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Abstract

In this report we present an extension OMDoc to the OpenMath standard that allows to repre-
sent the semantics and structure of various kinds of mathematical documents, including articles,
textbooks, interactive books, courses. It can serve as the content language for agent communica-
tion of mathematical services on a mathematical software bus.

We motivate and describe the OMDoc language and present an Xml document type definition
for it. Furthermore, we discuss applications and tool support.

Status of this document: This document describes version 1.0 of the OMDoc format, released
November 1. 2000. Version 1.0 is the result of using OMDoc in various experiements and
projects, stabilizes these experiences to serve as a basis for more sophisticated tools. The document
type definition can be found at http: // www. mathweb. org/ omdoc/ dtd/ omdoc1. 0. dtd .

The OMDoc format will continue to evolve, the next steps are to include XML Schema support
and more sophisticated (authoring) tools. A development snapshot can be retrieved by anonymous
CVS (see http: // www. mathweb. org/ cvs. html ) directly accessed on the web at http: // ww.

mathweb. org/ src/ mathweb/ omdoc . If you are interested in this, please contact the author.
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Chapter 1

Introduction

It is plausible to expect that the way we do (i.e. conceive, develop, communicate about, and
publish) mathematics will change considerably in the next ten years. The Internet plays an ever-
increasing role in our everyday life, and most of the mathematical activities will be supported by
mathematical software systems (we will call them mathematical services) connected by a commonly
accepted distribution architecture, which we will call the mathematical software bus. We will
subsume all proposed architectures and implementations if this idea [FHJ+99, FK99, DCN+00,
AZ00] by the term MathWeb, since we believe that interoperability based on communication
protocols will eventually make the constructions of bridges between the particular implementations
simple, so that that the combined systems appear to the user as one homogenous web.

One of the tasks that have to be solved in order to arrive is to define open markup languages
for the mathematical objects and knowledge exchanged between the mathematical services. The
OMDoc format presented in this report attempts to do this by providing infrastructure for the
communication and storage of mathematical knowledge based on the OpenMath standard.

Before we introduce the ideas behind this format, let us set the stage by giving a brief overview
of available markup schemes and relevant Internet standards.

1.1 Mathematical Markup Schemes and the Internet

Mathematical texts1 are usually very carefully designed to given them a structure that supports
understanding the complex structure of the objects discussed and that of the argumentations
about them.

The observation that the task of recovering the semantic structure from the representation it
is given in (e.g. as a written text or a recording) is central to understanding what it is about holds
for any discourse. For mathematical discourses, the structure is so essential that the field has
developed a lot of conventions about document form, numbering, typography, formula structure,
choice of glyphs for concepts, etc. that can be used to convey this structure. These conventions
have evolved over a long scientific history and carry a lot of the information needed to under-
stand a particular text. However, these conventions were developed mainly with “ink-on-paper”
representations (books, journals, letters) for the consumption by humans (mathematicians).

In the age of Internet publication and mathematical software systems, this target turns out
to be too limited in many forms. The universal accessibility of the documents on the Internet
breaks the assumption that the reader will come from the same (scientific) background as the
author and will directly understand the notations and structural conventions used by the author.
The fact that mathematical software systems are more and more embedded into the process of

1Of course this holds not only for texts in pure mathematics, but for any argumentative text that contains
mathematical notation, in particular for texts from all sciences, but not for novels or poems. Therefore, we will
use the adjective “mathematical” in this report in an inclusive way to make this distinction on text form, not on
strictly the scientific labeling.
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doing mathematics breaks the assumption that mathematical documents are primarily for human
consumption. This, together with the fact that mathematical documents are primarily produced
and stored on computers has led to the development of specialized markup schemes. Let us
discuss some of the paradigmatic examples to get a feeling for the issues involved.

Text processors and and desktop publishing systems (think for example of Microsoft Word)
are software systems (often of WYSIWYG type) aiming to produce “ink-on-paper” or “pixel-on-
screen” representations of documents and are very well-suited to execute the typographic con-
ventions mentioned above. Their internal markup scheme mainly2 defines presentation traits like
character position, font choice and characteristics, page breaks. This is perfectly sufficient for pro-
ducing high-quality presentations of the documents on paper or on a screen, but does not support
for instance document reuse (in other contexts or across the development cycle of a text). The
problem is that these approaches concentrate on the form and not the function of text elements.
Think e.g. of the notorious section renumbering problems in early (WYSIWYG) text processors.
Here, the text form of a numbered section heading was used to express the function of identifying
the position of the respective section in a sequence of sections (and maybe in a larger structure
like a chapter).

This perceived weakness has lead to markup schemes that concentrate more on function than
on form. We will take LATEX as a paradigmatic example here. A typical section heading would be
specified by something like this:

\section[{\TeX}]{The Joy of {\index*${\TeX}}}\label{sec:TeX}

This specifies the function of the text element: The title of the section should be “The Joy
of TEX”, which (if needed e.g. in the table of contents) can be abbreviated as “TEX”, the word
“TEX” is put into the index, and the section number can be referred to using the label sec:TeX.
To determine from this functional specification the actual form (e.g. the section number, the
character placement and font information), we need a document formatting engine, such as Donald
Knuth’s TEX program, and various style declarations, e.g. in the form of LATEX style files (LATEX
itself is just a set of style files on top of TEX). This program will transform the functional
specification using the style information into a markup scheme that specifies the form, like DVI, or
PostScript that can directly be presented on paper or on the screen. Note that e.g. renumbering
is not a problem in this approach, since the actual numbers are only inferred by the formatter.
This, together with the ability to simply change style file for a different context yields much
more manageable and reusable documents, and has led to a wide adoption of the function-based
approach. So that even word-processors like MS Word now include functional elements. Purely
form-oriented approaches like DVI or PostScript are roughly only used for document delivery.

