefore these theory-constitutive elements are not allowed
as top-level statements, but must be contained as children in a theory ele-
ment. In particular, a symbol element must occur in a theory environment,
since both the theory id and the symbol id are needed to allow referring
back to this symbol in an OMS element. For instance the symbol declaration
in Figure 3.8 can be referenced as <OMS cd="elal" name="monoid"/>, if it
occurs in a theory with id with value elal for elementary algebra.

The other mathematical statements defined in section 3.2 we call non-
constitutive statements, since they can be derived from the material spec-
ified in a theory, which we will call their home theory. They are allowed
to occur outside their home theory in OMDoc documents (e.g. as top-

53

level elements), however, if they do, they must reference their home theory
in a special theory attribute. The division of statements into constitutive
and non-constitutive ones and the encapsulation of constitutive elements in
theory elements add a certain measure of safety to the knowledge manage-
ment aspect of OMDoc. Since Xml elements cannot straddle document
borders, all constitutive parts of a theory must be contained in a single
document; nothing can be added later (by other authors), since this would
change the meaning of the theory on which other documents may depend
on.

Theories also serve another purpose in OMDoc: In the examples we
have already seen that OMDoc documents contain definitions of math-
ematical concepts, which need to be referred to using OpenMath sym-
bols. In particular, documents describing theories even reference Open-
Math symbols they define themselves. Therefore we adapt the Open-
Math standard [CC98] that requires, that OpenMath symbols are defined
by CDDefinition elements in OpenMath content dictionaries by allowing
them to be declared by symbol elements in theory elements in OMDoc doc-
uments. Here the theory name specified in the id attribute of the theory

element takes the place of the CDname defined in the content dictionary.
Thus OMDoc serves as a drop-in replacement for OpenMath content dic-
tionaries (see [Koh00b] for further discussion).

An alternative to this would have been to generate OpenMath content
dictionaries from OMDoc theories. This can be done (both by the MBase
system [FK00, KF00], and by specialized XslT style sheets), but seems an
unnecessary complication.

3.3.1 Simple Inheritance

The main idea behind structured theories and specification is, that not all
definitions and axioms need to be explicitly stated in a theory; they can be
inherited from other theories, possibly transported by a signature morphism.
The inheritance information is stated in the imports element in OMDoc.

The imports element has a from attribute, which specifies the theory
which exports the formulae (the source theory). It has another attribute
type that we will discuss in section 3.3.4, since here only the default value
’global’ is relevant.

In Figure 3.23 we have specified three algebraic theories that gradually
build up a theory of groups importing symbols and axioms from earlier theo-
ries and adding their own content. The theory semigroup provides symbols
for an operation op on a base set set and has the axioms for closure and

54

associativity of op. The theory of monoids imports these without modifica-
tion. Note that there is now a symbol set in the theory monoid that can be

<theory id="semigroup">

<symbol id="set"/>

<symbol id="op"/>

<axiom id="closed"> ... </axiom>

<axiom id="assoc"> ... </axiom>

</theory>

<theory id="monoid">

<imports id="mis" from="semigroup"/>

<symbol id="neut"/>

<axiom id="left-unit">

<CMP>

<OMOBJ><OMS cd="monoid" name="neut"/></OMOBJ> is a left unit for

<OMOBJ><OMS cd="monoid" name="op"/></OMOBJ>.

</CMP>

<FMP>∀x ∈ set.op(x,neut) = x</FMP>

</axiom>

</theory>

<theory id="group">

<imports id="gim" from="monoid"/>

<symbol id="inv"/>

<axiom id="left-inv">

<CMP>

For every object <OMOBJ><OMV name="X"/></OMOBJ> in

<OMOBJ><OMS cd="group" name="set"/></OMOBJ> there is an object

<OMOBJ><OMA><OMS cd="group" name="inv"/><OMV name="X"/></OMA></OMOBJ>

which is an inverse wrt. <OMOBJ><OMS cd="group" name="op"/></OMOBJ>.

</CMP>

</axiom>

</theory>

Figure 3.23: A structured development of algebraic theories

referenced by <OMS cd="monoid" name="set"/> and shares all properties
of the symbol <OMS cd="semigroup" name="set"/> by inheritance, but is
not identical with it (and analogously one for op). In our example, they are
used to state the left-unit axiom. The theory monoid then proceeds to
add a symbol neut and an axiom that states that it acts as a left unit with
respect to set and op. The theory group continues this process by adding
a symbol inv for the function that gives inverses and an axiom that states
its meaning.

55

The example in Figure 3.23 shows that with the notion of theory inher-
itance it is possible to re-use parts of theories and add structure to speci-
fications. For instance it would be very simple to add a theory of Abelian
semigroups by adding a commutativity axiom.

The set of axioms and definitions available for use in proofs in the import-
ing theory consists of the ones directly specified as axiom and definition

elements in the target theory itself (we speak of local axioms and definitions
in this case) and the ones that are inherited from the source theory. Note
that the inherited axioms and definitions can consist of the local ones in
the source theory and the ones that are inherited there. As a consequence,
all theorems, proofs, and proof methods of the source theory can be (after
translation) be used in the importing theory.

Classical mathematics views theories as simply the set of theorems (propo-
sitions that can be proven from the axioms and definitions), abstracting from
the structure we have given it in OMDoc. In this view, the source theory is
included in the importing theory, therefore, we will call the relation specified
by the imports element a theory inclusion.

3.3.2 Inheritance via Translations

Note that not in all situations it is sufficient to import symbols and ax-
ioms without modification. If we wanted to continue the algebraic hierarchy
in Figure 3.23 with a theory of rings, then we would like to inherit the
additive group structure from the theory group and the structure of a mul-
tiplicative monoid from the theory monoid. As this would lead to name
clashes OMDoc allows theory inheritance via a translation function called
morphism. To specify this function the imports element can have a child
element morphism, which recursively specifies a function by a set of recur-
sive equations using the requation element described above. As morphisms
often contain common prefixes, the morphism element has an optional base
attribute, which points to another morphism, which is taken to be the base
of this morphism. The intended meaning is that the new morphism coin-
cides as a function with the base morphism, wherever the specified pattern

elements do not match, otherwise their corresponding value elements take
precedence over those in the base morphism.

With the notion of theory inheritance via a morphism, we can e.g. define
a theory of rings where rings are structures (R,+, 0,−, ∗, 1) by importing
from a group (M, ◦, e, i) via the morphism {M 7→ R, ◦ 7→ +, e 7→ 0, i 7→ −}
and from a monoid (M, ◦, e) via {M 7→ R∗, ◦ 7→ ∗, e 7→ 1}, where R∗ is
R without 0 (as defined in the theory of monoids). Figure 3.24 gives the

56

<theory id="ring">

<symbol id="ring.set"/><symbol id="ring.plus"/><symbol id="ring.zero"/>

<symbol id="ring.setstar"/><symbol id="ring.times"/><symbol id="ring.one"/>

<imports id="ring.add.import" from="group" type="global">

<morphism>

<requation>

<pattern><OMS cd="group" name="set"/></pattern>

<value><OMS cd="ring" name="ring.set"/></value>

</requation>

<requation>

<pattern><OMS cd="group" name="op"/></pattern>

<value><OMS cd="ring" name="ring.plus"/></value>

</requation>

<requation>

<pattern><OMS cd="group" name="neut"/></pattern>

<value><OMS cd="ring" name="ring.zero"/></value>

</requation>

</morphism>

</imports>

<imports id="ring.mult.import" from="monoid" type="global">

<morphism>

<requation>

<pattern><OMS cd="monoid" name="set"/></pattern>

<value><OMS cd="ring" name="ring.setstar"/></value>

</requation>

<requation>

<pattern><OMS cd="monoid" name="op"/></pattern>

<value><OMS cd="ring" name="ring.times"/></value>

</requation>

<requation>

<pattern><OMS cd="monoid" name="neut"/></pattern>

<value><OMS cd="ring" name="ring.one"/></value>

</requation>

</morphism>

</imports>

<definition id="ring.setstar.def" for="ring.setstar">

<CMP> <OMOBJ><OMS cd="ring" name="ring.setstar"/></OMOBJ> is

<OMOBJ><OMS cd="ring" name="ring.set"/></OMOBJ> without

<OMOBJ><OMS cd="ring" name="ring.zero"/></OMOBJ>.

</CMP>

</definition>

<axiom id="ring.distribution">

<CMP><OMOBJ><OMS cd="monoid" name="plus"></OMOBJ> distributes over

<OMOBJ><OMS cd="monoid" name="times"></OMOBJ>

</CMP>

</axiom>

</theory>

Figure 3.24: A theory of rings by inheritance via renaming

OMDoc representation of this exercise.
Finally, it is possible to hide symbols from the source theory by specifying

them in the hiding attribute. The intended meaning is that the underlying

57

signature mapping is defined (total) on all symbols in the source theory
except on the hidden ones. This allows to define symbols that are local to
a given theory, which helps achieve data protection. Of course, if we hide a
sort symbol, we also have to hide all symbols using it (see [CoF98, MAH01]
for details).

Even though the relation induced by the imports elements is not a
simple subset relation any more, we will still keep the name theory inclusion
for it. They have been called theory interpretations or theory morphisms
elsewhere [Far93].

3.3.3 Statements about Theories

The theory inclusions discussed so far were definitional in nature; the inclu-
sion relation among the sets of theorems was induced by the act of importing
the relevant axioms and definitions from the source theory. We will call the
importing theory the target theory. The benefit of having the theory in-
clusion is that all theorems, proofs, and proof methods of the source theory
can be used (after translation) in the target theory. Obviously the transfer
approach only depends on the theorem inclusion property, and we can ex-
tend its utility by augmenting the theory graph by more theory morphisms
than just the definitional ones (see [FGT93] for a description of the IMPS
theorem proving system that makes heavy use of this idea).

Following [Hut00] we structure a collection of theories as a graph – devel-
opment graph there – where the nodes are theories and the links are theory
inclusions (definitional and postulated ones).

There are two top-level elements for postulating relations among theories
in OMDoc. The theory-inclusion element states that the source theory
as included (modulo translation) in the target theory. It has the attributes
from (it points to the source theory), to (this points to target theory). The
children are a CMP group for descriptive text and a morphism child element as
described above to define the translation function. The theory-inclusion

element has a local variant, the axiom-inclusion element, that only states
that the local axioms and definitions are theorems of the target theory.

Figure 3.25 shows a theory inclusion from the theory group defined in
Figure 3.23 to itself. The morphism just maps each element of the base set
to its inverse. A good application for this kind of theory morphism is to
import claims for symmetric (with respect to the function inv, which serves
as an involution) cases via this theory morphism to avoid explicitly having
to prove them.

The axiom-inclusion has the same attributes as theory-inclusion.

58

<theory-inclusion id="ti1" from="group" to="group"

by="inv-closed inv-assoc inv-left-unit inv-left-inv">

<morphism>

<requation>

<pattern><OMA><OMS cd="group" name="inv"/><OMV name="X"/></OMA></pattern>

<value><OMV name="X"/></value>

</requation>

<requation>

<pattern><OMV name="X"/></pattern>

<value><OMA><OMS cd="group" name="inv"/><OMV name="X"/></OMA></value>

</requation>

</morphism>

</theory-inclusion>

<assertion id="inv-closed">... </assertion>

<assertion id="inv-assoc">... </assertion>

<assertion id="inv-left-unit">... </assertion>

<assertion id="inv-left-inv">... </assertion>

Figure 3.25: A theory inclusion for groups

Furthermore, it can have children that justify that this relation holds, much
like a proof justifies that an assertion element does about some property
of mathematical objects. Concretely, a axiom-inclusion can hold a set of
obligation children, or a single path-just child after the children allowed
in theory-inclusion.

An obligation is an empty element that points to the proof obligation,
i.e. an assertion hat states that the axiom or definition specified by the
induced-by (translated by the morphism in the parent axiom-inclusion) is
valid in the target theory. A path-just element justifies an axiom-inclusion

by reference to other axiom- or theory-inclusions. The intuition is that
the local axioms and definitions are included in a theory, if there is a chain
of

S
σ−→ T1

σ1−→ T2
σ2−→ . . . Tn

σn−→ T

such that the S
σ−→ T1 is an axiom-inclusion with morphism σ, the Ti

σi−→
Ti+1 are theory-inclusions with morphism σi, and σn ◦ · · · ◦ σ1 ◦ σ is the
morphism in the parent axiom-inclusion. We call this situation, where a
theory T can be reached by an axiom-inclusion with a subsequent chain
of theory-inclusions a local chain (with morphism σn ◦ · · · ◦σ1 ◦σ). Local
chains are encoded in the empty path-just element that has the attributes
local (for the first axiom-inclusion) and the attribute globals, which
contains a whitespace-separated list of pointers to theory-inclusions.

The relevance of the axiom-inclusion elements is that they can be used
to justify theory-inclusions: A theory-inclusion S

σ−→ T is valid in a

59

development graph, iff for any theory U that can reach S by a local chain
with morphism θ there is an axiom-inclusion from U to T with morphism
σ ◦ θ. This situation is encoded in the empty top-level decomposition ele-
ment, which has the attributes for (which points to the theory-inclusion
it justifies) and the attribute links, that contains a whitespace-separated
list of pointers to axiom-inclusions or theory-inclusions.

In Figure 3.26 we have worked a simple example that shows a situation
where all these elements are used. On the basis of theories th1 and th2,
theory c1 is built up via theories a1 and b1. Similarly, theory c2 via a2 and
b2, and theory-inclusion tic is postulated from c1 to c2. A decomposition

justifies it by the axiom-inclusions cic, bic, aic from the theories a1, b1,
c1 to c2, since these can reach c2 by local chains. Note that theories th1

and th2 reach c2 by local chains, but there the necessary axiom-inclusions
are given by the theory-inclusion induced by the successive imports into c2.
The axiom-inclusion aic is justified by the local chain which starts with
the axiom-inclusion aia and then uses the theory inclusion induced by
the import im1c2 in theory c2. The axiom-inclusion aia in turn is justified
by the proof obligations for the axioms axa11 and axa12 in theory a1.

3.3.4 Parametric theories in OMDoc

Very often, the inheritence mechanisms presented so far do not suffice to
model mathematical practice, since they do not allow for parameterization.
In mathematics, the technique of studying certain aspects of complex math-
ematical objects in isolation by factoring out the remaining objects into
generic parameters that can later be instantiated with concrete values is a
key method for reducing the complexity inherent in the reasoning process.
The technique also helps to modularize and reuse parts of specifications and
theories. Before we discuss the parameterization issues in OMDoc let us
look at a concrete example: a theory of lists of natural numbers.

We first specify a theory of lists that is generic in the elements, then we
will instantiate this by applying this theory to the special element theory of
natural numbers to obtain the intended theory of lists of natural numbers.
The advantage of this approach is that we can now re-use the generic theory
of lists to apply it to other element theories like that of sets of natural
numbers to obtain a theory of lists of sets of natural numbers. In algebraic
specification languages, we speak of parametric theories, i.e. the theory
of lists has a formal parameter (in our example the set of elements) that can
be instantiated later with concrete values to get a theory instances (in our
example the theory of lists of natural numbers). We call this process theory

60

th1 th2

a1

b1

c1

a2

b2

c2

aia

bib

cic

tic

theory-inclusion

axiom-inclusion

imports

<theory id="th1">...</theory> <theory id="th2">...</theory>

<theory id="a1"> <theory id="b1">
<imports id="ima1" from="th1"/> <imports id="imb1" from="th2"/>
<axiom id="axa11"> ... </axiom> <axiom id="axb1"> ... </axiom>
<axiom id="axa12"> ... </axiom> </theory>
</theory>

<theory id="a2"> <theory id="b2">
<imports id="im1a2" from="th1"/> <imports id="imb2"a from="th2"/>
<imports id="im2a2" from="th2"/>
<axiom id="axa2"> ... </axiom> <axiom id="axb2"> ... </axiom>
</theory> </theory>

<theory id="c1"> <theory id="c2">
<imports id="im1c1" from="a1"/> <imports id="im1c2"a from="a2"/>
<imports id="im2c1" from="b1"/> <imports id="im2c2"a from="b2"/>
<axiom id="axc1"> ... </axiom> <axiom id="axc1"> ... </axiom>
</theory> </theory>

<theory-inclusion id="tic" from="th1" to="th2"/>
<decomposition id="ti1d" for="ti1" links="aic bic cic"/>

<axiom-inclusion id="aic" from="a1" to="c2">
<path-just local="aia" globals="im1c2"/>
</axiom-inclusion>

<axiom-inclusion id="bic" from="a1" to="c2">
<path-just local="bib" globals="im2c2"/>
</axiom-inclusion>

<axiom-inclusion id="aia" from="a1" to="a2">
<obligation induced-by="axa11" assertion="th-axa11"/>
<obligation induced-by="axa12" assertion="th-axa12"/>
</axiom-inclusion>

<axiom-inclusion id="bib" from="b1" to="b2">
<obligation induced-by="axb1" assertion="th-axb1"/>
</axiom-inclusion>

<axiom-inclusion id="cic" from="c1" to="c2">
<obligation induced-by="axc1" assertion="th-axc1"/>
</axiom-inclusion>

Figure 3.26: A development graph with theory inclusion

actualization.

Parts of this process can be modeled in the OMDoc development graph

61

nat param

nat-list list

inclusion

imports

imports

imports

<theory id="param">

<symbol id="elem" type="sort"/>

<symbol id="ord"/>

<axiom id="toset"><CMP>\(ord\) is a total order on \(elem\).</CMP></axiom>

</theory>

<assertion id="ord-nat" theory="nat">

<CMP>\(geq\) is a total order on \(nats\).<OMOBJ>.

</CMP>

<assertion>

<theory id="list">

<imports id="list.im" from="param"/>

<symbol id="list-sort" type="sort"/>

<symbol id="cons"/><symbol id="nil"/>

<symbol id="ordered"/>

</theory>

<theory id="nat-list">

<imports id="nat-list.im-nat" from="nat"/>

<imports id="nat-list.im-elt" from="list" type="local">

<morphism id="elem-nat">

<requation>

<pattern><OMOBJ><OMS cd="param" name="elem"/></OMOBJ></pattern>

<value><OMOBJ><OMS cd="nat.thy" name="nats"/></OMOBJ></value>

</requation>

</morphism>

</imports>

<inclusion via="elem-nat-incl"/>

</theory>

<axiom-inclusion id="elem-nat-incl" from="nat" to="param">

<morphism id="elem-nat-incl-morph" base="elem-nat"/>

<obligation induced-by="toset" assertion="ord-nat"/>

</axiom-inclusion>

<theory-inclusion id="nat-natlist-incl" from="list" to="nat-list">

<morphism id="nat-natlist-incl-morph" base="elem-nat"/>

</theory-inclusion>

<decomposition id="dec" for="nat-natlist-incl" links="elem-nat-incl"/>

Figure 3.27: A Structured Specification of Lists

62

model of theory inheritance by constructing dedicated parameter theories.
Consider the situation in Figure 3.27, where we have theories nat of natu-
ral numbers (for instance one that contains the abstract data type in Fig-
ure 3.21) and a generic theory list of lists that imports its elements from
a generic parameter theory param. There the theory nat-list of lists of
natural numbers is built up by importing from the theories nat and list

making the nat the actual parameter theory in the process. Note that the
attribute type of the imports element nat-list.im-elt is set to ’local’,
since we do not want to import the local axioms of the theory list and not
the whole theory list (which would include the axioms from param). The
effect of the actualization comes from the morphism elem-nat in the import
of List that renames the symbol elem (from theory param) with nats (from
theory nat).

Note that this naive encoding of actualization does not always lead to
the expected result that there is a theory inclusion from the theory list to
nat-list. Say we are actually trying to specify a theory of ordered lists,
then we need an ordering relation on the set elem of elements. We introduce
a symbol ord and the necessary axiom in the theory param to make elem a
totally ordered set. As param is imported into list, these are available to
specify ordered lists in the theory list. Now, if we do the actualization from
List to nat-list, we have to ensure that the parameter theory nat also
has a suitable ordering function. This can be specified using the OMDoc
inclusion element. inclusion is an empty element whose via attribute
points to an axiom inclusion from the generic parameter theory to the actual
parameter theory whose morphism extends the import morphism of the
parameter theory. In our examples we can see that the axiom-inclusion

specified in the inclusion element is sufficient to guarantee the theory
inclusion from nat to nat-list that states the correctness of the parameter
actualization. For more details see [Hut00].

Note that this mechanism for parametric theories only works in situa-
tions with an a-priori finite number of possible theory instances, since these
have to be explicitly generated in advance. However theorem provers like
the Pvs system [ORS92] also allow to quantify over variables that are later
used to instantiate theory parameters; in this case the number of theory
instances is potentially infinite, and cannot be directly be represented in
OMDoc. Unfortunately this problem cannot simply be fixed by adding ad-
ditional representation concepts to OMDoc, since it breaks a fundamental
assumption in OpenMath, namely that theories can always explicitly be
represented (as content dictionaries), and that this can be done ahead of us-
ing them. Thus extending MBase/OMDoc to this form of mathematical

63

practice will reconciling even something as fundamental as the OpenMath
standard with mathematical practice. Note that the concept of parametric
theories cannot easily be dismissed as representational aberrations; the work
on so-called functors in the Theorema project http://www.theorema.org

views parametric theories as the principal building blocks and successfully
uses this higher-order structure to guide theorem proving.

3.4 Auxiliary Elements

Up to now, we have been mainly concerned with providing elements for
marking up the inherent structure of mathematical knowledge in mathemat-
ical statements and theories. We have not bothered yet about representing
the structure of mathematical documents themselves (as structured text en-
tities), or the information that is necessary transforming the mathematics
into formats suitable for communicating with humans or mathematical soft-
ware systems. We will introduce the necessary infrastructure in this section.

In 3.4.1 we will present OMDoc elements for representing the text struc-
ture of mathematical documents as structured text entities. This makes it
possible to transform legacy documents into OMDoc form without losing
information: the paragraphs of the input document are classified into math-
ematical statements wherever possible and the remaining are represented as
omtext. The text structure of the input document (paragraphs, sections,
and chapters) is represented by omgroup elements of suitable types; some of
these may also be reflected in the theory structure organizing the knowledge.

In 3.4.2 we introduce an infrastructure for interfacing OMDoc docu-
ments with the Internet in general and mathematical software systems in
particular. The application of this is that we can generate representations
from OMDoc documents where formulae, statements or even theories that
are active components that can directly be manipulated by the user or math-
ematical software systems.

Finally, we present a present a limited infrastructure for mathemati-
cal exercises in section 3.4.4. This allows to use OMDoc as a basis for
mathematical education and assessment. Note that the infrastructure in-
troduced here is relatively little developed, and born out of the immedi-
ate need of OMDoc projects. We envision that in the future we will use
specialized Xml vocabularies like the IMS standard for questions and exer-
cises [SSBL01].

64

http://www.theorema.org

3.4.1 Preservation of Text Structure

Like other documents, mathematical ones are often divided into units like
chapters, sections, and paragraphs by tags and nesting information. OM-
Doc makes these document relations explicit with specialized omgroup ele-
ments. These have an attribute type that can take values including ’item-

ize’, ’sequence’, ’enumerate’ with the obvious meanings as text groups.
The type attribute can be used to specify other grouping devices, such as
’dataset’ for table and ’theory-collection’, which we will discuss else-
where in this document (consult the attribute table on in appendix D).

We consider the omdoc element as an implicit omgroup, in order to allow
plugging together different different OMDoc documents as omgroups. As a
consequence, the omdoc element has also has an type attribute that can take
the same values as that for the omgroup element. omgroup elements can ap-
pear at top-level, and can contain any top-level elements. As the document
structure need not be a tree in hypertext documents, omgroup elements also
allow ref elements whose xref attribute can be used to reference OMDoc
elements defined elsewhere. The type attribute can be used to describe the
reference type. Currently OMDoc supports two values: ’include’ (the de-
fault) for in-text replacement and ’cite’ for a proper reference. The first
kind of reference requires the OMDoc application to process the document
as if the ref element were replaced with the OMDoc fragment specified
in the xref. The processing of the second type is application specific it is
recommended to generated an appropriate label and (optionally) supply a
hyper-reference. There may be more supported values for type in time.

This structuring approach allows to “flatten” the tree structure in a
document into a list of leaves and relation declarations (see Figure 3.28
for an example). It also makes it possible to have more than one “view”
on a document using omgroup structures that reference to a shared set of
OMDoc elements as leaves.

While the OMDoc approach to specifying document structure is a
much more flexible (database-like) approach to representing structured doc-
uments4, than the tree model, it puts a much heavier load on a system for

4The simple tree model is sufficient for simple markup of existing mathematical texts
and to replay them verbatim in a browser, but is insufficient e.g. for generating indi-
vidualized presentations at multiple levels of abstractions from the representation. The
OMDoc text model – if taken to its extreme – allows to specify the respective role and
contributions of smaller text units, even down to the sub-sentence level, and make the
structure of mathematical texts “machine understandable”. Thus, an advanced presenta-
tion engine like the ActiveMath system [SBC+00] can – for instance – extract document
fragments based on the preferences of the respective user.

65

<omgroup id="text"

type="sequence">

<omtext id="t1">T1</omtext>

<omgroup id="enum"

type="enumeration">

<omtext id="t2">T2</omtext>

<omtext id="t3">T3</omtext>

</omgroup>

<omtext id="t4">T4</omtext>

</omgroup>

←→

<omtext id="t1">T1</omtext>

<omtext id="t2">T2</omtext>

<omtext id="t3">T3</omtext>

<omtext id="t4">T4</omtext>

<omgroup id="text" type="sequence">

<ref xref="t1"/>

<ref xref="enum"/>

<ref xref="t4"/>

</omgroup>

<omgroup id="enum" type="enumeration">

<ref xref="t2"/>

<ref xref="t3"/>

</omgroup>

Figure 3.28: Flattening a tree structure

presenting the text to humans. In essence the presentation system must
be able to recover the left representation from the right one in Figure 3.28.
Generally, any OMDoc element defines a fragment of the OMDoc it is
contained in: everything that this element contains and (recursively) those
elements that are reached from it by following the cross-references. In par-
ticular, the text fragment corresponding to the element with (id="text")
in the right OMDoc of Figure 3.28 is just the one on the right.

Element Attributes D Content

Required Optional C

omgroup id type,

style

+ OMDoc element

ref xref, type –

Figure 3.29: OMDoc elements for specifying document structure.

The omgroup element has other uses in OMDoc, it can be used specify
data sets, a content-oriented generalization of tables to arbitrary dimen-
sions. OMDoc views tables as instances of sets of data structured into k

dimensions and reserves the value ’dataset’ for this purpose. Conventional
tables are just the two-dimensional special case.

Let us analyze this approach using the example in Figure 3.30, which
is a k = 2-dimensional special case. The n = 2 × m = 3-table in the top
is modeled as the outer omgroup element, the value ’labeled-dataset’

signifies that this is a table where the axes are labeled. The name of the table
can be given in the metadata/Title. The outer omgroup element organizes

66

name a1 a2 a3

b1 e11 e12 e13
b2 e21 e22 e23

<omgroup id="example-table" type="labeled-dataset">

<metadata><Title>name</Title></metadata>

<omgroup id="f1" type="dataset">

<omgroup type="dataset"><omtext><CMP>a1</CMP></omtext></omgroup>

<omgroup type="dataset"><omtext><CMP>a2</CMP></omtext></omgroup>

<omgroup type="dataset"><omtext><CMP>a3</CMP></omtext></omgroup>

</omgroup>

<omgroup id="f2" type="dataset">

<omgroup type="dataset"><omtext><CMP>b1</CMP></omtext></omgroup>

<omgroup type="dataset"><omtext><CMP>b2</CMP></omtext></omgroup>

</omgroup>

<omgroup id="data" type="dataset">

<omgroup id="dc1" type="dataset">

<omgroup type="dataset"><omtext><CMP>e11</CMP></omtext></omgroup>

<omgroup type="dataset"><omtext><CMP>e12</CMP></omtext></omgroup>

<omgroup type="dataset"><omtext><CMP>e13</CMP></omtext></omgroup>

</omgroup>

<omgroup id="dc2" type="dataset">

<omgroup type="dataset"><omtext><CMP>e21</CMP></omtext></omgroup>

<omgroup type="dataset"><omtext><CMP>e22</CMP></omtext></omgroup>

<omgroup type="dataset"><omtext><CMP>e23</CMP></omtext></omgroup>

</omgroup>

</omgroup>

</omgroup>

Figure 3.30: Specifying Tables with <omgroup type="dataset">

the table information into two parts. The first part (the first k elements)
contains the label information and the last element the data proper. All of
these elements are omgroups of type ’dataset’, which signifies that they do
not contain label information. The nesting depth of the omgroup elements
corresponds to the dimension of the data sets involved. The k label elements
are k−1 = 1-dimensional data sets in our example, while the body is k = 2-
dimensional, and is organized into n = 2 rows, which again are omgroups
of type ’dataset’ (one-dimensional tables). The generalization for higher
dimensions is obvious (e.g. for a k = 3-dimensional l×n×m-array we would
have an omgroup that has a n×m-table of labels like the one in Figure 3.30,
followed k such omgroup elements for the k levels). Note that the final
table entries are modeled as 0-dimensional data sets, and thus contain a
seemingly spurious omgroup. This makes the approach more flexible (we

67

can have structured text objects in table entries) and more uniform (and
thus entails better substitution properties).

This content-based approach makes the components of tables more ex-
plicit than presentation-based ones. In particular, we can reference individ-
ual parts like rows and columns by their id attributes for later reference. We
can also add metadata to sub-structures like labeling of faces of the tables,
e.g. the face f2 could have a metadata element with a Description that
says that the data are temperatures in degree Celsius.

Of course, the ’dataset’ omgroups only specify the content of the tables,
the concrete appearance in the output format generated will be determined
by a presentation component.

3.4.2 Non-Xml Data and Program Code in OMDoc

The OMDoc elements we have presented standardize the representation
of general mathematical knowledge. Since we have taken care to allow the
formal representation of mathematical objects at every level, this is a repre-
sentational infrastructure that is sufficient as an output and library format
for mathematical software systems like computer algebra systems, theorem
provers, or theory development systems. In particular, having a standard-
ized output and and library format will enhance system interoperability, and
allows to build and deploy general storage and library management systems
like MBase (see 4.3).

However, most mathematical software systems need to store and com-
municate data, which is system-specific, but may be relevant to more than
user. Examples of this are pieces of program code, like tactics or proof
search heuristic of tactical theorem provers or linguistic data of proof pre-
sentation systems. Only if these data can be integrated into OMDoc, will it
become a full storage and communication format for mathematical software
systems. One characteristic of such system-specific data is that it is often
not in Xml syntax, or its format is not fixed enough to warrant for a general
Xml encoding.

For this kind of data, OMDoc provides the private and code elements.
Their attributes contain metadata information identifying system require-
ments and relations to other OMDoc elements. We will first describe the
shared attributes and then describe the elements themselves.

id (required) for identification.

theory this optional attribute allows the specification of the mathematical
theory (see section 3.3) that the data is associated with.

68

Element Attributes D Content

Required Optional C

omlet id,

argstr,

type,

function,

action,

data,

width,

height,

style

+ CMP content

private id, for,

theory,

pto,

pto-version,

requires,

type,

replaces,

style

+ CMP*, data+

code id,

theory

id, for,

theory,

pto,

pto-version,

requires,

type,

classid,

codebase,

style

+ CMP*, input?, output?,

effect?, data+

input – CMP*

output – CMP*

effect – CMP*

data format,

href, size

– <![CDATA[...]]>

Figure 3.31: The OMDoc Auxiliary Elements for non-Xml Data

for which allows to attach the data to some other OMDoc element. At-
taching private elements to OMDoc elements is the main mechanism
for system-specific extension of OMDoc.

pto is a whitespace-separated list of token names which specifies the set
of systems to which the data are private. The intention of this field
is that a private element is visible to all systems, but should only
manipulated by a system that are mentioned here.

69

pto-version is a whitespace-separated list of tokens for version numbers;
This only makes sense, if the value of the corresponding pto is a single-
ton. Specifying this may be necessary, if the data or even their format
change with versions.

type the type of the data, the meaning of these fields is determined by the
system itself.

requires specifies the identifiers of the elements that the data depend upon,
which will often be code elements. This allows to factor private data
into smaller parts, allowing more flexible data storage and retrieval.
This is especially interesting for program code or private data that
relies on program code. This can broken up into procedures and the
call-hierarchy can be encoded in requires attributes. Based on this
information, a storage application based on OMDoc can then always
communicate a minimal complete code set to the requesting applica-
tion.

The private element is intended for system-specific data that is not
program code. It contains a metadata element and a set of data elements
that contain or reference the actual data. The private element adds the
replaces attribute to those described above. This specifies the identifiers
(given in the id attribute) of OMDoc elements that are subsumed by the
information in the private element. A special case is the empty private
element (empty data element), that can be used to specify that certain
OMDoc elements are irrelevant to a given application.

The data element contains the data in a CDATA section. It has the at-
tribute format to specify the format the data are in, e.g. image/jpeg or
image/gif for image data, binary for system-specific binary data, text/plain
for text data, etc. It is good practice to use the MIME types for this pur-
pose, wherever applicable. In a private or code element, the data elements
must differ in their format attribute. If the content of this field is too large
to store directly in the OMDoc or changes often, then it can be substituted
by a link, specified in the href attribute. The optional size attribute can
be used to specify the size of the outside resource.

The code element is used for embedding pieces of program code into an
OMDoc document. This element has the attributes described above plus
attributes codebase and classid, if it contains Java code. It contains the
documentation elements input, output, and effect that specify the be-
havior of the procedure defined by the code fragment. The input element

70

describes the structure and scope of the input arguments, output the out-
puts produced on these elements, and effect any side effects the procedure
may have. They contain a multilingual CMP elements with an optional FMP
for a formal description. The latter may be used for program verification
purposes. If any of these elements are missing it means that we may not
make any assumptions about them, not that there are no inputs, outputs or
effects. For instance, to specify that a procedure has no side-effects we need
to specify something like <effect><CMP>None.</CMP></effect>. These el-
ements are followed by a set of data elements that contain or cross-reference
the program code itself. Figure 3.33 shows an example of a code element
used to store Java code for an applet.

3.4.3 Applets in OMDoc

Web-based text markup formats like HtML have a concept of an applet, i.e.
programs that can in some way executed in the browser during document
manipulation. This one of the primary ways used to enliven parts of the
document.

<CMP>The missing parts are

<omlet type="link" argstr="file://missing.html">here (html)</omlet>.

For the mathematical background see

<omlet type="preslink" argstr="file://back.omdoc">this</omlet>.

</CMP>

Figure 3.32: Some hyperlinks an omlet.

In OMDoc, we use the omlet element for applets and generalizes the
applet concept in two ways: The computational engine is not restricted to
plug-ins of the browser and the program code can be included in the OMDoc
document, making document-centered computation easier to manage.

The simplest application of omlet elements is the specification of hyper-
links. Figure 3.32 shows two. The first one is a very simple hyperlink to a
HtML file, the second one is a hyperlink to an OMDoc document, that
will have to be translated into the current presentation format before it can
be viewed by the user. Since hyperlinks are so important in mathematical
documents, we reserve the keywords ’link’ and ’preslink’ for hyperlinks.
Note that even for such a simple case as hyperlinks, the differences between
hyperlinks and applets are blurred, therefore OMDoc only provides the
omlet element for both.

71

<code id="callMint" codebase="org.riaca.cas">

<CMP>

The multiple integrator applet. It puts up a user interface

queries the user for a function, which it then integrates

by calling one of several computer algebra systems.

</CMP>

<input>None, the applet handles input itself.</input>

<output>The result of the integration.</output>

<effect>None.</effect>

<data format="java">

<![CDATA[... the callMint code goes here ...]]>

</data>

</code>

<omtext id="monp_1">

<CMP> Let’s <omlet type="js" function="callMint" action="execute">

Integrate</omlet>!

</CMP>

</omtext>

Figure 3.33: An omlet that calls a Java applet.

Like the HtML applet tag, the omlet element can be used to wrap any
(set of) well-formed element. It has the following attributes.

type This specifies the computation engine that should execute the code.
Depending on the application, this can be a programming language,
such as javascript (’js’) or Oz, or a process that is running, e.g. a
theorem prover.

function The code that should be executed by the omlet is specified in
the function attribute. This points to an OMDoc code element that
is somehow accessible (e.g. in the same OMDoc). This indirection
allows us to reuse the machinery for storing code in OMDocs. For a
simple example see Figure 3.33.

argstr This optional attribute allows to specify an argument string for the
function called by the applet, so that the program in the can be kept
general. A call to the LΩUI interface, would for example have the
form in Figure 3.34. Here, the code in the code element sendtoloui

(which we have not shown) would be Java code that simply sends the
value of the argstr to LΩUI’s remote control port.

width/height gives the screen height and width of the applet.

72

The expected behavior of the omlet can be implemented in the XslT style
sheet, that in the case of e.g. translation to Mozilla will put the callMint
code directly into the generated html.

<CMP> Let’s prove it

<omlet id="bla" type="java" function="sendtotp"

argstr="load(problem=’monoid_uniq’)">

interactively

</omlet>.

</CMP>

Figure 3.34: An omlet for connecting to a theorem prover.

3.4.4 Exercises

Exercises are vital parts of mathematical textbooks. In OMDoc, we use
the exercise element for representing them. The question statement is rep-
resented in the multilingual CMP group followed by an optional FMP element
and an optional hint element that contains a hint in a CMP/FMP group.

Element Attributes D Content

Required Optional C

exercise id style, for + symbol*,CMP*,FMP*,

hint?, (solution* |

mc*)

hint id, style + symbol*,CMP*,FMP*

solution id, for,

style

+ symbol*,CMP*, (FMP* |

proof | proofobject)

mc id, style – symbol*, choice, hint?,

answer

choice id, style + symbol*,CMP*,FMP*

answer verdict id, style + symbol*,CMP*,FMP*

Figure 3.35: The OMDoc Auxiliary Elements for Exercises

The next element in an exercise is either a (set of) possible solutions, or
a multiple-choice block. The first is represented in a solution element with
a a CMP/FMP group followed by an optional proof or proofobject. A special
case of this is the case, where the question contains an assertion whose proof
is not displayed and left to the reader. In this case, the solution contains a
proof. Multiple-choice exercises (see Figure 3.36) are represented by a list of
mc elements. These represent a single choice in a choice element together

73

with the answer in the answer element. The verdict of the answer element
attribute specifies the truth of the answer, it can have the values ’true’ or
’false’. The choice and answer elements contain CMP/FMP groups.

<exercise for="ida.c6s1p4.l1" id="ida.c6s1p4.mc1">

<CMP>What is the unit element of the semi-group Q

with operation a ∗ b = 3ab?

</CMP>

<mc><choice><FMP><OMOBJ><OMI>1</OMI></OMOBJ></FMP></choice>

<answer verdict="false"><CMP>No, 1 ∗ 1 = 3 and not 1</CMP></answer>

</mc>

<mc><choice><CMP>1/3</CMP></choice>

<answer verdict="true"></answer>

</mc>

<mc><choice><CMP>It has no unit.</CMP></choice>

<answer verdict="false"><CMP>No, try another answer</CMP></answer>

</mc>

</exercise>

Figure 3.36: An Exercise

3.5 Adding Presentation Information to OMDoc

As we have seen, OMDoc is concerned mainly with the content and struc-
ture of mathematical documents, and offers a complex infrastructure for
dealing with that. However, mathematical texts often carry typographic
conventions that cannot be determined by general principles alone. More-
over, non-standard presentations of fragments of mathematical texts some-
time carry meanings that do not correspond to the mathematical content or
structure proper. In order to accomodate this, OMDoc provides a limited
functionality for embedding style information into the document.

The normal (but of course not the only) way to generate presentation
from Xml documents is to use XslT style sheets (see section 4.1 for other
applications). XslT [Dea99] is a general transformation language for Xml.
XslT programs (often called style sheets) consist of a set of so-called tem-
plates (rules for the transformation of certain nodes in the Xml tree). These
templates are recursively applied to the input tree to produce the desired
output.

The general approach is not to provide general-purpose presentational
primitives that can be sprinkled over the document, since that would distract
the author from the mathematical content, but to support the specification

74

of general style information for OMDoc elements and mathematical sym-
bols in separate elements.

In the case of a single OMDoc document it is possible to write a spe-
cialized style sheet that transforms the content-oriented markup used in the
document into mathematical notation. However, if we have to deal with
a large collection of OMDoc representations, then we can either write a
specialized style sheet for each document (this is clearly infeasible to do by
hand), or we can develop a style sheet for the whole collection (such style
sheets tend to get large and unmanageable).

OMDoc supports variants of both approaches, it allows to generate
specialized style sheets that are tailored to the presentation of (collections
of) OMDoc documents. The mechanism will be discussed in section 4.1,
here we only concern ourselves with the OMDoc primitives for representing
the necessary data. In the next subsection, we will address the specifica-
tion of style information for OMDoc elements by omstyle elements, and
then the question of specification of notation of mathematical symbols in
presentation elements.

3.5.1 Specifying Style Information for OMDoc Elements

OMDoc provides the omstyle elements for specifying style information
for OMDoc elements. An omstyle element has the attributes has the at-
tributes

element this required attribute specifies the OMDoc element this style
information should be applied to. Note that the value of this attribute
must be the full qualified name (i.e. including the) of the element.

for this optional attribute allows to further restrict the OMDoc element
to a single instance.

xref This optional attribute can be used to refer to another existing omstyle
element (in another document), sometimes avoiding double specifica-
tion.

style This optional attribute is is an additional parameter that controls the
output style. This allows to specify different notational conventions for
symbols. This attribute corresponds to the optional style attributes
in those OMDoc elements that have id attributes. They can be used
to specify the style intended by the document author and help choose
a presentation element.

75

Note that the choice of notational style is not a content-carrying fea-
ture, and should not be depended on, indeed the value of the stlye

need not be respected by output routines, but can be overwritten.

The information specified in the body of this element is then used to generate
XslT templates that can be used in the style sheets. This information is
either given directly as the bodies of XslT templates in the xslt element, or
in a style element using a small subset of XslT internalized into OMDoc.
This second language is used if the full power of XslT is not needed, and has
the advantage that it can be transformed into the input of other formatting
engines. The xslt and style elements share the following attributes

format this required attribute specifies the output format. Its value is a
string of format specifiers divided by the | character. We use the spec-
ifiers ’TeX’ for TEX and LATEX, ’pmml’ for presentation MathMl,
’cmml’ for content MathMl, ’html’ for HtML, ’mathematica’

for Mathematica notebooks. Finally, there is the pseudo format-
specifier ’default’, which will be taken, if no other format is defined.
Note that case matters in these specifiers, so TeX is not the same as
tex, furthermore, ’default’ is not a regular format specifier, so it
cannot appear in the disjunctions.

See http://www.mathweb.org/omdoc/xsl.html for other available for-
mats. Similarly, the English language serves as a default language.

xml:lang this specifies the language for which this notation is used. In
contrast to the other uses of xml:lang does not have a default value
en. If the attribute is not present, this means that this element is not
language-specific.

requires This attribute points to a code element that contains a code
fragment that is needed to be included for the presentation engine. For
instance, a use element for the format LATEX may contain macro calls
that need to be defined. Their definitions would need to be included
in the output document by the presentation style sheet before they
can be used.

Figure 3.37 shows very simple example, where a with element is used to
mark a text passage as “important”. This style attribute is then picked up
in the omstyle element to prompt special treatment in the output. Note
that here the attributes of the use element are used to specify bracketings,
the presentation specified in the attributes are placed where the Xml tags
<with> and </with> are.

76

http://www.mathweb.org/omdoc/xsl.html

<CMP>

I want to mark <with id="w1" style="important">this important

text</with> as special.<with style="linebreak"/>

I can also refer to

<with style="link"><OMOBJ><OMSTR>missing.html</OMSTR></OMOBJ>

here</with>, if something is missing.

</CMP>

<omstyle element="omdoc:with" style="important">

<style format=’html|pmml’><element name="em"><recurse/></element></style>

<xslt format=’TeX’><[CDATA[{\em<xsl:apply-templates/>}]]></xslt>

</omstyle>

<omstyle element="omdoc:with" style="linebreak">

<style format=’html|pmml’><element name="br"/></style>

<style format=’TeX’><text>\par\noindent</text></style>

</omstyle>

<omstyle element="omdoc:with" style="link">

<style format="html|pmml">

<element name="a">

<attribute name="href">

<value-of select="om:OMOBJ/om:OMSTR"/>

</attribute>

<recurse select="*[not(om:OMOBJ)]/>

</element>

</style>

</omstyle>

Figure 3.37: Specifying Style information with the with Element.

Let us now look at the sub-language used in style elements. We can
see in the second omstyle element that the content of the xslt element are
XslT fragments. They have to be either enclosed in a CDATA section, of
escaped. Note that when referring to OMDoc elements, the XslT must
use the full qualified name (i.e. including the) of the elements for the
presentation to work.

In the first style in the omstyle for linebreak, we see that element

element can be used to insert an Xml element into the output; in this case
it is the empty HtML element
. In the second style child the text

element (it does not have attributes) allows to add arbitrary text into the
output (in this case some TEX macros). In the second omstyle element, we
see that the element may be non-empty, in this case, it contains the element
recurse, which corresponds to the directive to contain presentation genera-

77

tion recursively over the children of the element specified in the dominating
omstyle element (in this case again a with element). The effect of this is
that the content of the element <with style="important"> is encased in
the HtML element. Generally, the recurse element is empty, and
can have the attribute select, which contains an XPath [Cla99] expres-
sion specifying a set of OMDoc elements the presentation should continue
on recursively. If this attribute is missing, presentation continues on the
children as in the example above.

The element element has a required attribute name, which contains the
element name, attributes can be specified by the attribute element: any
attribute element adds an attribute-value pair of the form name="value"

to the output element specified by the enclosing element element, where
name is the value of the name attribute, and value is the result of presenta-
tion on the content of the attribute element. The third omstyle element
in Figure 3.37, contains a contrived way of specifying a HtML hyperlink by
an element element, with an enclosed attribute element, which obtains its
value from an OMOBJ in the with element in the OMDoc source. Note that
this is not the way hyperlinks should be specified in OMDoc (a construc-
tion with the omlet element is intended for that, see Figure 3.32), since this
construction depends on the availability presentation information for every
output format.

This leads us to the remaining style element in OMDoc. The value-of
element is an empty element and has a required attribute select, whose
value is an XPath expression. It adds the value (a string) the Xml node
specified by the expression to the output.

Note that this OMDoc-internalized subset of XslT restricts the expres-
sivity of the presentation style by leaving out the computational features of
XslT. Firstly, the infrastructure for iteration, recursion, variables declara-
tion, . . . is not present, and secondly, path expressions are restricted to pure
XPath [Cla99], leaving out the XslT extensions, again leaving us with a
more declarative subset of XslT.

Note that the infrastructure discussed in this section is a new extension
introduced in OMDoc1.1. It is intended to allow introduction of style
information into OMDoc in a controlled way, which is necessary to preserve
information when migrating legacy documents into OMDoc. The fact that
a transformation engine can choose to ignore these presentation directives
since they do not carry any content information shows that authors should
not use them instead of identifying the content contribution of the various
notational conventions found in legacy documentss. At the moment there
is not a mature meta-language for succinctly specifying presentation as for

78

the notations of symbols, so for the time being straight XslT content will
used predominantly. We expect that with time suitable abbreviations will
evolve and find their way into OMDoc.

3.5.2 Specifying the Notation of Mathematical Symbols

In this section we discuss the problem of specifying the notation of math-
ematical symbols in OMDoc. The approach taken is very similar to the
one for OMDoc elements above. The mathematical concepts and symbols
introduced in an OMDoc document (by symbol elements or implicitly by
abstract data types) often carry typographic conventions that cannot be de-
termined by general principles alone. Therefore, they need to be specified
in the document itself, so that typographically good representations can be
generated from this (and subsequent) documents. The normal way to gen-
erate presentation from Xml documents is to use XslT style sheets (see
section 4.1 for other applications).

<xsl:template match="OMBIND[OMS[position()=1 and

@name=’forall’ and

@cd=’quant1’]]">

<xsl:text>∀</xsl:text>

<xsl:for-each select="OMBVAR"/>

<xsl:apply-templates/>

<xsl:if test="position()!=last()">,</xsl:if>

</xsl:for-each>.

<xsl:apply-templates select="*[3]"/>

</xsl:template>

Figure 3.38: An XslT template for the universal quantifier

Let us build up our intuition by an example. We want to include presen-
tation information for the universal quantifier. Since we want to present the
structure of complex formulae using this information, we would use XslT
templates like the one shown in Figure 3.38. The match attribute specifies
that this presentation rule is applicable to OMBIND elements, where the first
child is of the form <OMS cd="quant1" name="forall"/>. In such a node,
it will print the quantifier ∀, then the bound variables as a comma-separated
list (for each of the children of OMBVAR it recursively applies XslT templates
from the style sheet), print a dot, and then recurse on the third child of the
OMBIND. This template will cause an OpenMath expression in Figure 3.39
as ∀P,Q.P ∨ Q ⇒ Q ∨ P assuming appropriate templates for implication
and and disjunction.

79

<OMBIND>

<OMS cd="quant1" name="forall"/>

<OMBVAR><OMV name="P"/><OMV name="Q"/></OMBVAR>

<OMA>

<OMS cd="logic1" name="implies"/>

<OMA><OMS cd="logic1" name="or"/><OMV name="P"/><OMV name="Q"/><OMA>

<OMA><OMS cd="logic1" name="or"/><OMV name="Q"/><OMV name="P"/><OMA>

</OMA>

</OMA>

Figure 3.39: An OpenMath object presented as ∀P,Q.P ∨Q⇒ Q ∨ P

To annotate a symbol with presentation information OMDoc supplies
the presentation element, this is a top-level element whose for attribute
points to the symbol in question. The simplest (and least effective) way to
introduce style sheet information in OMDocs would be to literally include
this template declaration (using an Xml CDATA section) in a presentation

in the OMDoc where the symbol is defined.

Note that hand-coding XslT-templates is a tedious and error-prone pro-
cess, and that we need a template for each output format (e.g. LATEX,
HtML, presentation MathMl, and ASCII), and even various output lan-
guages (the greatest common divisor of two integers is expressed by the
symbol gcd in English but ggT (“größter gemeinsamer Teiler”) in German).
Obviously, the respective templates for all of these transformations share a
great deal of structure (in our example, they only differ in the representation
of the glyph for the quantifier itself). Therefore OMDoc goes another way
and supplies a set of abbreviations that are sufficient for most presentation
applications. The user only needs to specify the relevant information and a
separate translation process generates the needed XslT templates from that
(see section 4.1). We have already seen the use of style and xslt elements
for specifying the presentation of OMDoc elements in the last subsection.
In this section we will present yet another way to specify presentation in-
formation that is specialized to notations of mathematical symbols. The
main idea is specify the properties of mathematical symbols symbolically in
relation to the representations of their children and siblings.

As much of the presentation information is shared between various out-
put formats and languages, it is specified in two steps by using a set of
attributes we will explain below. The presentation element contains the
information that is common to all notations in its attributes. It contains a
set child elements that specify the presentation directives. These children

80

Element Attributes D Content

Required Optional C

ignore type,

comment

– ANY

omstyle element for, id,

xref,

style

– (style|xslt)*

element name – (attribute | element

| text | recurse |

value-of)*

attribute name – (#PCDATA | value-of |

text)*

text – (#PCDATA)

value-of select – EMPTY

recurse select – EMPTY

presentation for id, xref,

fixity,

parent,

lbrack,

rbrack,

separator,

bracket-style,

style,

precedence,

crossref-symbol,

theory

– (use | xslt | style)*

xslt format, xml:lang,

requires

– CDATA

style format, xml:lang,

requires

– (element | text |

recurse | value-of)*

use format xml:lang,

requires,

larg-group,

rarg-group,

fixity,

lbrack,

rbrack,

separator,

crossref-symbol,

element,

attributes

– ANY

Figure 3.40: The OMDoc Elements for Presentation Information

are the style and xslt elements defined in the last subsection, or use el-
ements that may only occur in presentation elements. The use elements

81

make use of the same symbolic attributes and specialize (over-define) these
attributes according to the respective format and language. The following
set of attributes are particular to the presentation, since they are inde-
pendent of the language and the output format.

for this required attribute specifies the name of the symbol for which the
notation information is specified.

theory allows us to specify the theory of a symbol. This allows the use of
presentation elements outside of an enclosing theory element. This
is important, since the theory information is essential to identify the
symbol, but sometimes presentation elements in other documents
need to be used to override or augment those in the original theory
file (which can in general not be changed).

xref This optional attribute can be used to refer to another existing pre-

sentation element. This is often convenient if the same symbols are
defined in different theories (but the presentation stays the same).

parent This attribute specifies parent element, in which the symbol plays
the head role (it can be one of ’OMA’, ’OMBIND’, and ’OMATTR’). In
examples in Figure 3.42, we have assumed the head to be an OMA

element (for functional application). It can also be an OMBIND, as in
the case of a quantifier in Figure 3.43.

style (see the specification for omstyle in the last section)

fixity This optional attribute can be one of the keywords ’prefix’ (the
default), ’infix’, ’postfix’, and ’assoc’. If it is given, then it
determines the placement of the function symbol. For ’prefix’ it
is placed in front of the arguments, (this is the generic mathematical
function notation). For ’postfix’ the function is put behind the ar-
guments, e.g. for derivatives: f ′. The case ’infix’ is reserved for
binary operators, where the function is inserted between the two argu-
ments. Finally, ’assoc’ is used for associative operators like addition,
it puts the function symbol between any two arguments.

Note that ’infix’ is almost a special case of ’assoc’, but since it
is reserved for binary operators, it disregards any arguments but the
first two.

bracket-style The fixity information can be combined with the brack-
eting style, which can be either of ’lisp’ (LISP-style brackets) or
’math’ (generic mathematical function notation, which is the default).

82

Figure 3.42 shows some combinations of attributes and their results
on the function style.

precedence allows us to specify the operator precedence in order to elide
unnecessary brackets. The OMDoc presentation system orients itself
on the Prolog standard: lower precedences mean stronger binding,
and brackets can be omitted. Following Prolog, we give the default
precedence 1000, and other precedences as specified in Figure 3.41. As
a consequence, formulae like

<OMA> <OMA>

<OMS cd="arith1" name="power"/> <OMS cd="arith1" name="plus"/>

<OMA> <OMV name="x"/>

<OMS cd="arith1" name="plus"/> <OMA>

<OMV name="x"/> <OMS cd="arith1" name="power"/>

<OMV name="y"/> <OMV name="y"/>

</OMA> <OMI>2</OMI>

<OMI>2</OMI> </OMA>

</OMA> </OMA>

are presented as (x + 2)2 and x + y2.

Number operators comment

200 +,- unary

200 ˆ exponentiation

400 * multiplicative

500 +,−,∧,∨,∪,∩ boolean

600 / fraction

700 =, 6=,≤, <,>,≥, relation

Figure 3.41: Predefined operator precedences in OMDoc

The next set of attributes can occur both in presentation and use elements.
If they occur in both, then the values of those specified on the use elements
take precedence over those specified in the dominating presentation ele-
ment.

lbrack/rbrack These two attributes can be used to specify the brackets to
be used in presentation of a complex expression. They will be used
unless elided according to the precedence.

83

separator This specifies the separator to be used for separating the argu-
ments. The default for this is the comma. See Figure 3.42 for some
combinations.

fixity bracket-style separator yields

prefix lisp “ ” (f 1 2 3)

postfix lisp “ ” (1 2 3 f)

prefix math “,” f(1, 2, 3)

postfix math “,” (1, 2, 3)f

assuming lbrack="(" and rbrack=")"

Figure 3.42: Attribute-combination and Function Style

crossref-symbol This attribute specifies which parts of the symbol presen-
tation elements cross-references should be attached to: in some formats
like HtML, and recently also in LATEX (thanks to the hyperref.sty

package), it may be useful to attach a hyperlink from the symbol name
to its definition. Some symbols are constructed by using the lbrack

and rbrack, or the separator attributes as part of the symbol pre-
sentation. For instance, in the notation (a, b) for pairs, the binary
function symbol for pairing is really composed of three parts “(”, “)”,
and “,”, which should be cross-referenced. The attribute values ’no’,
’yes’, ’brackets’, ’separator’, ’lbrack’, ’rbrack’ ’all’, can
be used to specify this behavior. ’no’ means cross-referencing is for-
bidden, ’yes’ – which is the default value – means cross-referencing
only on the print-form of the function symbol, ’lbrack’, ’rbrack’,
’brackets’, only on the (left, right, both) brackets, ’separator’, on
the separator, and finally ’all’ on all presentation elements.

In Figure 3.43, the effect of the default ’yes’ can be seen in the
lower part of the figure :the LATEX and the HtML presentations have
attached hyperlinks to the representation of the universal quantifier.

The next set of attributes can only appear on the use attribute, since they
are only meaningful for selected output formats.

format, xml:lang, requires (see the specification for xslt and style above).

larg-group/rarg-group These two attributes, which only appear in the
use element, can be used to specify the grouping constructs for driving

84

Notation specification Example
<presentation for="forall"

parent="OMBIND"

separator=".">

<use format="TeX">\forall</use>

<use format="html">∀</use>

</presentation>

<OMBIND>

<OMS cd="quant1" name="forall"/>

<OMBVAR><OMV name="X"/></OMBVAR>

<OMS cd="logic1" name="true"/>

</OMBIND>

using XslT templates induced from the left the presentation

element on the right OpenMath expression yields

LATEX: \href{../ocd/logic1.ps#true}{\forall}X.

\href{../ocd/logic1.ps#true}{{\sf true}}

HtML: ∀ X.

true

which in turn is formatted to ∀X.true, only that the symbol ∀
carries a hyperlink to it definition (given a suitable output device
like a browser or a recent version of dvips).

Figure 3.43: Notation for forall (cf. Figure 3.38) using presentation

the tokenizer of the output formatter. Take for instance the presenta-
tion for sums in TeX. We want to use the \sum macro for this. \sum

takes three arguments: e.g. $\sum^n{i=1}g(i)$. To be able to use
this, we need to have a way to generate the TeX grouping characters
“{” and “}” in the second argument.

element/attributes/fixity/bracket-style These attributes simplify the
specification of notations in Xml-based formats, like MathMl. The
element attribute contains the name and the attributes the at-
tribute declarations of an Xml element that takes the place of the
brackets specified in the attributes lbrack and rbrack. The attribute
fixity may only be used on a use element in conjunction with the
element and attributes attributes, then it specifies the position of
the element brackets rather than the brackets specified in the lbrack

and rbrack attributes.

For instance, the binomial coefficient is usually presented as
(n

m

)
(and

spoken “n choose m”) is represented as
<mfrac linethickness=’0’><mi>n</mi><mi>m</mi></frac>

in presentation MathMl. The first presentation element in Fig-
ure 3.44 shows a presentation element that has this effect. The

85

second presentation element in Figure 3.44 shows a notation decla-
ration, which applied to 35 in HtML would yield 3⁵.

Note that the element and attributes attributes can be simulated by
the are a variant of the lbrack and rbrack attributes. The attributes
in the binomial example could have been substitutes by the values
<mfrac linethickness=’0’> for lbrack and </mfrac>

for rbrack. Thus these attributes are are not strictly necessary, but
convenient and more legible.

<presentation for="binomial" parent="OMA">

<use format="default" fixity="infix">choose</use>

<use format="TeX"

lbrack="\bigl({" rbrack="}\bigr)">\atop</use>

<use format="pmml"

element="mfrac" attributes="linethickness=’0’"/>

</presentation>

<presentation for="power" parent="OMA" fixity="infix"

crossref-symbol="no" precedence="200" bracket-style="lisp">

<use format="html" fixity="prefix" bracket-style="math"

element="sup"/>

<use format="TeX">^</use>

<use format="pmml" element="msup" fixity="prefix"/>

</presentation>

Figure 3.44: Presentation for binomial coefficients

Conceptually, the attributes of the presentation and use elements form
a meta-language for XslT style sheets that aims at covering the most com-
mon notations succinctly and legibly. There are situations, where this lan-
guage does not suffice, since the notations are too complex. In this case,
we can set the attribute system of the use element to ’xsl’ (all attributes
except parent become meaningless in this situation) and directly include
the body of a XslT template. The information in Figure 3.45 will induce a
template that generates the TEX representation {\root{3}\of{5}} for 3

√
5.

3.6 Identifying and Referencing OMDoc Elements

In this section we will finally address an issue we have only treated very
superficially until now: the intended values of the identity attribute id and
referencing attributes like xref or for. As we have seen, we need element

86

<presentation for="root" parent="OMA" bracket-style="lisp">

<use format="TeX" system="xsl">

<xsl:text>{\root{</xsl:text>

<xsl:apply-templates select="*[3]"/>

<xsl:text>}\of{</xsl:text>

<xsl:apply-templates select="*[2]"/>

<xsl:text>}}</xsl:text>

</use>

<use format="html" system="xsl">

^{<xsl:apply-templates select="*[3]"/>}

<xsl:text disable-output-escaping="yes">√</xsl:text>

<xsl:apply-templates select="*[2]"/>

</use>

<use format="pmml" element="mroot"/>

</presentation>

Figure 3.45: use elements with <use system="xsl"...>

references in OMDoc, since not all mathematical structures can be directly
modeled by the Xml tree structure provided by the OMDoc elements.
Moreover, since mathematical documents are seldom fully self-contained,
intra-document references do not suffice, and we must be able to reference
objects in other documents and theories.

In OMDoc version 1.0 [Koh00c] we have presented a mechanism for
inter-document reference for OpenMath symbols (OMS) based on a cata-
logue of theory locations and left the identification of other OMDoc ele-
ments unspecified. This has turned out to be a stumbling block for tool
development, so we will attempt a specification of an more general URI-
based approach to element identification and reference here. Note that this
specification is only a first attempt to obtain experience, and is likely to be
adapted in later versions. As version 1.1 is only a minor update, we will
leave the catalogue-based mechanism in place unchanged. The intention is
to obtain implementation experience with the new URI-based mechanism in
order to reach well-founded decision for OMDoc 2.0.

We will first present the catalog-based mechanism for identifying OMS

elements, and then present the more general URI-based solution in sec-
tions 3.6.2 and 3.6.3.

The problem we need to address for referencing in OMDoc is that there
are two ways to access mathematical knowledge: by location (relative to
a particular document or file), and by context (relative to a mathematical
theory). The first one essentially makes use of the organization structure of

87

file systems (this is the default organization of the Internet), and the second
makes use of mathematical structuring principles supplied by the OMDoc
format (cf. section 3.3). Both approaches to resource identification have
their justification and are therefore supported by OMDoc. Resource iden-
tification by document has the advantage that it can be readily be mapped
to current practice and transport protocols of the Internet. It has the prob-
lem that location-independence is hard to achieve, reference by context must
be supported by some form of cataloging service, but gives more structured
and semantical access.

Unfortunately, we cannot readily reduce one the two modes of identifi-
cation onto the other. The idea to require one theory per document is much
too restrictive. It is standard practice in mathematics to develop mathe-
matical theories decentrally. Once there is a definition of a theory in place
(e.g. in an academic journal), other researchers add theorems to the theory
in other documents. Furthermore it is a necessary requirement for a repre-
sentation format to be closed under concatenation. This is only possible, if
we allow multiple theories per document.

3.6.1 Locating OMS elements by the OMDoc Catalogue

As we have seen above, OpenMath uses identification by context to refer-
ence symbols: OMS elements are identified by their cd and name attributes.
The first identifies the theory or OpenMath content dictionary (which are
taken to be equivalent in the OMDoc format), and the second the symbol
in that theory. This is a valid approach to identification, but for referencing,
it assumes that it is always known, where the defining document (i.e. the
OMDoc document that contains the theory) can be found, which may not
always be obvious.

If we know where the defining OMDoc is, then reference by location
and reference by context are equivalent, since the theory identifier is unique
in any valid OMDoc document. Therefore, OMDoc supports a catalogue
mechanism that allows to specify the location of defining OMDocs. This
can be done in two ways

globally The global specification of a catalogue is done by the catalogue

attribute in the omdoc element. It is a URI reference to another OM-
Doc document whose catalog is inherited by the referencing one.

locally The local catalogue is declared in the catalogue element, it con-
tains a sequence of location declarations, i.e. empty loc elements,
which have the attributes theory and omdoc. They declare that the

88

theory specified by the theory attribute is contained in the OMDoc
document referenced in the omdoc attribute.

The effective catalogue for an OMDoc is a sequence of location declara-
tions. It is (recursively) computed in the following way. First, the effective
catalogues of the OMDocs at the URIs given in the catalogue attribute of
the omdoc element are concatenated in the given order, and the local cata-
logue declaration is appended at the end. Then double location declarations
are eliminated, later declarations overwriting the earlier. This effective cat-
alogue is used to determine the location of any theory referenced in the
OMDoc.

<omdoc id="allthree">

...

<catalogue>

<loc theory="monoids" omdoc="http://activemath.org/coll/algebra"/>

<loc theory="reals" omdoc="http://activemath.org/coll/analysis"/>

<loc theory="int" omdoc="http://activemath.org/coll/cds"/>

</catalogue>

<OMOBJ>

<OMA>

<OMS cd="monoids" name="op"/>

<OMS cd="reals" name="pi"/>

<OMS cd="int" name="zero"/>

</OMA>

</OMOBJ>

...

</omdoc>

Figure 3.46: A catalogue for OpenMath Symbols

One of the applications of having the location information given in the
catalogue is that we can use this for cross-referencing in output formats
generated from OMDoc documents.

3.6.2 A URI-based Mechanism for Element Reference

The problem with the catalogue-based approach to identification and refer-
ence is that it is limited to OpenMath symbols, which are traditionally ref-
erenced by context. It could be extended to referencing theory-constitutive
elements, since they obey the implicit assumption that theories do not tran-
scend OMDoc documents. For non-constitutive elements this is not the

89

Element Attributes D Content

Required Optional C

omdoc id,

version,

xmlns

type,

catalogue,

style,

xmlns,

version,

xmlns:xsi,

xsi:schemaLocation

+ OMDoc element*

catalogue – loc*

loc theory omdoc, cd – EMPTY

Figure 3.47: The OMDoc Elements for Identification

case, since they can be added to a theory in separate documents later. Fur-
thermore, generalizing the catalogue-based approach would involve adding
optional attributes for identifying the theory and the element id relative to
that theory, which would clutter up the format. In particular, it cannot di-
rectly be adapted to content MathMl csymbol elements, since those only
have the definitionURL attribute, which is a uniform resource identifier
(URI) [BLFM98]. OMDoc adopts an URI-based approach, since uniform
resource locators (URL) are not sufficient to support location-independence
(mathematical data tends to move e.g. when it is published) and web-
services like caching.

A URI reference is traditionally considered to consist of two parts. A
URI proper and a fragment identifier separated by a hash sign #. The URI
identifies an Xml document on the web, whereas the second part identifies
a fragment of the document, which in the case of OMDoc will usually
be an OMDoc element. Xml provides the XPointer language [DJM01]
that specifies an element in the document identified by <uri> by the URI
reference <uri>#xpointer(<path>), where <path> specifies a path through
the document tree leading to the desired element. URI-references of the
form <uri>#<id> as they are used in HtML to refer to named anchors
() are regained as a special case (the so-called bare name
syntax): If <uri> is a URI of an Xml document D then <uri>#<id> refers
to the unique element in D, that has an attribute of type ID with value <id>.
Thus we can directly use the standard XPointer fragment identifiers for
reference to OMDoc elements by location. Note that since most OMDoc
id attributes do not have type ID in the document type definition, we cannot
use bare name syntax in most cases, but have to use the full syntax using

90

explicit #xpointer(...).

Furthermore note that to get reference by context, we have to extend
the fragment identifier, and can use the URI part unchanged. Concretely,
we will use the URI references of the form <uri>#byctx(<name>@<thy>),
where <thy> identifies a theory element in a theory collection and <name>

is the value of a id attribute of an OMDoc element in this theory.

<omdoc id="o1" xml:base="http://mbase.mathweb.org/o1.omdoc">

<theory id="th1">...<symbol id="x"/>...</theory>

<assertion id="a1" theory="th1">...</assertion>

<theory id="th2">...<symbol id="y"/>...</theory>

<ref xref="http://mbase.mathweb.org/o2.omdoc"/>

</omdoc>

<omdoc id="o2" xml:base="http://mbase.mathweb.org/o2.omdoc">

<theory id="th3">...<symbol id="z"/>...</theory>

<assertion id="a2" theory="th2">...</assertion>

<assertion id="a3" theory="th3">...</assertion>

</omdoc>

element URI

x http://mbase.mathweb.org/o1.omdoc#byctx(x@th1)

a1 http://mbase.mathweb.org/o1.omdoc#byctx(a1@th1)

y http://mbase.mathweb.org/o1.omdoc#byctx(y@th2)

z http://mbase.mathweb.org/o1.omdoc#byctx(z@th3)

a2 http://mbase.mathweb.org/o1.omdoc#byctx(a2@th2)

a3 http://mbase.mathweb.org/o1.omdoc#byctx(a3@th3)

Figure 3.48: An OMDoc specifying a theory collection

Figure 3.48 gives some examples of reference by context; the use of the
xml:base attribute (see [mar01]) is only for convenience in locating the
document URI. The first OMDoc document defines theories th1 and th2

and includes the second document by the ref element. As a consequence, the
elements in the second document are accessible for reference by context (but
not for reference by location) through the o1.omdoc. Moreover reference by
context makes the assertion a1 is accessible as part of the theory th1 even
though it is not directly dominated the respective theory element. Assertion
a2 is accessible as part of theory th2, even though it is not even in the same
document.

Clearly reference by context facilitates the maintenance of theory col-
lections by shifting the location burden onto the retrieval services. Note
that the OMDoc specification only uses reference by context to define
the identification of OMDoc elements. The actual implementation of re-

91

http://mbase.mathweb.org/o1.omdoc#byctx(x@th1)
http://mbase.mathweb.org/o1.omdoc#byctx(a1@th1)
http://mbase.mathweb.org/o1.omdoc#byctx(y@th2)
http://mbase.mathweb.org/o1.omdoc#byctx(z@th3)
http://mbase.mathweb.org/o1.omdoc#byctx(a2@th2)
http://mbase.mathweb.org/o1.omdoc#byctx(a3@th3)

trieval services is not object of the specification and is left to OMDoc
applications, such as the ones described in chapter 4. Note that in prin-
ciple assertion a3 in Figure 3.48 is also accessible by the URI reference
http://mbase.mathweb.org/o2.omdoc#byctx(a3@th3), i.e. via the sec-
ond document. This leads to a situation, where it is non-trivial to decide
whether two elements are actually identical, which may lead to difficulties
for mathematical software systems. A similar complication arises, if the
inclusion graph induced by the ref elements is not a tree.

Generally, the problem here is that the identification mapping from URIs
to objects is not injective, and does therefore not have a partial inverse. As
a consequence, deduce that two referred elements are identical by looking
at their URI, but not that they are different. Note that the problem of a
non-injective identification mapping is even more pertinent to reference by
document.

As injectivity of the identification mapping is in general a desirable prop-
erty, designers of theory collections should take this into account, e.g. by
designating canonical entry documents. Since the mechanism is still new
in OMDoc1.1, we do not prescribe any mechanism for ensuring injectivity,
but leave it to the application developers to form a consensus.

3.6.3 Uniqueness Constraints and Relative URI references

Since many OMDoc documents are still written by hand, notational con-
venience is an important concern. Therefore URIs can be shortened in
OMDoc by abbreviation just like other relative URIs. Moreover, we allow
relative fragment identifiers that are licensed by certain uniqueness presup-
positions in OMDoc

For the byctx fragment identifier to work at all, id-values of OMDoc
elements must be unique in their home theory, and those of theory in the
theory collection (i.e. the OMDoc document that would result from exe-
cuting all the inclusions mandated by the ref elements). The uniqueness
constraint in home theories also includes mathematical statements whose
theory attribute points to this theory, and their descendents, if they are
members of the same collection. Note that the process of adding a theory
to a theory collection includes consistently renaming id attributes so that
these uniqueness constraints discussed above are respected.

Note that OMDoc does not mandate uniqueness in OMDoc documents
of id attributes on elements other than theory in order to ensure concaten-
ability. As a consequence, the OMDoc document type definition does not
give them the type ID, which would enforce document-wide uniqueness upon

92

http://mbase.mathweb.org/o2.omdoc#byctx(a3@th3)

DTD-validation, and we cannot use XPointer bare name syntax in most
cases. In those cases, where we can, e.g. for theories, we will XPointer
takes precedence over the byctx fragment identifier, to maintain Xml stan-
dards compliance.

We use the following rules for relative and abbreviated URI references:

<uri>#mythy This references the theory whose attribute id has the value
’mythy’. This is actually a direct application of the XPointer bare
name syntax, as the id has type ID. In this case, the <path> component
must be empty.

<reluri>#<frag-id> Here <reluri> is a relative URI (cf. [BLFM98]). Thus
the relative URI reference expands to <uri>#<frag-id> independently
of the fragment identifier, if <reluri> expands to <uri> by the rules
in [BLFM98].

In particular, the URI abbreviations defined in Xml Base are allowed (for
details see [mar01]).

If the fragment identifier marker character # is not present in a URI
reference, then we assume it to be an abbreviation of the byctx fragment
identifier in the local document (theory) collection. Thus we have the fol-
lowing abbreviations.

name abbreviates #byctx(name@<this theory>), if it does not contain the
hash character (#) or is an absolute URI. Used as the value of an
attribute of an element E, such that E is inside a theory element
whose id has value ’mythy’, or E has a theory attribute with value
value ’mythy’, this relative URI identifies the unique element N whose
id attribute has value ’name’, and which is either in the same theory
element, or which is in an OMDoc document in the same collection
as E, and whose theory has value ’mythy’. Note that there is no
conflict with XPointer’s bare name syntax, since no # is present.

Note that this case syntactically subsumes cases like arith1.omdoc.
This is interpreted as #byctx(arith1.omdoc@<this theory>), and
not as file://arith1.omdoc. Use arith1.omdoc# instead.

name@mythy abbreviates #byctx(name@mythy). From anywhere in the col-
lection, a reference with this value points to an element whose id

attribute has value ’name’ and that is a descendent of the unique
theory element whose id attribute has value ’mythy’.

93

<!DOCTYPE omdoc PUBLIC "-//OMDoc//DTD OMDoc V1.1//EN"

"http://www.mathweb.org/omdoc/omdoc.dtd"

[<!ENTITY % theoryNSD "xmlns:ida CDATA #IMPLIED

xmlns:ain CDATA #IMPLIED

xmlns:acd CDATA #IMPLIED">]>

<omdoc id="allthree"

xmlns:ida="http://www.riaca.org/ida.omdoc"

xmlns:ain="ftp://ftp.activemath.org/pub/ana.xml"

xmlns:acd="x-mbase://cds@mathweb.org">

...

<OMOBJ>

<OMA>

<OMS cd="ida:monoids" name="op"/>

<OMS cd="ain:reals" name="pi"/>

<OMS cd="acd:int" name="zero"/>

</OMA>

</OMOBJ>

...

</omdoc>

Figure 3.49: Symbols from three different collections

For OpenMath symbols OMDoc uses a syntactical variant of the byctx

fragment identifiers to maintain some kind of backwards compatibility. We
use the document URI of the collection as namespace for the theories it
contains. Instead of writing the identifying URI of a symbol in one piece,
we write it in three chunks, using the cd attribute for the theory name (as
in pure OpenMath but prefixed by the collection as a namespace) and the
name attribute for the id part. Figure 3.49 shows a fragment of an OMDoc
document that uses symbols from theories from three different collections.

Note that the namespace declarations in the OMDoc element cannot be
declared in the OMDoc DTD, since they are not fixed. Therefore the DTD
(see E) supplies an entity theoryNSD for extra namespace declarations. I can
be defined in the local subset of the DTD as in Figure 3.49. Xml schemata
are namespace aware, so if we only want to perform schema-validation, we
do not need the DOCTYPE declaration or the internal subset.

Incidentally in MathMl, which has a definitionURL attribute, we can
directly use the full URI, as in Figure 3.50, as OMDoc2.0 will include
content MathMl as a representation format for mathematical objects. This
is an important prerequisite for resource identification.

94

<math xmlns:m="xmlns:mml="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol definitionURL="http://www.riaca.org/ida.omdoc#byctx(op@monoids)"/>

<csymbol definitionURL="ftp://ftp.activemath.org/pub/ana.xml#byctx(pi@reals)"/>

<csymbol definitionURL="x-mbase://cds@activemath.org#byctx(zero@int)"/>

</apply>

</math>

Figure 3.50: C-MathMl symbols from three different collections

95

Chapter 4

OMDoc Applications, Tools,

and Projects

In this chapter we will address current applications, tools and projects using
the OMDoc format. We will first discuss the possibilities and tools of pro-
cessing documents in the OMDoc format via stylesheets with the purpose
of generating documents specialized for consumption by other mathematical
software systems, and by humans. Then we will present three projects de-
scriptions that use OMDoc at the core. The QMath project described in
section 4.2 defines an interface language for a fragment of OMDoc, that is
simpler to type by hand, and less verbose than the OMDoc, that can be gen-
erated by the qmath batch processor. The MBase system in section 4.3 is a
a web-based mathematical knowledge base that offers the infrastructure for
a universal, distributed repository of formalized mathematics represented
in the OMDoc format. Finally, the ActiveMath projects described in
section 4.4 uses the OMDoc infrastructure in an educational setting. It
makes use of the content-orientation and the explicit structural markup of
the mathematical knowledge to generate on the fly specialized learning ma-
terials that are adapted to the students prior knowledge, learning goals, and
notational tastes.

The applications of OMDoc are not limited to the ones described in
this chapter, in fact there is research and tool development where OMDoc
is used in the role of

• a communication standard between mechanized reasoning systems,
e.g. the Clam-Hol interaction [BSBG98], or the Ωmega-TPS [BBS99]
integration.

96

• a data format that supports the controlled refinement from informal
presentation to formal specification of mathematical objects and the-
ories. Basically, an informal textual presentation can first be marked
up, by making its structure explicit (classifying text fragments as def-
initions, theorems, proofs, linking text, and their relations), and then
formalizing the textually given mathematical knowledge in logical for-
mulae (by adding FMP elements; see section 3.2.1.

• an interface language of a mathematical knowledge base like the MBase
system [FK00, KF00]. The system offers a service that allows to store
and (flexibly) reproduce (parts of) OMDoc documents.

• a document preparation language; a system like MBase supports the
maintenance of large-scale document- and conceptual structures, if
they are made explicit in OMDoc. As OMDoc can directly be
transformed to e.g. XHtML+MathMl, or LATEX, external input
to MBase can directly be published.

• a basis for individualized (interactive) books. Personalized OMDoc
documents can be generated from MBase making use of the discourse
structure encoded in MBase together with a user model.

• an interface for proof presentation [HF97, Fie99]: since the proof part
of OMDoc allows small-grained interleaving of formal (FMP) and tex-
tual (CMP) presentations in multiple languages.

Note that the material discussed in this chapter is under continuous de-
velopment, and the account here only reflects the state of December 2001, see
http://www.mathweb.org/omdoc for more and current information. The
text in in the project descriptions has been contributed by the authors
marked in the section headings, for questions about the projects or sys-
tems, please visit the web-sites given in the section headings or contact the
authors directly.

4.1 Transforming OMDoc by XslT Style Sheets

In the introduction we have stated that one of the design intentions behind
OMDoc is to separate content from presentation, and leave the latter to
the user. In this section, we will briefly touch upon presentation issues.
The technical side of this is simple: OMDoc documents are regular Xml
documents that can be processed by an XslT style sheet to produce other

97

http://www.mathweb.org/omdoc

formats from OMDoc representations. In this section we will review a set
of XslT style sheets that are distributed with OMDoc, they can be found
in http://www.mathweb.org/omdoc/xsl.

There are several high-quality XslT transformers freely available (e.g.
saxon (http:saxon.sourceforge.net) or xalan (http://xml.apache.org/xalan-j)).
Moreover, XslT is natively supported by the newest versions of the primary
browsers MS Internet Explorer and Netscape Navigator (see http://www.mozilla.org
for Mozilla, the open source version).

XslT style sheets can be used for several tasks in maintaining OMDoc,
such as for instance converting other Xml-based input formats into OMDoc
(e.g. cd2omdoc.xsl for converting OpenMath content dictionaries into
OMDoc format), or migrating between different versions of OMDoc e.g.
the style sheet omdoc1.0adapt1.1.xsl that operationalizes all the syntax
changes from OMDoc version 1.0 to version 1.1 (see appendix B for a
tabulation).

4.1.1 OMDoc Interfaces for Mathematical Software Systems

One of the original goals of the OpenMath, MathMl and OMDoc lan-
guages is to provide a communication language for mathematical software
systems. The main idea behind this is to supply systems with interfaces to a
universally accepted communication language standard (an interlingua), and
so achieve interoperability for n systems with only 2n translations instead of
n2. As we have seen in section 2.3, OpenMath and content MathMl pro-
vide a good solution at the level of mathematical objects, which is sufficient
for systems like computer algebra systems. OMDoc adds the level of math-
ematical statements and theories to add support for automated reasoning
systems and formal specification systems.

To make practical use of the OMDoc format as an interlingua, we have
to support building OMDoc interfaces. An XslT style sheet is a simple way
to come up with (the input half) of an OMDoc interface, a more efficient
way would be to integrate an Xml parser directly into the system (suitable
Xml parsers are readily available for almost all programming languages
now).

Usually, the task of writing an XslT style sheet for such a conversion
is a relatively simple task, since the input language of most mathematical
software system is isomorphic to a subset of OMDoc. This suggests the
general strategy of applying the necessary syntax transformations (this has
to be supplied by the style sheet author) on those OMDoc elements that
carry system-relevant information and transforming those that are not (e.g.

98

http://www.mathweb.org/omdoc/xsl
http:saxon.sourceforge.net
http://xml.apache.org/xalan-j
http://www.mozilla.org

Metadata and CMP elements for most systems) into comments. Much of the
functionality is already supplied by the style sheet omdoc2sys.xsl, which
need only be adapted to know about the comment syntax. For examples see
the omdoc2pvs.xsl style sheet that transforms OMDoc to Pvs input.

The other direction of the translation needed for communication is usu-
ally much more complicated, since it involves parsing the often idiosyncratic
output of these systems. A better approach (which we followed with the sys-
tems above) is to write specialized output generators for these systems that
directly generate OMDoc representations. This is usually a rather simple
thing to do, if the systems have internal data structures that provide all
the information required in OMDoc. It is sometimes a problem with these
systems that they only store the name of a symbol (logical constant) and
not its home theory. At other times it internal records of proofs in theorem
provers are optimized towards speed and not towards expressivity, so that
some of the information that had been discarded has to be recomputed for
OMDoc output.

One of the practical problems that remains to be solved for interfaces
to mathematical software systems is that of semantical standardization of
input languages. For mathematical objects, this has been in principle solved
by supplying a theory level in the form of OpenMath content dictionaries
or OMDoc documents that define the necessary mathematical concepts.
For systems like theorem provers or theory development environments this
has not been done yet.

OMDoc can help with this task, as we have seen in series of experiments
of connecting the theorem proving systems Ωmega [BCF+97], InKa [HS96],
Pvs [ORS92], λClam [RSG98], TPS [ABI+96] and CoQ [Tea] to the MBase
system by equipping them with an OMDoc interface.

The first observation in the interpretation is that even though the sys-
tems are of relatively different origin, their representation languages share
many features

• TPS and Pvs are based on a simply typed λ-calculus, and only use
type polymorphism in the parsing stage, whereas Ωmega and λClam

allow ML-style type polymorphism.

• Ωmega, InKa and Pvs share a higher sort concept, where sorts are
basically unary predicates that structure the typed universe.

• Pvs and CoQ allow dependent- and record types as basic representa-
tional features.

but also differ on many others

99

• InKa, Pvs, and CoQ explicitly support inductive definitions, but by
very different mechanisms and on differing levels.

• CoQ uses a constructive base logic, whereas the other systems are
classical.

At one level, the similarities are not that surprising, all of these systems
come from similar theoretical assumptions (most notably the Automath
project [dB80]), and inherit the basic setup (typed λ calculus) from it. The
differences can be explained by differing intuitions in the system design and
in the intended applications.

Following recent work on the systemization and classification of λ-calculi
[Bar92], we have started to ground these languages in language hierarchy.
The structural similarities between theories and logical languages and their
structuring morphisms allow to re-use the OMDoc/MBase theory mecha-
nism for language definition: The logical symbols and language constructs
can be defined just like other (object-level) symbols/concepts. As a conse-
quence, the development of the OMDoc interface to the theorem provers
mentioned above included the specification of the representation language
as a theory (which could be used as an integrated documentation). The
structured theory mechanism can now be used to re-use and inter-relate the
various representation formats between the theorem provers. For instance
the simply typed λ-calculus can be factored out (and thus shared) of the
representation languages of all of the theorem proving systems above. This
makes the exchange of logical formulae via the OMDoc format very sim-
ple, if they happen to be in a suitable common fragment: In this case, the
common (OpenMath/OMDoc) syntax is sufficient for communication.

4.1.2 Presenting OMDoc to Humans

One of the main goals of content markup for mathematical documents is to
be independent of the output format. In the last chapter, we have specified
the conceptual infrastructure provided by the OMDoc language, in this
section we will discuss the software infrastructure needed to transform OM-
Doc documents into human-readable form in various formats. We speak of
of OMDoc presentation for this task.

Due to the complex nature of OMDoc presentation, only part of it can
actually be performed by XslT style sheets. For instance, subtasks like
reasoning about the prior knowledge of the user, or her experience with cer-
tain proof techniques is clearly better left to specialized applications. Our

100

processing model is the following: presenting an OMDoc is a two-phase pro-
cess. The first one is independent of the final output format (e.g. HtML,
MathMl, or LATEX) and produces another OMDoc representation special-
ized to the respective user or audience, taking into account prior knowledge,
structural preferences, bandwidth and time constraints, etc. This is followed
by a formatting process that can be done by XslT style sheets that trans-
forms the resulting specialized document into the respective output format
with notational- and layout preferences of the audience. We will only dis-
cuss the second one and refer the reader for ideas about the first process to
systems like P.rex [Fie01, FH01].

At the moment, we have XslT style sheets to convert OMDoc to
HtML, presentation MathMl, and LATEX, they can be found at http://www.mathweb.org/omdoc/xsl.
They consist of two parts: a generic part that implements the presentation
decision for the OMDoc (and OpenMath) elements, and a theory-specific
part for the presentation of OpenMath symbols.

The first part is carried out by the style sheets omdoc2html.xsl for
HtML and and omdoc2tex.xsl for LATEX. They share a large common
code base omdoc2share.xsl, basically the first two include the latter and
only redefine some format-specific options. For instance, omdoc2share.xsl
supplies an infrastructure for internationalization. In section 3.2.1 we have
introduced multilingual groups of CMP elements. This allows to generate
localized presentations of the OMDoc documents, if enough information is
present. omdoc2share.xsl takes a parameter TargetLanguage, whose value
can be a whitespace-separated preference list of ISO 639 two-letter country
codes. If TargetLanguage consists of a single entry, then the result will
only contain this language with gaps where the source document contains no
suitable CMP. Longer TargetLanguage preference lists will generally result in
more complete documents. Apart from the language-specific elements in the
source document, localization also needs to know about the presentation of
certain keywords used in OMDoc markup, e.g. the German “Lemma” and
the French “Lemme” for <assertion type="lemma">. This information is
kept in the keyword table http://www.mathweb.org/omdoc/lib/locale.xml,
which contains all the keywords necessary for presenting the OMDoc ele-
ments discussed so far. An alternative keyword table can be specified by
the parameter locale.

Presentation of OpenMath symbols in formulae is a process based on
the presentation information described in section 3.5.2 to re-create their
typographic conventions in the output format. To present a file test.omdoc
in e.g. HtML, we first generate an XslT style sheet test2html.xsl and the
apply it to test.omdoc to generate the HtML file test.html. Note that

101

http://www.mathweb.org/omdoc/xsl
http://www.mathweb.org/omdoc/lib/locale.xml

test2html.xsl needs to include specific XslT templates for all symbols
that are used in formulae, so test2html.xsl includes the three style sheets

omdoc2html.xsl for presentation of the OMDoc elements that are not
symbols.

test4html.xsl a style sheet that contains templates for symbols that are
are defined in test.omdoc, it is generated by applying an XslT meta-
stylesheet expres.xsl with parameter format = html to test.omdoc.
Concretely, if test.omdoc defines the symbol forall and contains the
presentation element in Figure 3.43 (page 85), then it generates an
XslT style sheet fol4html.xsl that contains the template in Fig-
ure 3.38 (page 79).

omdocIhtml.xsl this is a style sheet that provides templates for all sym-
bols that are used but not defined in test.omdoc. Concretely this is
just a list of XslT xsl:include statements that include style sheets
xxx4html.xsl extracted by expres.xsl from files xxx.omdoc that de-
fine symbols used in formulae in test.omdoc. We use the style sheet
exincl.xsl parameter format = html to generate testIhtml.xsl

from test.omdoc.

This two-level approach to notation presentation in OMDoc provides a
maximum of flexibility and locality in information management.

102

fol4html.xsl

4.2 QMath: An Authoring Tool for OMDoc

Alberto González Palomo

http://www.matracas.org

QMath is a batch processor that produces an OMDoc file from a plain
Unicode text document. The purpose of QMath is to allow fast writing
of mathematical documents, using plain text and a straightforward syntax
(like in computer algebra systems) for mathematical expressions .

The “Q” was intended to mean “quick”, since QMath began in 1998 as
an abbreviated notation for MathMl. The first version (0.1) just expanded
the abbreviations to full MathMl element names, and added the extra
markup such as <mrow> and the like. There have been many changes (and
two complete rewrites) since then. You can find a more detailed history at
http://www.matracas.org/qmath/history.html

QMath is very simple in its design: it just parses a text (UTF-8) file
according to a user-definable table of symbols, and builds an XML document
from that. The symbol definitions are grouped in files called “contexts”. The
idea is that when you declare a context, its file is loaded and from then on
these symbol definitions take precedence over any previous one, thus setting
the context for parsing of subsequent expressions.

The text is split into “paragraphs”, which are pieces of text separated by
at least one empty line. Each paragraph can have a metadata section at the
beginning. There are a variety of classes of paragraphs, which are identified
by a name followed by a colon (“:”), optionally followed by an identifier
which becomes the id attribute of the generated OMDoc element. The text
is put in a <CMP> inside a container element which depends on the paragraph
type. This can be anything allowed by OMDoc, such as <assertion> ,
<axiom>, or the default <omtext> if the paragraph doesn’t have a QMath
paragraph type label. Inside the text, a mathematical expression is enclosed
in dollar (“$”) signs. Each such a section becomes an OMOBJ element in the
output document.

Figure 4.1 shows a minimal QMath document, and the OMDoc doc-
ument generated from it. The first line (”QMATH 0.3.6”) in the QMath
document is required for the parser to recognize the file. The lines be-
ginning with “:” are metadata items: first the document title, then the
author name (one line for each author), and finally the primary language
for the document. This last item is required, as it sets the basic symbol
set accordingly. For example, the “Context” item of an English document
is written “Contexto” if the document is in Spanish. (Similarly, the arith-

103

http://www.matracas.org
http://www.matracas.org/qmath/history.html

QMATH 0.3.6

:"Diary"

:Winston Smith

:1984-04-04

:en

Context: "Mathematics/Arithmetic"

Context: "Mathematics/OMDoc"

Theory:[<-thoughtcrime]

:"Down with Big Brother"

Freedom is the freedom to say $2+2=4$.

If that is granted, all else follows.

From contexts/en/Mathematics/OpenMath/arith1.qmath :

Symbol: plus OP PLUS "arith1:plus"

Symbol: + OP PLUS "arith1:plus"

Symbol: sum APPLICATION

"arith1:sum"

Symbol: Σ APPLICATION

"arith1:sum"

· · ·

From contexts/en/Mathematics/OpenMath/relation1.qmath :

Symbol: = OP EQ "relation1:eq"

Symbol: neq OP EQ "relation1:neq"

Symbol: = OP EQ "relation1:neq"

Symbol: 6= OP EQ "relation1:neq"

· · ·

<?xml version=’1.0’ encoding=’UTF-8’ standalone=’no’?>

<!DOCTYPE omdoc PUBLIC "-//OMDoc//DTD OMDoc V1.1//EN"

"http://www.mathweb.org/omdoc/omdoc.dtd" []>

<omdoc lang=’en’>

<metadata lang=’en’>

<Title xmlns=’http://purl.org/DC’>Diary</Title>

<Contributor xmlns=’http://purl.org/DC’ role=’aut’>

Winston Smith

</Contributor>

<Date xmlns=’http://purl.org/DC’>1984-04-04</Date>

</metadata>

<theory id=’thoughtcrime’>

<omtext>

<metadata>

<Title xmlns=’http://purl.org/DC’>Down with Big Brother</Title>

</metadata>

<CMP>

Freedom is the freedom to say

<OMOBJ xmlns=’http://www.openmath.org/OpenMath’>

<OMA>

<OMS cd=’relation1’ name=’eq’/>

<OMA><OMS cd=’arith1’ name=’plus’/><OMI>2</OMI><OMI>2</OMI></OMA>

<OMI>4</OMI>

</OMA>

</OMOBJ>.

If that is granted, all else follows.

</CMP>

</omtext>

</theory>

</omdoc>

Figure 4.1: A minimal QMath document and its OMDoc result

104

contexts/en/Mathematics/OpenMath/arith1.qmath
contexts/en/Mathematics/OpenMath/relation1.qmath

metic context would be ”Matemáticas/Aritmética”) The document is split
into paragraphs, which are separated by empty lines. Then, mathematical
expressions are written enclosed by “$” (dollar) signs.

The QMath command works as a pure filter: reads the document from
standard input, and writes the resulting OMDoc in standard output. So,
the typical usage is

QMath <document.qmath > document.omdoc

It needs the QMATH HOME environment variable to contain the path for the
root QMath directory, where it can find the ”contexts” directory. For
example, if you have the contexts directory at /tmp/qmath 3/contexts,
you should set QMATH HOME to /tmp/qmath 3

QMath is distributed under the GNU General Public License (GPL):
http://www.gnu.org/licenses/licenses.html#GPL

105

/tmp/qmath_3/contexts
/tmp/qmath_3
http://www.gnu.org/licenses/licenses.html#GPL

4.3 MBase, an Open Mathematical Knowledge Base

Andreas Franke and Michael Kohlhase

http://www.mathweb.org/mbase

We describe the MBase system, a web-based mathematical knowledge
base (see http://www.mathweb.org/mbase). It offers the infrastructure for
a universal, distributed repository of formalized mathematics. Since it is in-
dependent of a particular deduction system and particular logic, the MBase
system can be seen as an attempt to revive the Qed initiative from an in-
frastructure viewpoint. See [KF00] for the logical issues related to support-
ing multiple logical languages while keeping a consistent overall semantics.
The system is realized as a mathematical service in the MathWeb sys-
tem [FK99], an agent-based implementation of a mathematical software bus
for distributed mathematical computation and knowledge sharing. The con-
tent language of MBase is OMDoc.

We will start with a description of the system from the implementation
point of view (we have described the data model and logical issues in [KF00]).

The MBase system is realized as a distributed set of MBase servers
(see figure 4.2). Each MBase server consists of a Relational Data Base
Management System (RDBMS) connected to a mOZart process (yield-
ing a MathWeb service) via a standard data base interface. For brows-
ing the MBase content, any MBase server provides an http server (see
http://mbase.mathweb.org:8000 for an example) that dynamically gen-
erates presentations based on HtML or Xml forms.

This architecture combines the storage facilities of the RDBMS with the
flexibility of the concurrent, logic-based programming language Oz [Smo95],
of which mOZart (see http://www.mozart-oz.org) is a distributed im-
plementation . Most importantly for MBase, mOZart offers a mechanism
called pickling, which allows for a limited form of persistence: mOZart
objects can be efficiently transformed into a so-called pickled form, which
is a binary representation of the (possibly cyclic) data structure. This can
be stored in a byte-string and efficiently read by the mOZart application
effectively restoring the object. This feature makes it possible to represent
complex objects (e.g. logical formulae) as Oz data structures, manipulate
them in the mOZart engine, but at the same time store them as strings
in the RDBMS. Moreover, the availability of “Ozlets” (mOZart functors)
gives MBase great flexibility, since the functionality of MBase can be en-
hanced at run-time by loading remote functors. For instance complex data
base queries can be compiled by a specialized MBase client, sent (via the

106

http://www.mathweb.org/mbase
http://www.mathweb.org/mbase
http://mbase.mathweb.org:8000
http://www.mozart-oz.org

C

B

*

D
DBMS

type-inference,

distribution

MathWeb Interface

HTTP Interface

matching,

...,

Broker
MathWeb

Browser

Omega

Maple
Otter

MBASE

Figure 4.2: System Architecture

Internet) to the MBase server and applied to the local data e.g. for spe-
cialized searching (see [Duc98] for a related system and the origin of this
idea).

MBase supports transparent distribution of data among several MBase
servers (see [KF00] for details). In particular, an object O residing on an
MBase server S can refer to (or depend on) an object O′ residing on a
server S′; a query to O that needs information about O′ will be delegated to
a suitable query to the server S′. We distinguish two kinds of MBase servers
depending on the data they contain: archive servers contain data that is
referred to by other MBases, and scratch-pad MBases that are not referred
to. To facilitate caching protocols, MBase forces archive servers to be
conservative, i.e. only such changes to the data are allowed, that the induced
change on the corresponding logical theory is a conservative extension. This
requirement is not a grave restriction: in this model errors are corrected by
creating new theories (with similar presentations) shadowing the erroneous
ones. Note that this restriction does not apply to the non-logical data,
such as presentation or description information, or to scratchpad MBases
making them ideal repositories for private development of mathematical
theories, which can be submitted and moved to archive MBases once they
have stabilized.

107

4.4 Project ActiveMath

Erica Melis, Eric Andrès, Jochen Büdenbender, Adrian Frischauf,

George Goguadze, Paul Libbrecht, Martin Pollet, Carsten Ullrich

http://www.activemath.org/

In a nutshell, ActiveMath is a generic web-based learning system that
dynamically generates interactive (mathematics) courses adapted to the stu-
dent’s goals, preferences, capabilities, and knowledge. The content is repre-
sented in OMDoc format with several extensions needed in an educational
context. For each user, the appropriate content is retrieved from the knowl-
edge base MBase and the course is generated individually according to
pedagogical rules. Then the course is presented to the user via a standard
web-browser. One of the exceptional features of ActiveMath is its inte-
gration of stand-alone mathematical service systems.

Currently, a minimal authoring kit and a translation tool from restricted
LATEX to OMDoc are provided to support authoring OMDocs1.

In the near future, the authoring tools will have intelligent features and
ActiveMath will integrate a user-adaptive suggestion and feedback mech-
anism in addition to the adaptive course generation. A comprehensive de-
scription of the system can be found in [MAF+01].

4.4.1 OMDoc Extensions

The ActiveMath DTD is an extension of the general OMDoc DTD, in
particular, with pedagogically motivated extensions such as difficulty or ab-
stractness of an example or exercise.

ActiveMath will also differentiate exercises according to their type
with values defining the user’s required activity such as check-question,
make-hypothesis, prove, model or explore where e.g., explore means inter-
active exploration with the help of specified external system (such as maple,
Ωmega, or statistics software).

Additional pedagogically motivated metadata elements will be intro-
duced such as field (e.g., computer science,math, economy) and learning-

context with values corresponding to school and university levels2 in accor-
dance with the Learning Object Metadata Standard3. Furthermore, the

1See http://www.activemath.org/∼paul/AuthoringComments/ for a description.
2These will be used to provide different content to users with different background

fields and at different levels.
3http://ltsc.ieee.org/wg12/

108

http://www.activemath.org/
http://www.activemath.org/~paul/AuthoringComments/
http://ltsc.ieee.org/wg12/

author can specify the pedagogical goal of an exercise, example, or elabora-
tion, that is whether learning this item increases knowledge, comprehension,
application, or transfer.

Finally, in ActiveMath, relations are going to be represented by the
element relation, defined in the ActiveMath DTD and classified by intro-
ducing a type of the relation. The type values are: depends-on, counterexam-
ple-for, similar-example, similar-exercise, citation, etc. The need for distin-
guishing the types of relations arises not only in educational contexts.

Since we need certain additional OMDoc elements in the educational
context, a common representation for proof methods, proof plans, algorithms
will be added in the future, hopefully some of them even to the common
OMDoc itself.

4.4.2 Adaptive Presentation

ActiveMath offers dynamically constructed courses that suit the learner’s
learning goals, her choosen learning scenarios, her presentation preferences,
and knowledge mastery. To realize this, ActiveMath maintains a user
model and its presentation tools include a course generator and pedagogical
rules employed by the course generator.

Presentation of the content is currently made in HtML through XslT
transformations with adaptation to the users’ taste through CSS filters.
OMDoc’s semantic encoding allows to envision other output formats and
some of them are under work.

4.4.3 Integration of External Systems

Currently, ActiveMath integrates the Computer Algebra Systems MuPad
and Maple and the proof planner of Ωmega, and statistics software. More-
over, an external student/exercise management systems will be integrated
in 2002. The distributed web-architecture of ActiveMath is well-suited
for integrating external systems and also the OMDoc representation is – in
principle – a basis for integrating different systems.

Currently however, exercises and examples cannot simply pass OM-
Docs or OpenMath elements to the mathematical service systems because
OpenMath-phrasebooks are not available for most systems. An instruction
on how to write the OMDocs for exercises for which an external system is
called can be found in http://www.ags.uni-sb.de/∼adrianf/activemath.
The abstract description of an exercise includes startup, shutdown, and eval
instructions.

109

http://www.ags.uni-sb.de/~adrianf/activemath

4.4.4 Current Status

The ActiveMath learning environment is alpha status of development.
Most of the basic features are becoming stable and new ones are being
planned. Authoring tools are under development but usage of QMath (see
other implementations) is recommended and compatible.

More information and a demo version of ActiveMath can be found
from our web-page http://www.activemath.org/.

110

http://www.activemath.org/

Chapter 5

Conclusion

With OMDoc we have proposed a content-based markup format that allows
to represent mathematical knowledge at various levels. As a consequence
the format allows to capture the semantics and structure of various kinds of
mathematical documents, including articles, textbooks, interactive books,
and courses.

We have argued that the problem of representing mathematical knowl-
edge has to be addressed at three levels, corresponding to the three levels
of structure found in documents.

The formula level is concerned with representing mathematical objects as
mathematical/logical formulae. OMDoc leverages the existing Open-
Math and MathMl standards for this.

The statement level consists of statements about the mathematical ob-
jects, like definitions, theorems and proofs. On this level, OMDoc
supplies original markup schemes that allow structured representa-
tions of the mathematical content (including both formal and informal
elements of representation).

The theory level allows to group statements to conceptual units accord-
ing to the assumptions on the mathematical objects they describe. An
inheritance mechanism allows to specify the acessibility and scoping of
symbols, and re-use flexibly parts of specifications. The theory level
even allows to structure collections of theories by theory-inclusions and
transport theories and proof methods along these relations.

We have motivated and described version 1.1 of the OMDoc language and
presented an Xml document type definition for it. We have surveyed a set

111

of transformation tools that generate presentation-oriented documents for
human consumption and machine-oriented documents for communication
with mathematical software systems.

We have developed first authoring tools for OMDoc that try to simplify
generating OMDoc documents for the working mathematician. There is a
simple OMDoc mode for emacs, and a LATEX style [Koh00a] that can be
used to generate OMDoc representations from LATEX sources and thus help
migrate existing mathematical documents. A second step will be to integrate
the LATEX to OpenMath conversion tools.

The next steps in the development will be to develop OMDoc ver-
sion 2.0 including more disruptive changes to the language, including a
re-organization of central OMDoc elements like definition.

112

Bibliography

[ABI+96] Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith,
Frank Pfenning, and Hongwei Xi. TPS: A theorem-proving sys-
tem for classical type theory. Journal of Automated Reasoning,
16:321–353, 1996.

[AZ00] Alessandro Armando and Daniele Zini. Towards Interoperable
Mechanized Reasoning Systems: the Logic Broker Architecture.
In A. Poggi, ed., to appear on the Proceedings of the AI*IA-
TABOO Joint Workshop ‘From Objects to Agents: Evolutionary
Trends of Software Systems’, Parma, Italy, May 29–30, 2000.

[Bar92] Henk P. Barendregt. Lambda calculi with types. In S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum, eds., Handbook of Logic
in Computer Science, Vol. 2, pp.117–309. Oxford University
Press, 1992.

[Bau99] Judith Baur. Syntax und Semantik mathematischer Texte — ein
Prototyp. Master Thesis, Saarland University, 1999.

[BBS99] Christoph Benzmüller, Matthew Bishop, and Volker Sorge. In-
tegrating Tps and Ωmega. Journal of Universal Computer Sci-
ence, 5(2), 1999.

[BCF+97] C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler,
X. Huang, M. Kerber, M. Kohlhase, K. Konrad, E. Melis,
A. Meier, W. Schaarschmidt, J. Siekmann, and V. Sorge.
Ωmega: Towards a mathematical assistant. In William Mc-
Cune, ed., Proceedings of the 14th Conference on Automated
Deduction, no.1249 in LNAI, pp.252–255, Townsville, Australia,
1997. Springer Verlag.

113

[BLFM98] Tim Berners-Lee, R. Fielding, and L. Masinter. Uni-
form resource identifiers (uri), generic syntax. RFC
2717, Internt Engineering Task Force, 1998. available at
http://www.ietf.org/rfc/rfc2717.txt.

[Bos98] Cascading style sheets, level 2; css2 specification. W3c recom-
mendation, World Wide Web Consortium (W3C), 1998. avail-
able as http://www.w3.org/TR/1998/REC-CSS2-19980512.

[BPSM97] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Exten-
sible Markup Language (XML). W3C Recommendation TR-
XML, World Wide Web Consortium, December 1997. Available
at http://www.w3.org/TR/PR-xml.html.

[BSBG98] R. Boulton, K. Slind, A. Bundy, and M. Gordon. An inter-
face between CLAM and HOL. In Jim Grundy and Malcolm
Newey, eds., Theorem Proving in Higher Order Logics: Emerg-
ing Trends, Technical Report 98-08, Department of Computer
Science and Computer Science Lab, pp.87–104, Canberra, Aus-
tralia, October 1998. The Australian National University.

[CAB+86] Robert L. Constable, S. Allen, H. Bromly, W. Cleaveland, J. Cre-
mer, R. Harper, D. Howe, T. Knoblock, N. Mendler, P. Panan-
gaden, J. Sasaki, and S. Smith. Implementing Mathematics with
the Nuprl Proof Development System. Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

[CC98] Olga Caprotti and Arjeh M. Cohen. Draft of
the Open Math standard. The Open Math Soci-
ety, http://www.nag.co.uk/projects/OpenMath/omstd/,
1998.

[CIMP01] David Carlisle, Patrick Ion, Robert Miner, and Nico Poppelier.
Mathematical Markup Language (MathML) version 2.0. W3c
recommendation, World Wide Web Consortium, 2001. Available
at http://www.w3.org/TR/MathML2.

[Cla99] Xml path language (xpath) version 1.0. W3c recommenda-
tion, The World Wide Web Consortium, 1999. available at
http://www.w3.org/TR/xpath.

114

http://www.ietf.org/rfc/rfc2717.txt
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.nag.co.uk/projects/OpenMath/omstd/
http://www.w3.org/TR/xpath

[CoF98] Language Design Task Group CoFI. Casl — the CoFI alge-
braic specification language — summary, version 1.0. Tech. rep.,
http://www.brics.dk/Projects/CoFI, 1998.

[dB80] Nicolaas Govert de Bruijn. A survey of the project AU-
TOMATH. In R. Hindley and J. Seldin, eds., To H.B. Curry:
Essays in Combinator Logic, Lambda Calculus and Formalisms,
pp.579–606. Academic Press, 1980.

[DCN+00] Louise A. Dennis, Graham Collins, Michael Norrish, Richard
Boulton, Konrad Slind, Graham Robinson, Mike Gordon, and
Tom Melham. The prosper toolkit. In Proceedings of the Sixth
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS-2000, LNCS, Berlin,
Germany, 2000. Springer Verlag.

[Dea99] Stephen Deach. Extensible stylesheet language (xsl) spec-
ification. W3c working draft, W3C, 1999. Available at
http://www.w3.org/TR/WD-xsl.

[DJM01] Steve DeRose, Ron Daniel Jr., and Eve Maler. Xml pointer
language (XPointer). W3c candidate recommendation, W3C,
2001. Available at http://www.w3.org/TR/xptr.

[DuC97] Bob DuCharme. Formatting documents with dsssl specifications
and jade. The SGML Newsletter, 10(5):6–10, 1997.

[Duc98] Denys Duchier. The negra tree bank. Private communication,
1998.

[Far93] William M. Farmer. Theory interpretation in simple type theory.
In HOA’93, an International Workshop on Higher-order Algebra,
Logic and Term Rewriting, Vol.816 of LNCS, Amsterdam, The
Netherlands, 1993. Springer Verlag.

[FGT93] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer.
IMPS: An Interactive Mathematical Proof System. Journal of
Automated Reasoning, 11(2):213–248, October 1993.

[FH01] Armin Fiedler and Helmut Horacek. Argumentation in expla-
nations to logical problems. In Vassil N. Alexandrov, Jack J.
Dongarra, Benjoe A. Juliano, Renè S. Renner, and C. J. Ken-
neth Tan, eds., Computational Science — ICCS 2001, no.2074
in LNCS, pp.969–978, San Francisco, CA, 2001. Springer Verlag.

115

http://www.w3.org/TR/WD-xsl
http://www.w3.org/TR/xptr

[FHJ+99] Andreas Franke, Stephan M. Hess, Christoph G. Jung, Michael
Kohlhase, and Volker Sorge. Agent-oriented integration of dis-
tributed mathematical services. Journal of Universal Computer
Science, 5:156–187, 1999.

[Fie97] Armin Fiedler. Towards a proof explainer. In Siekmann et al.
[SPH97], pp.53–54.

[Fie99] Armin Fiedler. Using a cognitive architecture to plan dialogs
for the adaptive explanation of proofs. In Thomas Dean, ed.,
Proceedings of the 16th International Joint Conference on Artifi-
cial Intelligence (IJCAI), pp.358–363, Stockholm, Sweden, 1999.
Morgan Kaufmann.

[Fie01] Armin Fiedler. Dialog-driven adaptation of explanations of
proofs. In Bernhard Nebel, ed., Proceedings of the 17th In-
ternational Joint Conference on Artificial Intelligence (IJCAI),
pp.1295–1300, Seattle, WA, 2001. Morgan Kaufmann.

[FK99] Andreas Franke and Michael Kohlhase. System description:
MathWeb, an agent-based communication layer for distributed
automated theorem proving. In Harald Ganzinger, ed., Auto-
mated Deduction — CADE-16, no.1632 in LNAI, pp.217–221.
Springer Verlag, 1999.

[FK00] Andreas Franke and Michael Kohlhase. System description:
MBase, an open mathematical knowledge base. In David
McAllester, ed., Automated Deduction – CADE-17, no.1831
in LNAI, pp.455–459. Springer Verlag, 2000.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen I
& II. Mathematische Zeitschrift, 39:176–210, 572–595, 1935.

[GM93] M. J. C. Gordon and T. F. Melham. Introduction to HOL – A
theorem proving environment for higher order logic. Cambridge
University Press, 1993.

[Gol90] C. F. Goldfarb. The SGML Handbook. Oxford University Press,
1990.

[Gro99] The Open eBook Group. Open ebook[tm] publication structure
1.0. Draft recommendation, The OpenEBook Initiative, 1999.
Available at http://www.openEbook.org.

116

http://www.openEbook.org

[Har01] Eliotte Rusty Harold. XML Bible. Hungry Minds, gold edition
ed., 2001.

[HF96] Xiaorong Huang and Armin Fiedler. Presenting machine-found
proofs. In McRobbie and Slaney [MS96], pp.221–225.

[HF97] Xiaorong Huang and Armin Fiedler. Proof verbalization in
PROVERB. In Siekmann et al. [SPH97], pp.35–36.

[HS96] Dieter Hutter and Claus Sengler. INKA - The Next Generation.
In McRobbie and Slaney [MS96], pp.288–292.

[Hut00] Dieter Hutter. Management of change in structured verifica-
tion. In Proceedings Automated Software Engineering (ASE-
2000). IEEE Press, 2000.

[KF00] Michael Kohlhase and Andreas Franke. Mbase: Representing
knowledge and context for the integration of mathematical soft-
ware systems. Journal of Symbolic Comutation; Special Issue
on the Integration of Computer algebra and Deduction Systems,
2000. forthcoming.

[Knu84] Donald E. Knuth. The TEXbook. Addison Wesley, 1984.

[Koh00a] Michael Kohlhase. Creating omdoc representations from LATEX.
Internet Draft available at http://www.mathweb.org/omdoc,
2000.

[Koh00b] Michael Kohlhase. OMDoc: An infrastructure for open-
math content dictionary information. Bulletin of the ACM Spe-
cial Interest Group on Symbolic and Automated Mathematics
(SIGSAM), 34(2):43–48, 2000.

[Koh00c] Michael Kohlhase. OMDoc: An open markup for-
mat for mathematical documents. Seki Report SR-00-02,
Fachbereich Informatik, Universität des Saarlandes, 2000.
http://www.mathweb.org/omdoc.

[Lam94] Leslie Lamport. LATEX: A Document Preparation System, 2/e.
Addison Wesley, 1994.

[Lee98] Tim Berner’s Lee. The semantic web. W3C Architecture Note,
1998. http://www.w3.org/DesignIssues/Semantic.html.

117

http://www.mathweb.org/omdoc
http://www.mathweb.org/omdoc

[MAF+01] E. Melis, J. Buedenbender E. Andres, Adrian Frischauf,
G. Goguadze, P. Libbrecht, M. Pollet, and C. Ullrich. The Ac-
tiveMath learning environment. Artificial Intelligence and Ed-
ucation, 12(4), winter 2001 2001.

[MAH01] Till Mossakowski, Serge Autexier, and Dieter Hutter. Extending
development graphs with hiding. In H. Hußmann, ed., Proceed-
ings of Fundamental Approaches to Software Engineering (FASE
2001), 2001.

[mar01] Xml base. W3c recommendation, The World Wide Web Con-
sortium, 2001. available at http://www.w3.org/TR/xmlbase/.

[MS96] M.A. McRobbie and J.K. Slaney, eds.. Proceedings of the 13th
Conference on Automated Deduction, no.1104 in LNAI, New
Brunswick, NJ, USA, 1996. Springer Verlag.

[MSLK01] M. Murata, S. St. Laurent, and D. Kohn.
Xml media types. RFC 3023, January 2001.
ftp://ftp.isi.edu/in-notes/rfc3023.txt.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype
verification system. In D. Kapur, ed., Proceedings of the 11th
Conference on Automated Deduction, Vol.607 of LNCS, pp.748–
752, Saratoga Spings, NY, USA, 1992. Springer Verlag.

[Pfe91] Frank Pfenning. Logic programming in the LF logical frame-
work. In Gérard P. Huet and Gordon D. Plotkin, eds., Logical
Frameworks. Cambridge University Press, 1991.

[PN90] Lawrence C. Paulson and Tobias Nipkow. Isabelle tutorial and
user’s manual. Tech. rep.189, Computer Laboratory, University
of Cambridge, January 1990.

[Rei87] Glenn C. Reid. PostScript, Language, Program Design. Addison
Wesley, 1987.

[RHJ98] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML
4.0 Specification. W3C Recommendation REC-html40,
World Wide Web Consortium, April 1998. Available at
http://www.w3.org/TR/PR-xml.html.

118

http://www.w3.org/TR/xmlbase/
ftp://ftp.isi.edu/in-notes/rfc3023.txt
http://www.w3.org/TR/PR-xml.html

[RSG98] Julian D.C. Richardson, Alan Smaill, and Ian M. Green. System
description: Proof planning in higher-order logic with λclam. In
Claude Kirchner and Hélène Kirchner, eds., Proceedings of the
15th Conference on Automated Deduction, no.1421 in LNAI.
Springer Verlag, 1998.

[Rud92] Piotr Rudnicki. An overview of the mizar project. In Proceed-
ingsof the 1992 Workshop on Types and Proofs as Programs,
pp.311–332, 1992.

[SBC+00] Jörg Siekmann, Christoph Benzmüller, Lassaad Cheikhrouhou,
Armin Fiedler, Andreas Franke, Helmut Horacek, Michael
Kohlhase, Andreas Meier, Erica Melis, Martin Pollet, Volker
Sorge, Carsten Ullrich, and Jürgen Zimmer. Adaptive course
generation and presentation. In P. Brusilovski, ed., Proceedings
of ITS-2000 workshop on Adaptive and Intelligent Web-Based
Education Systems, Montreal, 2000.

[Smo95] G. Smolka. The Oz programming model. In Jan van Leeuwen,
ed., Computer Science Today, Vol.1000 of LNCS, pp.324–343.
Springer-Verlag, Berlin, 1995.

[SPH97] J. Siekmann, F. Pfenning, and X. Huang, eds.. Proceedings of
the First International Workshop on Proof Transformation and
Presentation, Schloss Dagstuhl, Germany, 1997.

[SSBL01] Colin Smythe, Eric Shepherd, Lane Brewer, and
Steve Lay. Ims question & test interoperabil-
ity: An overview. Public Draft Version 1.2, IMS
Global Learning Consortium, Inc., 2001. available at
http://www.imsglobal.org/question/qtiv1p2pd/imsqti oviewv1p2.html.

[Tea] Coq Development Team. The Coq Proof Assistant Reference
Manual. INRIA. see http://coq.inria.fr/doc/main.html.

[Tho91] Simon Thompson. Type Theory and Functional Programming.
International Computer Science Series. Addison-Wesley, 1991.

119

http://www.imsglobal.org/question/qtiv1p2pd/imsqti_oviewv1p2.html
http://coq.inria.fr/doc/main.html

Index

λClam, 98
-//OMDoc//DTD OMDoc V1.1//EN, 137
%cfm;, 137
&, 12
>, 12
<, 12
Automath, 19
Isabelle, 46
XslT, 12
OpenMath object, 14
Xml schema, 94

abbreviation
namespace, 11

abstract value for attribue
type on element
omtext, 34

abstract data type, 49
action attribute in

Date, 26, 140, 142
omlet, 141

actualization, 60
adt (element), 36, 50–52, 139, 140
advisor

thesis, 29
against value for attribue

type on element
example, 42

alernative (element), 138
algebraic specification, 19
all value for attribue

crossref-symbol on element
presentation, 84

%alsoinCMP, 32
alternative (element), 40, 41, 139
alternative value for attribue

type on element
omgroup, 141

alternative-def (deprecated in 1.1),
139

Amaya, 13
annotation-xml (element), 13
answer (element), 73
ant value for attribue

role on element
Creator, Contributor, 29

antecedent
bibliographic, 29

antithesis value for attribue
type on element
omtext, 34

ANY
content type, 10

applet, 71
applet, 71
application, 14

Xml, 9
apply (element), 14
argstr attribute in

omlet, 72
argument (element), 51, 139
arith1, 17
arith1.ocd, 16
assertion, 43
assertion (element), 38, 40–42, 46,

59, 138, 140
assertion attribute in

example, 42
assertion-just (deprecated in 1.1),

140, 141
assoc value for attribue

fixity on element

120

presentation, 82
assumption

local, 47
assumption (element), 32
assumption value for attribue

type on element
assertion, 40

attribute, 9, 11
attribute (element), 78, 139
attribute-value pair, 78
attributes attribute in

use, 85, 143
aut value for attribue

role on element
Creator, Contributor, 28

Author, 28
authoring tool, 111
axiom, 18, 19, 31
axiom (element), 36, 51, 53, 56, 58,

59, 139, 140
axiom-inclusion, 60
axiom-inclusion (element), 58–60,

63, 135, 137, 140

bare name, 90, 93
base attribute in

morphism, 56
base morphism, 56
binary, 70
binding structure, 14
binomial coefficient, 85
book

interactive, 96
bound variable, 14
bracket-style attribute in

presentation, 82
use, 85

brackets value for attribue
crossref-symbol on element
presentation, 84

browser, 8, 97
bus

software, 1
byte array, 14

C, 14

callMint, 72
cascading style sheet, 136
catalogue, 88

effective, 88
catalogue (element), 88
catalogue attribute in

*, 89
omdoc, 23, 88

cd attribute in
OMS, 14, 15, 88, 93

cd2omdoc.xsl, 97
CDATA, 76
CDATA, 12, 70, 80
CDDefinition (element), 54
chain

local, 59
chapter, 18
choice (element), 73
choose, 85
ci (element), 14
cite value for attribue

type on element
ref, 65

class attribute in
*, 136

classid attribute in
code, 140
private, 70, 142

clb value for attribue
role on element
Creator, Contributor, 29

cmml value for attribue
format on element
use, 76

CMP (element), 15, 25, 30–37, 41, 44,
45, 47–49, 58, 69, 70, 73, 96,
97, 100, 134, 138, 140, 142,
143, 145, 147, 148

code
country, 32, 100

code (element), 49, 68, 70–72, 76,
140, 142

codebase attribute in
code, 140
private, 70, 142

121

coefficient
binomial, 85

Collaborator, 29
comma, 83
comment

Xml, 12, 34
persistent, 34

comment value for attribue
type on element
omtext, 34, 138

commented mathematical property,
15

commonname (element), 35, 51, 53
communication standard, 95
concatenability, 92
conclude (element), 47, 49, 141
conclusion (element), 32, 47, 141
conclusion value for attribue

type on element
omtext, 34

conjecture, 38
conjecture value for attribue

type on element
assertion, 40

conservative extension, 19
constant

domain, 14
constitutive theory element, 53
constructor, 50
constructor (element), 51, 134, 137,

140
content

dictionary, 14
content dictionary, 17
content dictionary, 14, 15, 54, 88,

97
content identifier, 14
content markup, 7, 32
content type ANY, 10
content MathMl, 13
context, 2

reference by, 88
context-free grammar, 9
contrast value for attribue

type on element

omgroup, 141
Contributor (element), 25, 26, 28,

140
controlled refinement, 95
corollary, 38
corollary value for attribue

type on element
assertion, 40

country code, 32, 100
Coverage (deprecated in 1.1), 27, 140
Creator (element), 24–29, 140
crossref-symbol attribute in

presentation, use, 84
CSS, 8
csymbol (element), 14, 15, 90

DAG, 34, 43
data (element), 70, 71, 140, 142
data attribute in

omlet, 141
data set, 66
data type

abstract, 49
Dataset, 26
dataset value for attribue

type on element
omgroup, 65–68

Dataset as Dublin Core Type, 26
Text as Dublin Core Type, 26
Date (element), 26, 140
dateTime, 26
dc:Date (element), 140, 142
de, 32
declaration

document type, 155
location, 88
namespace, 94

decomposition (element), 60, 135, 137,
140, 142

default value for attribue
format on element
use, 76

definition, 1, 18, 19, 22, 31
document type, 155

122

definition (element), 3, 36–38, 41,
42, 49, 53, 56, 58, 59, 111,
134, 138, 140, 142

definitional form, 19
definitionURL attribute in

csymbol, 15, 90, 94
derive (element), 46–49, 141
Description (element), 25, 68, 140,

142
development graph, 58
dictionary

content, 14
directed acyclic graph, 34
directed acyclic graph, 43
discharged-in attribute in

hypothesis, 2, 47, 141
discourse structure, 96
DOCTYPE, 10, 94
document

legacy, 78
mathematical, 2, 17

document tree, 9
document preparation language, 96
document root, 9
document type declaration, 155
document type definition, 9, 155
domain constant, 14
DSSSL, 8
DTD, 9, 32, 94

internal subset, 10
local subset, 32, 94

Dublin Core, 23
DVI, 7
dvips, 85

e-mail, 2
Editor, 29
edt value for attribue

role on element
Creator, Contributor, 29

effect (element), 70
effective catalogue, 88
<el>,</el>,<el/>, 9
elaboration value for attribue

type on element

omtext, 34
element, 11

empty, 9
element (element), 77, 78, 141
element attribute in

omstyle, 75
use, 85, 143

elements, 9
emacs, 111
empty element, 9
emptyset, 50
en, 32, 135, 137
en value for attribue

xml:lang on element
*, 32

entailed-by attribute in
alternative, 41

entailed-by-thm attribute in
alternative, 41

entails attribute in
alternative, 41

entails-thm attribute in
alternative, 41

entity
parameter, 25, 32

entity reference, 13
enumerate value for attribue

type on element
omgroup, 65

equation
recursive, 37

error, 14
Xml escaping, 12
evidence value for attribue

type on element
omtext, 34

example (element), 42
examples, 22, 31
exercise (element), 73, 137
exincl.xsl, 101
expansion, 45
export, 35
expres.xsl, 101
extradata (element), 23, 24

123

false value for attribue
verdict on element
answer, 73

false-conjecture value for attribue
type on element
assertion, 40

file
style, 7

fixity attribute in
presentation, use, 82
presentation, 82
use, 85

flatten, 65
FMP (element), 15, 16, 31–34, 36, 38,

45, 47–49, 70, 73, 96, 134,
137, 141

FMP group
multi-logic, 31, 134

for attribute in
*, 86, 151
decomposition, 60, 140, 142
definition, 36–38
example, 42
exercise, 137
insort, 51
omstyle, presentation, 75
omtext, 34, 141
presentation, 79, 82
private, code, 68
private, 142
proof, 46, 49
type, 35, 142

for value for attribue
type on element
example, 42

forall, 85
form, 6
formal mathematical property, 15
Format (element), 26
format, 101
format attribute in

data, 70, 140, 142
use, xslt, style, 76, 84

formula value for attribue
type on element

assertion, 40
fr, 32
free, 50
free value for attribue

type on element
adt, 51

from attribute in
imports, 54
omtext, 141
theory-inclusion, 58

frozen value for attribue
action on element
Date, 26

function, 6
recursive, 49
total/partial, 51

function attribute in
omlet, 72

generated, 50
generated value for attribue

type on element
adt, 51

generated-by attribute in
alternative, 139
assertion, 140
axiom, 36, 52, 140
definition, 140
symbol, 142

global, 88
global value for attribue

scope on element
symbol, 35, 51

type on element
imports, 54

globals attribute in
path-just, 59

grammar
context-free, 9

graph, 58
directed, acyclic, 34, 43

group, 35, 55, 56, 58

height attribute in
omlet, 72, 140–142

124

hiding attribute in
morphism, 57

hint (element), 73
home theory, 53
hpothesis (element), 2
href attribute in

data, 70, 140
HtML, 8
html, 72, 101
html value for attribue

format on element
use, 76

hyperref.sty, 84
Hypertext Markup Language, 8
hypothesis (element), 47, 139, 141

ID, 92
id, 34
id attribute in

*, 49, 75, 86, 90, 92, 93, 102,
136, 150

Creator, 25
assertion, 42
axiom, 36
dc:*, 140
decomposition, 140
derive, 49
metacomment, 47
om:*, 33, 133
omdoc, 23
omgroup, 68
omtext, 66
presentation, 141
private, code, 68, 70
proof, 46
sortdef, 142
style, 143
symbol, 35, 51, 53
theory, 53, 54, 92, 93
type, 142
with, 32, 143

identification, 88
identification mapping, 92
Identifier (element), 27
identifier

content, 14
mathematical, 13
public, 155

ignore (element), 34
image/gif, 70
image/jpeg, 70
implicit value for attribue

type on element
definition, 38

imported value for attribue
action on element
Date, 26

imports (element), 53, 54, 56, 58,
60, 63, 135

include value for attribue
type on element
ref, 65

inclusion (element), 63
inconsistency, 19
individualized book, 96
induced-by attribute in

obligation, 59
inductive value for attribue

type on element
definition, 37

infix value for attribue
fixity on element
presentation, 82

information
style, 75

inherited, 56
inherits attribute in

metadata, 141
injective, 92
ink-on-paper, 5, 6
input (element), 70
insert, 50
insort (element), 51
instance

Xml schema, 11
theory, 60

integer, 14
integrity condition, 41
interlingua, 97
internal subset, 10

125

internationalization, 100
MS Internet Explorer , 13, 97
Internet Explorer, 12, 13, 97, 125
interpretation

theory, 58
introduction value for attribue

type on element
omtext, 34

inv, 55, 58
inverse

partial, 92
ISBN, 27
isbn value for attribue

scheme on element
Identifier, 27

ISO 639, 27, 32, 100
ISO 8601, 26, 30
ISO8601, 145, 146
ISSN, 27
itemize value for attribue

type on element
omgroup, 65

Java, 70, 71
js value for attribue

type on element
omlet, 71

just-by attribute in
definition, 37, 38

K-12, 12
kind attribute in

ref, 142
symbol, 35, 51, 134

knowledge
mathematical, 1, 17

knowledge base, 96
Knuth, 7

labeled-dataset value for attribue
type on element
omgroup, 66

Language (element), 27
language

natural, 31

languages
multiple, 32, 34, 100

larg-group attribute in
use, 84

LATEX, 7
lbrack attribute in

presentation, use, 83, 85
presentation, 84
use, 85, 86

lbrack value for attribue
crossref-symbol on element
presentation, 84

legacy documents, 78
lemma, 38
lemma value for attribue

type on element
assertion, 40

letter, 2
line-feed, 11
link value for attribue

type on element
omlet, 71

links attribute in
decomposition, 60

LISP, 82
lisp value for attribue

bracket-style on element
presentation, 82

List, 63
list

ordered, 63
list, 63
loc (element), 88, 153
local, 56
local attribute in

path-just, 59
local value for attribue

scope on element
symbol, 35, 51

type on element
imports, 63

local assumption, 47
local chain, 59
local subset, 32, 94
locale (XslT parameter), 100

126

localization, 100
location, 88

reference by, 88
location declaration, 88
logic attribute in

FMP, 31, 134
logical system, 31
logical variable, 14
loose, 50
loose value for attribue

type on element
adt, 51

machine-readable, 14
mapping

identification, 92
markup, 6

content, 7, 32
presentation, 7

math (element), 10
math value for attribue

bracket-style on element
presentation, 82

Mathematica, 12
mathematica value for attribue

format on element
use, 76

mathematical
document, 17
knowledge, 17
statement, 17, 22, 31
vernacular, 31

mathematical document, 2
mathematical identifier, 13
mathematical knowledge, 1
mathematical knowledge base, 96
mathematical operator, 13
mathematical services, 1
mathematical software bus, 1
mathematical statement, 18
mathematical text, 25
mathematical theory, 1, 18, 52
mathematical vernacular”, 45
MathMl, 12, 85
mathweb, 21

MathWeb, 1
mc (element), 73
measure (element), 37, 38, 140, 141
measure function, 37
meta-mathematical object, 17
metacomment (element), 47
metadata, 8, 22, 23
metadata (element), 23–28, 33, 34,

66, 68, 70, 140–142
method, 45
method (element), 49, 141
mi (element), 13, 14
Microsoft, 6, 12

Internet Explorer, 13, 97, 125
MIME, 70
MIME type, 26
mo (element), 13
monography, 18
monoid, 35
monoid, 55, 56
morphism, 56

base, 56
theory, 58

morphism (element), 56, 58
motivation value for attribue

type on element
omtext, 34

Mozilla, 13, 97
mrow (element), 13
MS

Internet Explorer, 13, 97, 125
multi-logic, 36
multi-logic FMP group, 31, 134
multilingual, 36
multilingual support, 32, 34, 100
multilingual group, 35
Multiple-choice exercise, 73

name
qualified, 11, 75, 77

name attribute in
OMS, 14, 88, 93
OMV, 14
attribute, 78
element, 78

127

named anchors, 90
namespace, 10, 75, 77, 93
namespace abbreviation, 11
namespace declaration, 94
namespace URI for OMDoc, 22, 23
narrative value for attribue

type on element
omgroup, 135, 141

Nat, 50
nat, 63
nat-adt, 51
nat-list, 63
nats, 51
natural language, 31
Navigator, 12

Netscape, 13, 97, 127
Netscape, 12
Netscape Navigator, 13, 97
Netscape Navigator, 13, 97, 127
neut, 55
new value for attribue

action on element
Date, 26

nl, 32
no value for attribue

crossref-symbol on element
presentation, 84

total on element
selector, 51, 142

non-constitutive, 53
normative precedence, 9
normed value for attribue

action on element
Date, 26

obj value for attribue
type on element
definition, 134, 138

object
OpenMath, 14

object value for attribue
kind on element
symbol, 35, 51

objectsmeta-mathematical, 17
obligation, 60

obligation (element), 59, 140, 141
obligation value for attribue

type on element
assertion, 40

OMA (element), 14, 33, 82
OMA value for attribue

parent on element
presentation, 82

OMATP (element), 15
OMATTR (element), 15, 33
OMATTR value for attribue

parent on element
presentation, 82

OMB (element), 14
OMBIND (element), 14, 33, 79, 82
OMBIND value for attribue

parent on element
presentation, 82

OMBVAR (element), 14, 79
OMDoc namespace URI, 22
OMDoc namespace URI, 23
omdoc (element), 9–11, 23–27, 34,

65, 88, 89, 138
omdoc attribute in

loc, 88
omdoc1.0adapt1.1.xsl, 97
omdoc2html.xsl, 100, 101
omdoc2pvs.xsl, 98
omdoc2share.xsl, 100
omdoc2sys.xsl, 98
omdoc2tex.xsl, 100
OME (element), 14
OMF (element), 14
omgroup (element), 34, 64–68, 141
OMI (element), 14
omlet (element), 32, 71–73, 78, 140–

142
OMOBJ (element), 14, 24, 32, 33, 49,

78, 102, 134, 141
OMS (element), 14, 15, 53, 87, 88,

136
OMSTR (element), 14, 141
omstyle (element), 75–78, 82, 141–

143
omtext (element), 34, 64, 141

128

OMV (element), 14
op, 54, 55
Open eBook, 28
OpenMath elements

extra attributes id and xref,
33

operator
mathematical, 13

ordered lists, 63
ordering, 37
ordering (element), 37, 38, 140, 141
output (element), 70
overhead slide, 2

param, 63
parameter, 49, 60, 100

XslT, 100
parameter (deprecated in 1.1), 141
parameter entity, 10, 25
parametric theory, 60
paramter (element), 141
parent attribute in

presentation, 82, 86
parser

Xml, 12, 34, 97
partial function, 51
partial inverse, 92
path-just (element), 59
pattern (element), 37, 56, 141
persistent comments, 34
pickling, 105
pixel-on-screen, 6
plug-in, 71
plus (element), 14
pmml value for attribue

format on element
use, 76

pos, 51
pos-nats, 51
postfix value for attribue

fixity on element
presentation, 82

PostScript, 7
postulate value for attribue

type on element

assertion, 40
presentation (element), 82
precedence

normative, 9
precedence attribute in

presentation, 83, 137
pred, 50, 51
predicate, 51
prefix value for attribue

fixity on element
presentation, 82

premise (element), 49, 141
presentation, 99
presentation, 15
presentation (element), 75, 79–83,

85, 86, 101, 137, 141–143
presentation markup, 7
presentation MathMl, 13
preslink value for attribue

type on element
omlet, 71

principle of conservative extension,
19

priority-union, 27
private (element), 49, 68–70, 139–

142
problem, 38
program, 68
Prolog, 83
proof, 1, 18, 22, 43
proof (element), 46, 49, 59, 73, 135,

137, 138, 142
proof method, 45
proof obligation, 60
proof presentation, 45, 96
proofobject (element), 44, 73, 135,

138, 142
proofobjects (element), 137
proofs attribute in

assertion, 140
proposition value for attribue

type on element
assertion, 40

pto attribute in
private, code, 69

129

pto-version attribute in
private, code, 69

public identifer, 155
public identifier, 137
publication, 2
Publisher (element), 26, 140

qualified name, 11, 75, 77

rank attribute in
premise, 141

rarg-group attribute in
use, 84

rbrack attribute in
presentation, use, 85
presentation, 83, 84
use, 85, 86

rbrack value for attribue
crossref-symbol on element
presentation, 84

RDF, 23
recognizer (element), 51, 134, 137,

140, 142
recurse (element), 77, 78, 142
recursive value for attribue

type on element
definition, 37

recursive equation, 37
recursive function, 49
ref (element), 32, 65, 91, 92, 141,

142
reference, 88

entity, 13
referencing, 88
Relation (element), 27
renumbering, 7
replaces attribute in

private, 70, 142
representation theorem, 18
requation (element), 37, 56
requires attribute in

private, code, 70
use, xslt, style, 76, 84

resource description format, 23
reuse, 19

Rights (element), 27
rigorous, 31
role attribute in

Contributor, 25
Creator, Contributor, 28
dc:*, 25, 28, 140

saxon, 97
schema

Xml, 9
schema instance, 11
scheme attribute in

Identifier, 27
Scientific antecedent, 29
scope attribute in

symbol, 35, 51
section, 18
select attribute in

recurse, 78
value-of, 78

selector, 50
selector (element), 51, 142
semantics (element), 13, 15
semigroup, 54
separator attribute in

presentation, use, 83
presentation, 84

separator value for attribue
crossref-symbol on element
presentation, 84

sequence value for attribue
type on element
omgroup, 65, 141

sequent, 34, 49
sequents, 32
service

mathematical, 1
set, 54, 55
signature (deprecated in 1.1), 142
signature (element), 139
simple value for attribue

type on element
definition, 36, 37, 134

Simple Generalized Markup Lan-
guage, 8

130

size attribute in
data, 70, 140

software bus, 1
solution (element), 73, 135, 137
sort, 50, 51
sort attribute in

argument, 139
sort value for attribue

kind on element
symbol, 35, 51, 134

sortdef (element), 51, 134, 137, 139,
142

Source (element), 27
source theory, 54
specification, 19
statement

mathematical, 17, 18, 22, 31
stlye attribute in

presentation, 75
string, 14
structure

discourse, 96
style, 7, 12

file, 7
style (element), 76, 77, 80, 84, 135,

137, 142, 143
style attribute in

*, 75, 136
omstyle, presentation, 75, 82
with, 32

style file, 13
style information, 75
style sheet, 12, 74, 96
Subject (element), 25
suc, 50
succ, 51
support

multilingual, 32, 34, 100
symbol, 14, 31, 51

declaration, 18
export, 35

symbol (element), 35, 36, 49, 51, 53,
54, 79, 134, 142

system
logical, 31

system attribute in
type, 35
use, 86, 136

table, 66
target theory, 58
TargetLanguage, 100
templates, 12, 74
TeX value for attribue

format on element
use, 76

TEX, 7
TEX, 12
Text, 26
text

mathematical, 25
text (element), 77, 142
text/plain, 70
textbook, 18
theorem, 1, 18, 19, 22, 31, 38

representattion, 18
theorem value for attribue

type on element
assertion, 40

theory, 1, 18, 88
home, 53
interpretation, 58
mathematical, 18, 52
morphism, 58
parametric, 60
reuse, 19
source, 54
target, 58

theory (element), 34, 52–54, 82, 90–
93, 135, 137, 141, 142

theory attribute in
*, 92, 93
loc, 88
presentation, 82, 141
private, code, 68
proof, 46, 142
statement, 54

theory element
constitutive, 53

theory inclusion, 56, 58

131

theory instance, 60
theory-collection value for attribue

type on element
omgroup, 65

theory-constitutive, 53, 90
theory-inclusion, 60
theory-inclusion (element), 58–60,

135, 137, 140, 142
theoryNSD, 94
thesis value for attribue

type on element
omtext, 34

Thesis advisor, 29
ths value for attribue

role on element
Creator, Contributor, 29

times (element), 14
Title (element), 24, 25, 66
to attribute in

theory-inclusion, 58
top-level, 23, 35, 53, 58, 60, 65
total attribute in

selector, 51, 142
total function, 51
Transcriber, 29
Translator, 29
Translator (deprecated in 1.1), 140
trc value for attribue

role on element
Creator, Contributor, 29

tree, 43
document, 9

trl value for attribue
role on element
Contributor, 25
Creator, Contributor, 29

true value for attribue
verdict on element
answer, 73

Turing, 13
Type (element), 26
type

MIME, 26
type (element), 35, 53, 142
type attribute in

adt, 51
assertion, 40, 140
definition, 36
example, 42
imports, 54, 63
kind, 142
omdoc, 23, 65
omgroup, 65, 67, 141
omlet, 71, 141
omtext, 34, 141
private, code, 70
ref, 65
selector, 142

type value for attribue
kind on element
symbol, 35, 51

type system, 35

uniform resource locator, 90
uniform resource identifier, 10, 23
uniform resource locator, 11
updated value for attribue

action on element
Date, 26

URI, 10, 23, 27, 87, 90
URI, 154
URL, 11, 90
use (element), 76, 80, 83–87, 135,

137, 143

validating Xml parser, 9
validity, 9
value (element), 37, 56
value-of (element), 78, 143
variable, 14

bound, 14
logical, 14

verdict attribute in
answer, 73

vernacular
mathematical, 31, 45

version attribute in
omdoc, 23

via attribute in
inclusion, 63

132

whitespace, 11
who attribute in

Date, 26, 140
width attribute in

omlet, 72, 140–142
with (element), 32, 76–78, 143
Wolfram Research, 12
Word

Microsoft, 6
WYSIWYG, 6

xalan, 97
Xml, 9

comment, 12, 34
escaping, 12
parser, 12, 34

Xml schema, 9
Xml application, 9
Xml namespace, 10
Xml parser, 97
xml:base attribute in

*, 91
xml:lang, 32
xml:lang attribute in

*, 32
CMP, 32
Contributor, 25
Creator, Contributor, 29
Description, 25
Subject, 25
Title, 25
commonname, 35
use, xslt, style, 76, 84, 137
use,xslt,style, 135

xmlns attribute in
*, 11
omdoc, 11, 23

xref attribute in
*, 86
method, 49, 141
om:*, 33, 133
omstyle, presentation, 75
premise, 49, 141
presentation, 82, 141
ref, 65

xsi, 11
xsi:schemaLocation attribute in

omdoc, 11
xsl value for attribue

system on element
use, 86

xslt (element), 76, 80, 84, 135–137,
143

yes value for attribue
crossref-symbol on element
presentation, 84

total on element
selector, 51, 142

zero, 50, 51

133

Appendix A

Errata to the released

Specification

Here we track the errata in the OMDoc 1.1 specification (see http://www.mathweb.org/omdoc/archi
These errata have been cleared in this version.

1 Introduction

No errata known.

2 Mathematical Markup Schemes

No errata known.

3 OMDoc Elements

No errata known.

3.1 Metadata for Mathematical Elements

No errata known.

3.2 Mathematical Statements

3.2.1 Specifying Mathematical Properties

• The text fails to make clear for the id/xref to OpenMath objects
are only allowed, if the referencing element has the same name as the

134

http://www.mathweb.org/omdoc/archive/omdoc1.1.{ps,pdf}

referenced one. In particular, there are no implicit conversions.

• The text fails to mention the logic attribute of the FMP element. We
need to add “FMPs always appear in groups, which can differ in the
value of their logic attribute, which specifies the logical formalism.
The value of this attribute specifies the logical system used in formal-
izing the content. All members of the multi-logic FMP group have to
formalize the same mathematical object or property, i.e. they have to
be translations of each other.”

3.2.2 Symbols, Definitions, and Axioms

1. The values ’obj’ and ’simple’ were overlapping, and the role of the
FMP and OMOBJ children of the definition was unclear. The value
’obj’ has been dropped and we have clarified that in simple defini-
tions, the OMOBJ is the substitution element whereas the FMP captures
the meaning of the CMP group in Logic.

2. The attribute kind of the symbol element can also have the value
’sort’ for sets that are inductively built up from constructor symbols

3.2.3 Assertions and Alternatives

No errata known.

3.2.4 Mathematical Examples in OMDoc

No errata known.

3.2.5 Representing Proofs in OMDoc

No errata known.

3.2.6 Abstract Data Types

The optional recognizer element should be a child of sortdef, and not of
the constructor element. The specification text and examples are correct,
but the quick reference table is incorrect.

135

3.3 Theories as Mathematical Contexts

3.3.1 Simple Inheritance

The content model for theory in Figure 3.22 is incorrect. It should read
commonname*, CMP*, (statement | inclusion, imports)*. Moreover, the
attribute model has a spurious comma. Furthermore, the text should make
clear that OMDoc1.1 does not allow theories to nest and that theories can
include imports statements.

3.3.2 Inheritance via Translations

No errata known.

3.3.3 Statements about Theories

The text does not make this clear, but the elements theory-inclusion,
axiom-inclusion and decomposition may not occur in a theory element.
Worse, the document type definition allows this as well.

3.3.4 Parametric theories in OMDoc

No errata known.

3.4 Auxiliary Elements

3.4.1 Preservation of Text Structure

Figure 3.29: Specifying Tables with <omgroup type="dataset">The first
label for the second axis is “b11”. Should be “b1”.

omgroup The DTD did not contain value ’narrative’ that was present
in the specification.

3.4.4 Exercises

In the solution element, where proofwas allowed, we have to allow proofobject

as well.

3.5 Adding Presentation Information to OMDoc

1. It should be made clear that the xml:lang attribute of the use, xslt
and style elements does not have the default value en.

136

2. OMDoc1.1 uses the style attribute for all elements that have an
id attribute to specify generic style classes for the OMDoc elements.
This is based on a misunderstanding of the Xml cascading style sheet
(Css) mechanism [Bos98], which uses the class attribute to specify
this information and uses the style attribute to specify Css directives
that override the class information.

Even though this is a grave error (it severely limits the usefulness) we will
not change it in the OMDoc 1.1 specification and wait for the release of
OMDoc 1.2 to fix this, the renaming of the style attribute to class

would break existing implementations.

3.5.2 Specifying the Notation of Mathematical Symbols

Figure 3.44 the example still uses the OMDoc1.0 version of specifying
XslT content via the system attribute, in OMDoc1.1 the element
xslt should be used.

3.6 Identifying and Referencing OMDoc Elements

Locating OMS elements by the OMDoc Catalogue

No errata known.

A URI-based Mechanism for Element Reference

The text does not make it clear that the namespace prefixes for theory
collections can be declared in any element that dominates the referencing
element. The DTD does not allow this either. We will not change this in
the DTD, since the changes are too disruptive and OMDoc1.2 is coming
up soon.

Uniqueness Constraints and Relative URI references

No errata known.

4 OMDoc Applications, Tools, and Projects

No errata known.

137

B Changes

No errata known.

C Quick-Reference for OMDoc Elements

No errata known.

D Quick-Reference for OMDoc Attributes

No errata known.

E OMDoc DTD

We use the following public identifier for DTDs: -//OMDoc//DTD OMDoc

V1.1//EN

1. The xml:lang attribute of the use, xslt and style elements should
not have the default value en.

2. The elements theory-inclusion, axiom-inclusion and decomposition

may not occur in a theory element.

3. The content model for solution should make the FMP, proof, and
proofobjects elements optional.

4. the attribute for should have been optional

5. the optional recognizer element should be a child of sortdef, and
not of the constructor element.

6. the exercise element should allow multiple mathematical objects, not
at most one.

7. the %cfm; parameter entity in the DTD did not allow for multiple
FMPs, even though the spefication says that they appear in multi-
logic groups.

8. the default precedence attribute of the presentation element should
have the default value 1000.

138

9. the content model of the definition element had to be adapted to the
clarification in the specification. The old version only allowed CMP-only
content with rxp. The value ’obj’ has also been dropped.

10. the content model for the omdoc element prescribed at least one omdoc
item. This is not intended, since we want to allow catalogue-only
documents for administrative purposes.

11. the theory attribute for the assertion alernative, proof and proofobject

elements should be of type CDATA, after all it contains a URI that points
to an external theory.

12. the specification mentions type ’comment’, but the DTD did not allow
this.

139

Appendix B

Changes from Version 1.0

In this section we will keep a log on the changes that have occurred in
the released versions of the OMDoc format. We will briefly tabulate the
changes by element name. For the state of an element we will use the
shorthands “dep” for deprecated (i.e. the element is no longer in use in the
new OMDoc version), “cha” for changed, if the element is re-structured
(i.e. some additions and losses), “new” if did not exist in the old OMDoc
version, and finally “aug” for augmented, i.e. if it has obtained additional
children or attributes in the new OMDoc version.

Version 1.1 is mainly a bug-fix release that has become necessary by
the experiments of encoding legacy material in OMDoc. The changes are
relatively minor, mostly added optional fields. The only non-conservative
changes concern the private, hypothesis, sortdef and signature ele-
ments. OMDoc files can be upgraded to version 1.1 with the XslT style
sheet http://www.mathweb.org/omdoc/xsl/omdoc1.0adapt1.1.xsl.

element state comments cf.

attribute new presentation of attributes for Xml elements 78

alternative cha new form of the alternative-def element, it can
now also used as an alternative to axiom. Com-
pared to alternative-def it has a new optional
attribute generated-by to show that an assertion
is generated by expanding a some other element
like adt.

40

alternative-def dep new form is alternative, since there can be alter-
native axioms too.

argument cha attribute sort is now of type IDREF, since it must
be local in the definition.

51

140

http://www.mathweb.org/omdoc/xsl/omdoc1.0adapt1.1.xsl

assertion aug more values for the type, new optional attribute
generated-by to show that an assertion is gener-
ated by expanding a definition or an adt. New
optional attribute proofs.

38

assertion-just dep this is now obligation

axiom aug new optional attribute generated-by to show that
an axiom is generated by expanding a definition.

36

axiom-inclusion cha now allows a CMP group for descriptive text,
includes a set of obligations instead of an
assertion-just. The timestamp attribute is dep-
recated, use dc:Date with appropriate action in-
stead

58

CMP cha the attribute format is now deprecated, it makes
no sense, since we are more strict and consistent
about CMP content.

32

code cha Attributes width and height now in omlet, got
attributes classid and codebase from private.
Attribute format moved to data children.
The multilingual group of CMP elements for descrip-
tion is deprecated, use metadata/Description in-
stead. Child element data may appear multiple
times (with different values of the format).

70

constructor aug new optional child recognizer for a recognizer
predicate

51

Coverage dep this Dublin Core element specifies the place or time
which the publication’s contents addresses. This
does not seem appropriate for the mathematical
content of OMDoc.

data aug new optional attributes size to specify the size
of the data file that is referenced by the href at-
tribute and format for the format the data is in.

70

dc:* aug Contributor, Creator, Publisher have received
an optional id attribute, so that they can be cross-
referenced by the new who of the Date element.

24

dc:Date aug new optional who attribute that can be used to
specify who did the action on this date.

26

dc:Translator dep this element is not part of Dublin Core, it got
into OMDoc by mistake, we use Contributor with
role=trl for this.

25

decomposition aug has a new required id attribute. It is no longer
a child of theory-inclusion, but specifies which
theory-inclusion it justifies by the new required
attribute for.

60

definition aug new optional children measure and ordering to
specify termination of recursive definitions. New
optional attribute generated-by to show that it is
generated by expanding a definition.

36

141

element new presentation of Xml elements 77

FMP aug now allows multiple conclusion elements, to rep-
resent general Gentzen-type sequents (not only
natural deduction.)

31

hypothesis cha new required attribute discharged-in to specify
the derive or conclude element that discharges
this hypothesis.

47

measure new specifies a measure function (as an OMOBJ) 37

metadata aug new optional attribute inherits that allows to in-
herit metadata from other declarations

24

method cha first child that used to be an OMSTR or ref element
is now moved into a required xref attribute that
holds an URI that points to the element that de-
fines the method. The OMOBJ content of the other
children (they were paramter elements) is now di-
rectly included in the method element.

49

obligation new takes over the role of assertion-just.

omgroup aug also allows the elements that can only appear in
theory elements, so that omgroups can also be used
for grouping inside theory elements. The type

attribute is now restrained to one of ’narrative’,
’sequence’, ’alternative’, ’contrast’.

65

omlet aug obtained attributes width and height from
private. New optional attributes action for the
action to be taken when activated, and data a
URIref to data in a private element. New optional
attribute type for the type of the applet.

71

omstyle new for specifying the style of OMDoc elements 75

omtext cha the from is deprecated, we only leave the for at-
tribute, to specify the referential character of the
type.

34

ordering new specifies a well-founded ordering (as an OMOBJ) 37

parameter dep the OMOBJ element child is now directly a child of
method

pattern cha the child can be an arbitraryOpenMath element. 37

premise cha new optional attribute rank for the importance in
the inference rule. The old href attribute is re-
named to xref to be consistent with other cross-
referening.

presentation aug id attribute is now optional. new attribute xref

that allows to inherit the information from another
presentation element. New attribute theory to
specify the theory the symbol is from; without this,
referencing in OMDoc is not unique.

80

142

private cha new optional attribute for to point to an OM-
Doc element it provides data for. As a conse-
quence, private elements are no longer allowed in
other OMDoc elements, only on top-level. New
attribute replaces as a pointer to the OMDoc
elements that are replaced by the system-specific
information in this element. Old attributes width

and height now in omlet. Attribute format moved
to data children.
The multilingual group of CMP elements for descrip-
tion is deprecated, use metadata/Description in-
stead.
Child element data may appear multiple times
(with different values of the format). The at-
tributes classid and codebase are deprecated,
since they only make sense on the code element.

70

proof,proofobject cha attribute theory is now optional, since it can ap-
pear in a theory.

46

recognizer new specifies the recognizer predicate of a sort. 51

recurse new recursive calls to presentation in style. 77

ref cha attribute kind renamed to type. 65

selector cha the old type attribute (had values total and
partial) is deprecated, its duty is now carried by
an attribute total (values ’yes’ and ’no’).

51

signature dep for the moment

sortdef cha attribute id is now mandatory, otherwise the de-
fined symbol no name. The kind that was fixed
to sort is deprecated, this piece of information is
redundant.

51

style new allows to specify style information in
presentation and omstyle elements using a
simplified OMDoc-internalized version of XslT.

76

symbol aug new optional attribute generated-by to show that
it is generated by expanding a definition.

35

text new presentation of text in omstyle. 77

theory-inclusion cha now allows CMP group for descriptive text, no
longer has a decomposition child, this is now at-
tatched by its for attribute. The timestamp at-
tribute is deprecated, use dc:Date with appropri-
ate action instead.

58

type aug can now also appear on top-level. Has an optional
id attribute for identification, and an optional for
attribute to point to a symbol element it declares
type information for.

35

143

use aug New attribute element allows to specify that the
content should be encased in an XML element with
the attribute-value pairs specified in the string
specified in the attribute attributes.

80

value-of new presentation of values in style. 78

with new used to supply fragements of text in CMPs with id

and id attributes that can be used for presentation
and referencing.

32

xslt new allows to embed XslT into presentation and
omstyle elements.

76

144

Appendix C

Quick-Reference Table to the

OMDoc Elements

Element p. Type Required Optional D Content

Attribs Attribs C

adt 50 adt id type, style + CMP*, commonname*,

sortdef+

alternative 40 stat id, for,

theory,

entailed-by,

entails,

entailed-by-thm,

entails-thm

type,

generated-by,

just-by,

style

+ CMP*, (FMP|

requation*| OMOBJ)

answer 73 ex verdict id, style + symbol*,CMP*,FMP*

argument 51 adt sort + selector?

assertion 38 stat id type, theory,

generated-by,

style

+ symbol*,CMP*,FMP*

assumption 32 stat id style + CMP*, OMOBJ?

attribute 78 pres name – (#PCDATA| value-of|

text)*

axiom 36 thy id generated-by,

style

+ symbol*,CMP*,FMP*

axiom-inclusion 58 thy id, from, to style + morphism?,

(path-just|

obligation*)

choice 73 ex id, style + symbol*,CMP*,FMP*

CMP 32 stat xml:lang – (text| OMOBJ| with|

omlet)*

145

code 70 aux id, theory id, for,

theory, pto,

pto-version,

format,

requires,

type,

classid,

codebase,

width,

height, style

+ CMP*, input?,

output?, effect?,

data+

commonname 35 thy xml:lang – CMPcontent

conclude 47 prf id style – CMP*, method?,

premise*, (proof

| proofobject)?

conclusion 32 stat id style + CMP*, OMOBJ?

constructor 51 adt id type, scope,

style

+ commonname*,

argument*,

recognizer?

Contributor 25 meta id, role,

style

– %DCperson

Creator 25 meta id, role,

style

– %DCperson

data 70 aux format, href,

size

– <![CDATA[...]]>

Date 26 meta action, who – ISO8601

decomposition 60 thy links – EMPTY

definition 36 thy id, for just-by,

type,

generated-by,

style

+ CMP*, (FMP|

requation+| OMOBJ)?,

measure?, ordering?

Description 25 meta xml:lang – CMPcontent

derive 46 prf id style – CMP*, FMP?, method?,

premise*, (proof |

proofobject)?

effect 70 aux – CMP*

element 77 pres name – (attribute| element|

text| recurse)*

example 42 stat id, for type,

assertion,

proof, style

+ symbol*, CMP*|

OMOBJ?

exercise 73 ex id type, for,

from, style

+ symbol*,CMP*,FMP*,

hint?,

(solution*|mc*)

extradata 24 meta – ANY

FMP 31 stat logic – (assumption*,

conclusion*)|OMOBJ

Format 26 meta – fixed:"xml, x-omdoc"

hint 73 ex id, style + symbol*,CMP*,FMP*

hypothesis 47 prf id,

discharged-in,

style

– symbol*,CMP*,FMP*

Identifier 27 meta scheme – ANY

ignore 34 aux type, comment – ANY

146

imports 54 thy id, from type, hiding,

style

– CMP*, morphism?

inclusion 63 thy for –

input 70 aux – CMP*

insort 51 adt for –

Language 27 meta – ISO8601

mc 73 ex id, style – symbol*, choice,

hint?, answer

measure 37 thy – OMOBJ

metacomment 47 prf id, style – CMP*

metadata 24 meta inherits – (dc-element)*,

extradata

method 49 prf xref – OMOBJ*

morphism 56 thy id, base,

style

– requation*

obligation 59 thy induced-by,

assertion

– EMPTY

omdoc 23 struct id type,

version,

style, xmlns,

catalogue,

xmlns:xsi,

xsl:schemaLocation

+ (OMDoc element)*

omgroup 65 struct id type, for,

from, style

+ OMDocelement*

omlet 71 aux id, argstr,

type,

function,

action, data,

style

+ ANY

omstyle 75 pres element for, id,

xref, style

– (style|xslt)*

omtext 34 struct id type, for,

from, style

+ CMP+, FMP?

ordering 37 thy – OMOBJ

output 70 aux – CMP*

path-just 59 thy local,

globals

– EMPTY

pattern 37 thy – OMOBJ

premise 49 prf xref – EMPTY

presentation 80 pres for id, xref,

fixity,

parent,

lbrack,

rbrack,

separator,

bracket-style,

style,

precedence,

crossref-symbol,

theory

– (use | xslt |

style)*

147

private 70 aux id, for,

theory, pto,

pto-version,

format,

requires,

type,

classid,

codebase,

width,

height,

replaces,

style

+ CMP*, data+

proof 46 prf id, for,

theory

style + symbol*, CMP*,

(metacomment|

derive|

hypothesis)*,

conclude

proofobject 44 prf id, for,

theory

style + CMP*, OMOBJ

Publisher 26 meta id, style – ANY

ref 65 struct xref, type – ANY

recognizer 51 adt id type, scope,

kind, style

– commonname*

recurse 77 pres select – EMPTY

Relation 27 meta – ANY

requation 37 thy id, style – pattern, value

Rights 27 meta – ANY

selector 51 adt id type, scope,

kind, total,

style

– commonname*

solution 73 ex id, for,

style

+ (symbol*,CMP*,FMP*)

| proof

sortdef 51 adt id kind, scope,

style

– commonname*,

(constructor|insort)*

Source 27 meta – ANY

style 76 pres format xml:lang,

requires

– (element | text |

recurse | value-of)*

Subject 25 meta xml:lang – CMPcontent

symbol 35 thy id kind, scope,

style

+ CMP*, (commonname|

type| selector)*

text 77 pres – (#PCDATA)

theory 52 thy id style + commonname*, state-

ment*

theory-inclusion 58 thy id, from, to,

by, style

+ (morphism,

decomposition?)

Title 24 meta xml:lang – CMPcontent

type 35 thy system id, for,

style

– CMP*, OMOBJ

Type 26 meta – fixed:"Dataset"or"Text"

148

use 80 pres format xml:lang,

requires,

larg-group,

rarg-group,

fixity,

lbrack,

rbrack,

separator,

crossref-symbol,

element,

attributes

– (use | xslt |

style)*

value 37 thy – OMOBJ

value-of 78 pres select – EMPTY

with 32 stat id style – CMP content

xslt 76 pres format xml:lang,

requires

– CDATA

149

Appendix D

Quick-Reference Table to the

OMDoc Attributes

Attribute element Values

action omlet

specifies the action to be taken when executing the omlet, the
value is application-defined.

argstring omlet

specifies the argument string for the function specified in the
function attribute of this omlet

assertion example

specifies the assertion that states that the objects given in the
example really have the expected properties.

assertion obligation

specifies the assertion that states that the translation of the
statement in the source theory specified by the induced-by at-
tribute is valid in the target theory.

attibutes use

the attribute string for the start tag of the Xml element substi-
tuted for the brackets (this is specified in the element attribute).

base morphism

specifies another morphism that should be used as a base for
expansion in the definition of this morphism

bracket-style presentation, use lisp, math

specifies whether a function application is of the form f(a, b) or
(fab)

catalogue omdoc

specifies an outside OMDoc document that contais catalogue
information for this one.

lbrack presentation, use

150

the left bracket to use in the notation of a function symbol

cd loc

specifies the location of the content dictionary for a theory

classid,

codebase

code

points to a class identifier and codebase, if the code contains
Java.

comment ignore

specifies a reason why we want to ignore the contents

crossref-symbol presentation, use all, brackets, lbrack, no,

rbrack, separator, yes

specifies whether crossreferences to the symbol definition should
be generated in the output format.

data omlet

points to a private element that contains the data for this omlet

discharged-in hypothesis

specifies the scope of a local hypothesis in a proof. It points to
the proof step which discharges it.

element use

the Xml element tags to be substituted for the brackets.

entails,

entailed-by

alternative

specifies the equivalent formulations of a definition or axiom

entails-thm,

entailed-by-thm

alternative

specifies the entailsment statements for equivalent formulations
of a definition or axiom

fixity presentation assoc, infix, postfix, prefix

specifies where the function symbolof a function application
should be displayed in the output format

function omlet

specifies the function to be called when this omlet is activated.

format data

specifies the format of the data specified by a data element. The
value should e.g. be a MIME type.

generated-by symbol, axiom,

assertion, definition,

alternative

points to a higher-level syntax element, that generates this state-
ment.

for *

can be used to reference an element by its unique identifier given
in its id attribute.

151

format use cmml, default, html,

mathematica, pmml, TeX,

specifies the output format for which the notation is specified

globals path-just

points to the theory-inclusions that is the rest of the inclusion
path.

height omlet

specifies the height of the rectangle on the screen taken up by
the results of an omlet

hiding imports

specifies the names of symbols that are not imported from the
source theory

href data

a URI to an external file containig the data.

id

associates a unique identifier to an element, which can thus be
referenced by an for attribute.

induced-by obligation

points to the statement in the source theory that induces this
proof obligation

just-by definition, alternative

points to an assertion that states the well-definedness or termi-
nation condition of a definition or the equivalence condition of
an alternative definition.

kind symbol object, sort, type

specifies the kind of object defined in this declaration.

links decomposition

specifies a list of theory- or axiom-inclusions that justify (by
decomposition) the theory-inclusion specified in the for at-
tribute.

local path-just

points to the axiom-inclusion that is the first element in the
path.

logic FMP token

specifies the logical system used to encode the property.

name OMS, OMV

the name of a symbol or variable.

omdoc loc

specifies the location of the OMDoc document containing the
theory.

omdoc-element presentation

specifies the OMDoc element the presentation information ap-
plies to.

152

parent presentation OMA, OMATTR,OMBIND

specifies the parent element of the symbol for which notation
information is specified

precedence presentation

the precedence of a function symbol (for elision of brackets)

proofs assertion

specifies a list of URIs to proofs of this assertion.

pto,

pto-version

private, code

specifies the system and its version this data or code is private
to

replaces private

points to a set of elements whose content is replaced by the
content of the private element for the system.

requires private, code, use

points to a code element that is needed for the execution of this
data by the system.

rbrack presentation, use

the right bracket to use in the notation of a function symbol

role Creator, Collaborator aft, ant, aqt, aui, aut, clb,

edt, ths, trc, trl

the MARC relator code for the contribution of the individual.

size data

specifies the size the data specified by a data element. The value
should be number of kilobytes

scope symbol global, local

specifies the visibility of the symbol declared. This is a very
crude specification, it is better to use theories and importing to
specify symbol accessibility.

separator presentation, use

the separator for the arguments to use in the notation of a func-
tion symbol

sort argument

specifies the argument sort of the constructor

style *

specifies a token for a presentation style to be picked up in a
presentation element.

system use pres, xsl

The transformation system to be used for specification. Use
’pres’ for the OMDoc metalanguage, and ’xsl’ for straight
XslT.

system type

A token that specifies the logical type system that governs the
type specified in the type element.

153

theory *

specifies the home theory of an OMDoc statement.

theory loc

specifies the theory the loc element locates

to theory-inclusion,

axiom-inclusion

specifies the target theory

total selector no, yes

specifies whether the symbol declared here is a total or partial
function.

type adt free, generated, loose

defines the semantics of an abstract data type free = no junk,
no confusion, generated = no junk, loose is the general case.

type asssertion theorem, lemma, corollary,

conjecture, false-conjecture,

obligation, postulate,

formula, assumption,

proposition

tells you more about the intention of the assertion

type definition implicit, inductive, obj,

recursive, simple

specifies the definition principle

type example against, for

specifies whether the objects in this example support or falsify
some conjecture

type imports global, local

local imports only concern the assumptions directly stated in
the theory. global imports also concern the ones the source
theory inherits.

type omgroup, omdoc alternative, contrast,

narrative, dataset,

datalabels, datadata,

theory-collection

the first three give the text category, the second three are used
for generalized tables, and the last one for collections of theory.

type omlet js, image

the type of an omlet, e.g. ’image’

type omtext abstract, antithesis, comment,

conclusion, elaboration,

evidence, introduction,

motivation, thesis

a specification of the intention of the text fragment, in reference
to context.

verdict answer

154

specifies the truth or falsity of the answer. This can be used e.g.
by a grading application.

version omdoc 1.1

specifies the version of the document, so that the right DTD is
used

via inclusion

points to a theory-inclusion that is required for an actualization

width omlet

specifies the width of the rectangle on the screen taken up by
the results of an omlet

xml:lang *

the language the text in the element is expressed in. This must
be a RFC-639 compliant specification of the primary language
of the content.

xmlns omdoc http://www.mathweb.org/omdoc

fixes the OMDoc namespace

xref * ref, method, premise,

presentation, some OpenMath
elements

a uniform resource identifier (URI) used for cross-referencing.
The element, this URI points to should be in the place of the
object containing this attribute.

155

http://www.mathweb.org/omdoc

Appendix E

The OMDoc Document Type

Definition

We reprint the current version of the OMDoc document type definition.
The original can be found at http://www.mathweb.org/omdoc/dtd/omdoc.dtd.

The DTD can be referenced by the public identifer -//OMDoc//DTD

OMDoc V1.1//EN. Thus documents that use it have the document type dec-
laration

<!DOCTYPE omdoc Public "-//OMDoc//DTD OMDoc V1.1//EN"

"http://www.mathweb.org/omdoc/omdoc.dtd"> in the pream-
ble of the document.

The document type definition includes a variant document type defini-
tion for OpenMath objects that differs from the original (see http://www.openmath.org)
in that it allows to represent OpenMath objects as directed acyclic graphs.
This extension is licensed by the OpenMath Standard that says that any
extension, from which valid OpenMath can be directly be generated, is al-
lowed.

1 <!--

An XML Document Type Definition for the Open Mathematical documents

in the OMDoc format (Version 1.1)

Initial Version: Michael Kohlhase 1999-09-07

5 URL: http://www.mathweb.org/omdoc/omdoc.dtd (current released version)

URL: http://www.mathweb.org/omdoc/dtd/old/omdoc*.dtd (old)

Public Identifier: -//OMDoc//DTD OMDoc V1.1//EN

Comments are welcome! (send mail to kohlhase@mathweb.org)

See the documentation and examples at http://www.mathweb.org/omdoc mainly

10 [1] http://www.matwheb.org/omdoc/omdoc.{ps,pdf}

(c) 1999-2002 Michael Kohlhase, released under the GNU Public License

-->

<!-- ====================== ENTITIES ======================= -->

15 <!-- we define some entities for modularization, these can be

156

http://www.mathweb.org/omdoc/dtd/omdoc.dtd
http://www.openmath.org

re-defined in the local subset of the DTD. -->

<!-- we allow OpenMath objects as mathematical objects -->

<!ENTITY % mobj "OMOBJ">

20
<!ENTITY % omdocns "xmlns CDATA #FIXED ’http://www.mathweb.org/omdoc’

xmlns:xsi CDATA ’http://www.w3.org/2001/XMLSchema-instance’

xsi:schemaLocation CDATA ’http://www.mathweb.org/omdoc

http://www.mathweb.org/omdoc/xsd/omdoc.xsd’">

25 <!-- this namespace declaration also needs to go into all the elements

that do not inherit from the top-level omdoc elements

e.g. those in %inCMP; -->

<!ENTITY % theoryNSD "">

30 <!-- the namespace declaration attributes to be added to the omdoc element

this entity should be redefined in the internal subset -->

<!-- what goes into a CMP element -->

<!ENTITY % alsoinCMP "">

35 <!ENTITY % inCMP "#PCDATA|%mobj;|omlet|with|ref|ignore%alsoinCMP;">

<!-- Persons in Dublin Core Metadata -->

<!ENTITY % DCperson "(#PCDATA)">

<!-- the date format in Dublin Core -->

<!ENTITY % DCdate "(#PCDATA)">

40 <!-- the identifier format for Dublin Core -->

<!ENTITY % DCident "(#PCDATA)">

<!-- the rest of Dublin Core content -->

<!ENTITY % DCrest "ANY">

<!-- any form of extra metadata -->

45 <!ENTITY % extrameta "EMPTY">

<!-- then define a couple of useful abbreviations, these are not

intended for re-definition. -->

50 <!ENTITY % midmatter "mid CDATA #IMPLIED">

<!-- attribute mid is an URIref, pointing to the MBase identifier

of the element -->

55 <!-- we do not define the id attribute to be of type ID as one

would expect, since we only want them to be unique in a theory,

and we want still to be able to concatenate OMDoc files -->

<!ENTITY % idmatter "id CDATA #REQUIRED

style NMTOKEN #IMPLIED

60 %midmatter;">

<!ENTITY % idimatter "id CDATA #IMPLIED

style NMTOKEN #IMPLIED

%midmatter;">

65 <!ENTITY % idgmatter "%idmatter; generated-by CDATA #IMPLIED">

<!ENTITY % idrefmatter "%idmatter; for CDATA #REQUIRED">

<!-- attribute for is an URIref -->

<!ENTITY % insymbolmatter ’%idmatter;

70 kind (type|sort|object) "object"

scope (global|local) "global"’>

157

<!-- The current XML-recommendation doesn’t yet support the

three-letter short names for languages (ISO 693-2). So

75 the following section will be using the two-letter

(ISO 693-1) encoding for the languages.

en : English, de : German, fr : French,

la : Latin, it : Italian, nl : Dutch,

80 ru : Russian, pl : Polish, es : Spanish,

tr : Turkish, zh : Chinese, ja : Japanese,

ko : Korean ... -->

<!ENTITY % ISO639 "(aa|ab|af|am|ar|as|ay|az|ba|be|bg|bh|bi|bn|bo|br|ca|co|

cs|cy|da|de|dz|el|en|eo|es|et|eu|fa|fi|fj|fo|fr|fy|ga|

85 gd|gl|gn|gu|ha|he|hi|hr|hu|hy|ia|ie|ik|id|is|it|iu|ja|

jv|ka|kk|kl|km|kn|ko|ks|ku|ky|la|ln|lo|lt|lv|mg|mi|mk|

ml|mn|mo|mr|ms|mt|my|na|ne|nl|no|oc|om|or|pa|pl|ps|pt|

qu|rm|rn|ro|ru|rw|sa|sd|sg|sh|si|sk|sl|sm|sn|so|sq|sr|

ss|st|su|sv|sw|ta|te|tg|th|ti|tk|tl|tn|to|tr|ts|tt|tw|

90 ug|uk|ur|uz|vi|vo|wo|xh|yi|yo|za|zh|zu)">

<!ENTITY % langmatter "xml:lang %ISO639; ’en’">

<!ENTITY % frommatter "%idmatter; from CDATA #REQUIRED">

95 <!ENTITY % fromtomatter "%frommatter; to CDATA #REQUIRED">

<!-- attributes ’to’ and ’from’ are URIref -->

<!ENTITY % otheromtexttype "">

<!ENTITY % omtexttype "abstract|introduction|conclusion|thesis|

100 antithesis|elaboration|motivation|evidence

|note|annote|comment%otheromtexttype;">

<!ENTITY % otheromgrouptype "">

<!ENTITY % omgrouptype "enumeration|sequence|itemize|narrative|

105 dataset|labeled-dataset%otheromgrouptype;">

<!ENTITY % cm "metadata?,CMP*">

<!ENTITY % cfm "(metadata?,symbol*,CMP*,FMP*)">

<!ENTITY % otherassertiontype "">

110 <!ENTITY % assertiontype "(theorem|lemma|corollary|conjecture|

false-conjecture|obligation|postulate|

formula|assumption|proposition

%otherassertiontype;)">

<!ENTITY % otherdefinitiontype "">

115 <!ENTITY % definitiontype "(simple|inductive|implicit|recursive|obj

%otherdefinitiontype;)">

<!ENTITY % intheory-mathitem "type|assertion|alternative|example|proof|proofobject">

<!ENTITY % other-mathitem "theory-inclusion|decomposition|axiom-inclusion">

120 <!ENTITY % auxitem "exercise|solution|omlet|private|code|presentation|omstyle">

<!ENTITY % onlyintheoryitem "symbol|axiom|definition|adt|imports|inclusion">

<!ENTITY % otheromdocitem "">

<!ENTITY % intheory-omdocitem "omtext|%intheory-mathitem;|%auxitem;|theory|omgroup|ignore|ref

%otheromdocitem;">

125 <!ENTITY % omdocitem "%intheory-omdocitem;|%other-mathitem;">

<!ENTITY % intheoryitem "%onlyintheoryitem;|%intheory-omdocitem;">

158

<!-- ============= Document Structure [1; sec 2.2] ================ -->

130 <!ELEMENT omdoc (metadata?,catalogue?,(%omdocitem;)*)>

<!ATTLIST omdoc %idmatter; %omdocns; %theoryNSD;

type (%omgrouptype;|theory-collection) #IMPLIED

catalogue CDATA #IMPLIED

version CDATA #FIXED "1.1">

135
<!ELEMENT catalogue (loc)*>

<!ELEMENT loc EMPTY>

<!ATTLIST loc theory CDATA #REQUIRED

140 omdoc CDATA #IMPLIED

cd CDATA #IMPLIED>

<!-- omdoc attributes omdoc and cd are URIRefs pointing to the omdoc

and/or the OpenMath content dictionary defining this theory -->

145 <!ELEMENT omtext (metadata?,CMP+,FMP?)>

<!ATTLIST omtext %idmatter;

type (%omtexttype;) #IMPLIED

for CDATA #IMPLIED>

<!-- attribute ’for’ is a URIref, to %omdocitem;s

150 it is needed by the ’type’ attribute-->

<!ELEMENT CMP (%inCMP;)*>

<!ATTLIST CMP %langmatter;>

155 <!ELEMENT with (%inCMP;)*>

<!ATTLIST with id ID #IMPLIED

style NMTOKEN #IMPLIED

%omdocns;>

<!-- identifies a text passage and

160 allows to attatch style information to it -->

<!-- grouping defines the structure of a document-->

<!ELEMENT omgroup (metadata?,(%intheoryitem;)*)>

<!ATTLIST omgroup %idimatter;

165 type (%omgrouptype;) #IMPLIED>

<!-- co-referencing allows to use elements with an

’id’ attribute multiple times -->

<!ELEMENT ref EMPTY>

170 <!ATTLIST ref xref CDATA #REQUIRED

type NMTOKEN "include">

<!-- the types supported (there may be more over time) are

- ’include’ (the default) for in-text replacement

- ’cite’ for a reference with a generated label -->

175
<!-- ======= math Statements [1; sec 3.1] =================== -->

<!ELEMENT symbol (metadata?, CMP*,(commonname|type|selector)*)>

<!ATTLIST symbol %insymbolmatter;

180 generated-by CDATA #IMPLIED>

<!ELEMENT commonname (%inCMP;)*>

<!ATTLIST commonname %langmatter;

159

%midmatter;>

185
<!ELEMENT type (CMP*,%mobj;)>

<!ATTLIST type %idimatter;

for CDATA #IMPLIED

system NMTOKEN #REQUIRED>

190
<!ELEMENT FMP ((assumption*,conclusion*)|%mobj;)>

<!ATTLIST FMP logic NMTOKEN #IMPLIED

%midmatter;>

<!-- If FMP contains a %mobj; then this is the assertion,

195 if it contains (assumption*,conclusion*), then it is a

logical sequent (A1,...,An |- C1,...,Cm):

all the Ai entail one of the Ci -->

<!ELEMENT assumption (CMP*,(%mobj;)?)>

200 <!ATTLIST assumption %idmatter;>

<!ELEMENT conclusion (CMP*,(%mobj;)?)>

<!ATTLIST conclusion %idmatter;>

205 <!ELEMENT axiom %cfm;>

<!ATTLIST axiom %idgmatter;>

<!-- Definitions contain CMPs, FMPs and concept specifications.

The latter define the set of concepts defined in this element.

210 They can be reached under this name in the content dictionary

of the name specified in the theory attribute of the definition.

-->

<!ELEMENT definition (metadata?,CMP*,FMP*,(requation+|%mobj;)?,

215 measure?,ordering?)>

<!ATTLIST definition just-by CDATA #IMPLIED

type %definitiontype; "simple"

generated-by CDATA #IMPLIED

%idrefmatter;>

220 <!-- attribute just-by is an URIref points to an assertion -->

<!ELEMENT requation (pattern,value)>

<!ATTLIST requation %idimatter;>

225 <!ELEMENT pattern (%mobj;)>

<!ELEMENT value (%mobj;)>

<!ELEMENT measure (%mobj;)>

<!ATTLIST measure %midmatter;>

230
<!ELEMENT ordering (%mobj;)>

<!ATTLIST ordering %midmatter;>

<!-- adts are abstract data types, they are short forms for

235 groups of symbols and their definitions, therefore,

they have much the same attributes. -->

<!ELEMENT adt (metadata?,commonname*,CMP*,sortdef+)>

<!ATTLIST adt type (loose|generated|free) "loose"

160

240 %idmatter;>

<!ELEMENT sortdef (commonname*,(constructor|insort)*,recognizer?)>

<!ATTLIST sortdef %idmatter;

scope (global|local) "global">

245
<!ELEMENT insort EMPTY>

<!ATTLIST insort for CDATA #REQUIRED>

<!-- for is a reference to a sort symbol element -->

250 <!ELEMENT constructor (commonname*,argument*)>

<!ATTLIST constructor %insymbolmatter;>

<!ELEMENT recognizer (commonname)*>

<!ATTLIST recognizer %insymbolmatter;>

255
<!ELEMENT argument (selector?)>

<!ATTLIST argument sort CDATA #REQUIRED>

<!-- sort is a reference to a sort symbol element -->

260 <!ELEMENT selector (commonname)*>

<!ATTLIST selector %insymbolmatter;

total (yes|no) "no">

<!ELEMENT assertion %cfm;>

265 <!ATTLIST assertion %idgmatter;

theory CDATA #IMPLIED

type %assertiontype; "conjecture"

proofs CDATA #IMPLIED>

<!-- the %assertiontype; has no formal meaning yet, it is solely

270 for human consumption. The ’generated-by’ is for

theory-interpretations, which can generate assertions.

’proofs’ is a list of URIRefs -->

<!ELEMENT alternative (metadata?,CMP*,(FMP|requation*|%mobj;))>

275 <!ATTLIST alternative theory CDATA #REQUIRED

type %definitiontype; "simple"

generated-by CDATA #IMPLIED

just-by CDATA #IMPLIED

entailed-by CDATA #REQUIRED

280 entails CDATA #REQUIRED

entailed-by-thm CDATA #REQUIRED

entails-thm CDATA #REQUIRED

%idrefmatter;>

<!-- the CDATA attributes are URIrefs

285 just-by, points to the theorem justifying well-definedness

entailed-by, entails, point to other (equivalent definitions

entailed-by-thm, entails-thm point to the theorems justifying

the entailment relation -->

290
<!-- OMDoc proofs consist of sequences of steps. The ’for’ attribute

specifies the assertion it is for. -->

<!ELEMENT proof (metadata?,symbol*,CMP*,

295 (metacomment|derive|hypothesis)*,conclude)>

161

<!ATTLIST proof theory CDATA #IMPLIED

%idrefmatter;>

<!ELEMENT proofobject (%cm;,%mobj;)>

300 <!ATTLIST proofobject theory CDATA #IMPLIED

%idrefmatter;>

<!ELEMENT metacomment (CMP*)>

<!ATTLIST metacomment %idimatter;>

305
<!ENTITY % justmatter "method?,premise*,(proof|proofobject)?">

<!ELEMENT derive (CMP*,FMP?,%justmatter;)>

<!ATTLIST derive %idmatter;>

310
<!ELEMENT conclude (CMP*,%justmatter;)>

<!ATTLIST conclude %idimatter;>

<!ELEMENT hypothesis (symbol*,CMP*,FMP?)>

315 <!ATTLIST hypothesis %idmatter;

discharged-in CDATA #REQUIRED>

<!-- the ’discharged-in’ attribute points to the ’derive’ or

’conclude’ element that discharges this hypothesis.

The intended semantics is that the hypothesis will be

320 local in the subtree rooted at that. -->

<!ELEMENT method ((%mobj;)*)>

<!ATTLIST method xref CDATA #REQUIRED>

<!-- ’xref’ is a pointer to the element defining the method -->

325
<!ELEMENT premise EMPTY>

<!ATTLIST premise xref CDATA #REQUIRED

rank CDATA "0">

<!-- The rank of a premise specifies its importance in the

330 inference rule. Rank 0 (the default) is a real premise,

whereas positive rank signifies sideconditions of

varying degree. -->

<!ELEMENT example (metadata?,symbol*,CMP*,(%mobj;)*)>

335 <!ATTLIST example type (for|against) #IMPLIED

assertion CDATA #IMPLIED

%idrefmatter;>

<!-- attributes assertion is an URIref -->

340 <!-- =========== Theories [1; sec 3.2] ==================== -->

<!ELEMENT theory (metadata?,commonname*,CMP*, (%intheoryitem;)*)>

<!ATTLIST theory id ID #REQUIRED

style NMTOKEN #IMPLIED>

345 <!-- theory identifiers should be unique per document -->

<!ELEMENT imports (CMP*,morphism?)>

<!ATTLIST imports %frommatter;

hiding CDATA #IMPLIED

350 type (local|global) "global">

<!-- hiding is a list of references to symbol ids -->

162

<!ELEMENT morphism (requation*)>

<!ATTLIST morphism %idimatter;

355 base CDATA #IMPLIED>

<!-- base points to some other morphism it extends -->

<!ELEMENT inclusion EMPTY>

<!ATTLIST inclusion via CDATA #REQUIRED

360 %midmatter;>

<!-- via points to a theory-inclusion -->

<!ELEMENT theory-inclusion (%cfm;,morphism?)>

<!ATTLIST theory-inclusion %fromtomatter;>

365 <!-- attribute by is a whitespace-separated list of URIref -->

<!ELEMENT decomposition EMPTY>

<!ATTLIST decomposition %idrefmatter;

links CDATA #REQUIRED>

370 <!-- attribute ’for’ points to a ’theory-inclusion’, which this

element justifies; attribute ’links’ is an URIrefs, points to a

list of axiom-inlcusions and theory-inclusions -->

<!ELEMENT axiom-inclusion (%cfm;,morphism?,(path-just|obligation*))>

375 <!ATTLIST axiom-inclusion %fromtomatter;>

<!ELEMENT path-just EMPTY>

<!ATTLIST path-just local CDATA #REQUIRED

globals CDATA #REQUIRED

380 %midmatter;>

<!-- attribute ’local’ is an URIref, points to axiom-inclusion

’globals’ is an URIrefs, points to a list of

theory-inclusions -->

385 <!ELEMENT obligation EMPTY>

<!ATTLIST obligation induced-by CDATA #REQUIRED

assertion CDATA #REQUIRED

%midmatter;>

<!-- attribute ’assertion’ is a URIref, points to an assertion

390 that is the proof obligation induced by the axiom or definition

specified by ’induced-by. -->

<!-- ========== Auxiliary Elements [1; sec 3.3] ==================== -->

395 <!ELEMENT exercise (%cfm;,hint?,(solution*|mc*))>

<!ATTLIST exercise %idmatter;

for CDATA #IMPLIED>

<!ELEMENT hint %cfm;>

400 <!ATTLIST hint %idimatter;>

<!ELEMENT solution (%cfm;,(proof|proofobject)?)>

<!ATTLIST solution for CDATA #IMPLIED

%idimatter;>

405
<!ELEMENT mc (symbol*,choice,hint?,answer)>

<!ATTLIST mc %idimatter;>

163

<!ELEMENT choice %cfm;>

410 <!ATTLIST choice %idimatter;>

<!ELEMENT answer %cfm;>

<!ATTLIST answer verdict (true|false) #REQUIRED

%idimatter;>

415
<!ELEMENT omlet (%inCMP;)*>

<!ATTLIST omlet %idimatter;

action NMTOKEN #IMPLIED

type NMTOKEN #IMPLIED

420 data CDATA #IMPLIED

argstr CDATA #IMPLIED

function CDATA #IMPLIED

width CDATA #IMPLIED

height CDATA #IMPLIED

425 %omdocns;>

<!-- atribute action specifies the action to be taken when activated,

attribute data is a URIref to data in a private element

attribute argstr is a string of arguments supplied to the function

attribute function is an URIref, points to a code element

430 attribute width/height for screen display -->

<!ENTITY % privmatter "%idmatter;

for CDATA #IMPLIED

theory CDATA #IMPLIED

435 pto NMTOKENS #IMPLIED

pto-version NMTOKENS #IMPLIED

type NMTOKEN #IMPLIED

requires CDATA #IMPLIED">

440 <!ELEMENT private (metadata?,data+)>

<!ATTLIST private %privmatter;

replaces CDATA #IMPLIED>

<!-- ’replaces is a URIref to the omdoc elements that are replaced by the

system-specific information in this element -->

445
<!ELEMENT code (metadata?,data+,input?,output?,effect?)>

<!ATTLIST code %privmatter;

classid CDATA #IMPLIED

codebase CDATA #IMPLIED>

450
<!ELEMENT input (CMP*,FMP*)>

<!ATTLIST input %midmatter;>

<!ELEMENT output (CMP*,FMP*)>

455 <!ATTLIST output %midmatter;>

<!ELEMENT effect (CMP*,FMP*)>

<!ATTLIST effect %midmatter;>

460 <!ELEMENT data ANY>

<!ATTLIST data %midmatter;

format CDATA #IMPLIED

href CDATA #IMPLIED

164

size CDATA #IMPLIED>

465
<!-- this element can be used in lieu of a comment, it is read

by the style sheet, (comments are not) and can therefore

be transformed by them -->

<!ELEMENT ignore ANY>

470 <!ATTLIST ignore type NMTOKEN #IMPLIED

comment CDATA #IMPLIED>

<!-- =========== Presentation [1; sec 3.5] ===================== -->

475 <!ENTITY % crossreftype "(no|yes|brackets|separator|lbrack|rbrack|all)">

<!ENTITY % fixitytype "(prefix|infix|postfix|assoc)">

<!ENTITY % stylematter "%idimatter; xref CDATA #IMPLIED">

480 <!ENTITY % formatmatter "format CDATA #REQUIRED

requires CDATA #IMPLIED

xml:lang CDATA #IMPLIED">

<!ELEMENT presentation (use|xslt|style)*>

485 <!ATTLIST presentation %stylematter;

for CDATA #REQUIRED

parent (OMA|OMBIND|OMATTR) #IMPLIED

fixity %fixitytype; "prefix"

lbrack CDATA "("

490 rbrack CDATA ")"

separator CDATA ","

bracket-style (lisp|math) "math"

precedence NMTOKEN ’1000’

crossref-symbol %crossreftype; "yes"

495 theory CDATA #IMPLIED>

<!ELEMENT use (#PCDATA)>

<!ATTLIST use %formatmatter;

bracket-style (lisp|math) #IMPLIED

500 fixity %fixitytype; #IMPLIED

lbrack CDATA #IMPLIED

rbrack CDATA #IMPLIED

larg-group CDATA #IMPLIED

rarg-group CDATA #IMPLIED

505 separator CDATA #IMPLIED

element CDATA #IMPLIED

attributes CDATA #IMPLIED

crossref-symbol %crossreftype; #IMPLIED>

<!-- the attributes in the <use> element overwrite those in the

510 <presentation> element, therefore, they do not have defaults -->

<!ELEMENT omstyle (xslt|style)*>

<!ATTLIST omstyle %stylematter;

for CDATA #IMPLIED

515 element CDATA #REQUIRED>

<!ELEMENT xslt (#PCDATA)>

<!ATTLIST xslt %formatmatter;>

<!-- this element contains xslt in a CDATA section -->

165

520
<!ELEMENT style (element|text|recurse|value-of)*>

<!ATTLIST style %formatmatter;>

<!-- this element contains mock xslt expressed in the elements below -->

525 <!ELEMENT element (attribute|element|text|recurse|value-of)*>

<!ATTLIST element name NMTOKEN #REQUIRED>

<!ELEMENT attribute (#PCDATA|value-of|text)*>

<!ATTLIST attribute name NMTOKEN #REQUIRED>

530
<!ELEMENT text (#PCDATA)>

<!ELEMENT value-of EMPTY>

<!ATTLIST value-of select CDATA #REQUIRED>

535
<!ELEMENT recurse EMPTY>

<!ATTLIST recurse select CDATA #IMPLIED>

540 <!-- ============= Variant OpenMath [1; sec 2.6] ================ -->

<!-- Now comes a NON-STANDARD (experimental) variant of the

OpenMath Object DTD omobj.dtd (see http://www.openmath.org)

545 It is extended with coreferences! (by adding the xlink

%idxref; attributes to all open math elements).

In particular, it adds the attributes id and xref to

OMOBJ OMA OMBIND and OMATTR

550 These extensions are licensed by the OpenMath Standard that

says that any extension, from which valid OpenMath can be

directly be generated is allowed.

Note that this makes it less restrictive for OMA, OMS and

555 OMV than the original. Maybe this can be changed in a

future version by using XML schema. -->

<!ENTITY % omel "OMS|OMV|OMI|OMB|OMSTR|OMF|OMA|OMBIND|OME|OMATTR">

<!ENTITY % idxref "%midmatter;

560 style NMTOKEN #IMPLIED

id ID #IMPLIED

xref IDREF #IMPLIED">

<!-- attribute xref is an IDREF not an URIref, since we want to

allow structure sharing in one document, but not long-distance -->

565
<!-- symbol, original OM, links make no sense -->

<!ELEMENT OMS EMPTY>

<!ATTLIST OMS name CDATA #REQUIRED

cd CDATA #REQUIRED

570 style NMTOKEN #IMPLIED>

<!-- variable original OM, links make no sense -->

<!ELEMENT OMV EMPTY>

<!ATTLIST OMV name CDATA #REQUIRED

575 style NMTOKEN #IMPLIED>

166

<!-- integer; links make sense, since integers can be big -->

<!ELEMENT OMI (#PCDATA)>

<!ATTLIST OMI %idxref;>

580
<!-- byte array; links make sense, since byte arrays can be big -->

<!ELEMENT OMB (#PCDATA) >

<!ATTLIST OMB %idxref;>

585 <!-- string; links make sense, since strings can be big -->

<!ELEMENT OMSTR (#PCDATA) >

<!ATTLIST OMSTR %idxref;>

<!-- floating point; links make sense, since floats can be big -->

590 <!ELEMENT OMF EMPTY>

<!ATTLIST OMF dec CDATA #IMPLIED

hex CDATA #IMPLIED

%idxref;>

595 <!-- apply constructor; links make sense, no copied substructure -->

<!ELEMENT OMA (%omel;)*>

<!ATTLIST OMA %idxref;>

<!-- binding constructor & variable; links make sense,

600 no copied substructure -->

<!ELEMENT OMBIND ((%omel;), OMBVAR, (%omel;))? >

<!ATTLIST OMBIND %idxref;>

<!-- bound variables, original OM, links make no sense -->

605 <!ELEMENT OMBVAR (OMV|OMATTR)+>

<!-- error; original OM, links make no sense -->

<!ELEMENT OME (OMS, (%omel;)*) >

610 <!-- attribution constructor & attribute pair constructor -->

<!ELEMENT OMATTR (OMATP, (%omel;))? >

<!ATTLIST OMATTR %idxref;>

<!ELEMENT OMATP (OMS, (%omel;))+ >

615
<!-- OM object constructor; links make sense to avoid copying

substructure -->

<!ELEMENT OMOBJ (%omel;)? >

<!ATTLIST OMOBJ xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’

620 %idxref;>

<!-- ======= Dublin Core Metadata [1; sec 2.2.2 & app C] ======== -->

<!-- OMDoc Metadata comes in two forms:

625 1) Bibliographic Metadata corresponding to the model of the

Dublin Metadata initiative (http://purl.org/DC)

2) other, mostly guided by the intuitions of the MBase system

-->

630 <!ENTITY % dcelement "Contributor | Creator | Subject | Title

| Description | Publisher | Date | Type | Format

167

| Identifier | Source | Language | Relation | Rights">

<!ENTITY % dcns "xmlns CDATA #FIXED ’http://purl.org/DC’">

635 <!ENTITY % dcidi "%dcns; %idimatter;">

<!ENTITY % dcrole "%dcidi; %langmatter;

role (aut|ant|clb|edt|ths|trc|trl) ’aut’">

<!ENTITY % dclang "%dcns; %langmatter;">

640 <!ELEMENT metadata ((%dcelement;)*,extradata?)>

<!ATTLIST metadata %idimatter; inherits CDATA #IMPLIED>

<!-- first the Dublin Core Metadata model of the

Dublin Metadata initiative (http://purl.org/dc) -->

645
<!ELEMENT Contributor %DCperson;><!ATTLIST Contributor %dcrole;>

<!ELEMENT Creator %DCperson;><!ATTLIST Creator %dcrole;>

<!ELEMENT Title (%inCMP;)*><!ATTLIST Title %dclang;>

<!ELEMENT Subject (%inCMP;)*><!ATTLIST Subject %dclang;>

650 <!ELEMENT Description (%inCMP;)*><!ATTLIST Description %dclang;>

<!ELEMENT Publisher %DCrest;><!ATTLIST Publisher %dcidi;>

<!ELEMENT Type %DCrest;><!ATTLIST Type %dcns;>

<!ELEMENT Format %DCrest;><!ATTLIST Format %dcns;>

<!ELEMENT Source %DCrest;><!ATTLIST Source %dcns;>

655 <!ELEMENT Language %DCrest;><!ATTLIST Language %dcns;>

<!ELEMENT Relation %DCrest;><!ATTLIST Relation %dcns;>

<!ELEMENT Rights %DCrest;><!ATTLIST Rights %dcns;>

<!ELEMENT Date %DCdate;>

660 <!ATTLIST Date %dcns; action NMTOKEN #IMPLIED who IDREF #IMPLIED>

<!ELEMENT Identifier %DCident;>

<!ATTLIST Identifier %dcns; scheme NMTOKEN "ISBN">

665 <!-- other metadata that is not bibliographic can be included in the

<extradata> element, declare any needed XML elements in the

internal subset of the DTD declaration -->

<!ELEMENT extradata %extrameta;>

670 <!-- =============== omdoc.dtd ends here ==================== -->

168

	Introduction
	Mathematical Markup Schemes
	Document Markup for the Web
	Xml, the eXtensible Markup Language
	Mathematical Objects and Formulae
	Meta-Mathematical Objects
	An Active Web of Mathematical Knowledge

	OMDoc Elements
	Metadata for Mathematical Elements
	The Dublin Core Elements
	Roles in Dublin Core Metadata

	Mathematical Statements
	Specifying Mathematical Properties
	Symbols, Definitions, and Axioms
	Assertions and Alternatives
	Mathematical Examples in OMDoc
	Representing Proofs in OMDoc
	Abstract Data Types

	Theories as Mathematical Contexts
	Simple Inheritance
	Inheritance via Translations
	Statements about Theories
	Parametric theories in OMDoc

	Auxiliary Elements
	Preservation of Text Structure
	Non-Xml Data and Program Code in OMDoc
	Applets in OMDoc
	Exercises

	Adding Presentation Information to OMDoc
	Specifying Style Information for OMDoc Elements
	Specifying the Notation of Mathematical Symbols

	Identifying and Referencing OMDoc Elements
	Locating OMS elements by the OMDoc Catalogue
	A URI-based Mechanism for Element Reference
	Uniqueness Constraints and Relative URI references

	OMDoc Applications, Tools, and Projects
	Transforming OMDoc by XslT Style Sheets
	OMDoc Interfaces for Mathematical Software Systems
	Presenting OMDoc to Humans

	QMath: An Authoring Tool for OMDoc
	MBase, an Open Mathematical Knowledge Base
	Project ActiveMath
	OMDoc Extensions
	Adaptive Presentation
	Integration of External Systems
	Current Status

	Conclusion
	Errata to the released Specification
	Changes from Version 1.0
	Quick-Reference Table to the OMDoc Elements
	Quick-Reference Table to the OMDoc Attributes
	The OMDoc Document Type Definition