To contrast the the two markup approaches we will speak of presentation markup for
markup schemes that concentrate on form and of content markup for those that specify the function
and infer the form from that. As we have emphasized before, few markup schemes are pure in the
sense of this distinction, for instance LATEX allows to specify traits such as font size information,
or using

{\bf proof}:. . . \hfill\Box

to indicate the extent of a proof (the formatter only needs to “copy” them to the target format).
The general experience in such mixed markup schemes is that presentation markup is more easily
specified, but that content markup will enhance maintainability, and reusability. This has led to a
culture of style file development (specifying typographical and structural conventions), which now
gives us a wealth of style options to choose from.

Another member of the content markup family that also takes the problem of document meta-
data into account, i.e. to describe the documents themselves and the relations among them (cf. 2.3)
is the “Simple Generalized Markup Language” SGML. It tries to give the markup scheme a
more declarative semantics (as opposed to the purely procedural – and rather baroque – semantics

2Of course, we overstress the issues; due to economic pressures, none of the markup schemes survives in a pure
form anymore.
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of TEX), to make it simpler to reason about (and this reuse) documents. It comes with its own
(functional) style sheet language (DSSSL) and formatter.

The Internet, where screen presentation, hyperlinking, computation limitations, and band-
width considerations are much more important than in the “ink-on-paper” world of publishing
has brought about a whole new set of markup schemes. The problems that need to be addressed
are that i) the size, resolution, and color depth of a given screen are not known the time the
document is marked up, ii) the structure of a text is no longer limited to a linear text with (e.g.
numbered) cross-references as in a book or article (Internet documents are in general hypertexts),
iii) we do not know the computational ressources of the computer driving the screen, and therefore
have to decide which formatting steps to perform on the server, and which on the client side, and
finally, the related problem that iv) bandwidth of the Internet is ever-growing but limited.

The “Hypertext Markup Language” (HtML [RHJ98]) is a presentation markup scheme
that shares the basic syntax with SGML and addresses the problem of variable screen size and
hyperlinking by exporting the decision of character placement and page order to a browser
running on the client. This ensures the high degree of reusability of documents on the Internet,
while conserving bandwidth, so that HtML carries most of the markup on the Internet today.
Of course HtML has been augmented with its own (limited) style sheet language (CSS) that is
executed by the browser. The need for content markup schemes for maintaining documents on the
server, as well for specialized presentation of certain text parts (e.g. for mathematical or chemical
formulae) has led to a profusion of markup schemes for the Internet, most of which share the
basic SGML syntax with HtML. However, due to its origin in the publishing world, full SGML

is much too complex for the Internet, and in particular the DSSSL formatter is too unwieldy and
ressource-hungry for integration into web browsers.

This diversity problem has recently led to the development to the unifying “eXtensible
Markup Language” Xml [BPSM97] framework for Internet markup languages. Conceptually
speaking, Xml views a document as a tree of so-called elements (see Figure 1.2 for an example).
For communication this tree is represented (as in SGML) as a well-formed bracketing structure,
where the brackets of an element el are represented as <el> (opening) and </el> (closing); the
leaves of this tree are represented as empty elements, which can be abbreviated as <el/>. The
element nodes of this tree can be annotated by further information in so-called attributes in
opening brackets: <el visible="no"> might add the information for a formatting engine to hide
this element.

From SGML, Xml also inherits the concept of a “document type definition” (DTD), i.e.
a context-free grammar that defines the set of well-formed documents in a given Xml language, by
defining the set of admissible trees3 as those that are accepted by this grammar. As a consequence
(cleaned up versions of) most Internet markup schemata e.g. HtML can be defined by a DTD in
Xml, making general tool support available to them. In particular, this allows documents to be
validated by generic tools (parsers).

Xml comes with the Xsl style sheet mechanism [Dea99], that was designed as a simplified
subset of DSSSL that is lightweight enough to allow integration of Xsl-transformers into browsers
(they are present in version 5 of Microsoft’s Internet Explorer and in version 6 of the Netscape
Communicator).

A problem that we have stated in the beginning, but not discussed is that the availability of
mathematical software systems breaks the assumption that mathematical documents are targeted
only for human consumption. This assumption severely limits their usefulness. Take for instance
a user that wants to experiment withe the mathematical formulae that she has just read in a
mathematical book in a computer algebra, e.g. to graph them or calculate variants has to retype
them into the system, very possibly making errors that make the result unusable. The problem is
that presentation markup is that it is specified to be machine-readable (e.g. to the browser) but
not machine-understandable. With the advent of the Internet, which is world’s fastest growing
and quickly also becoming the largest repository of mathematical documents, it is not possible to

3Actually, a recent extension of the Xml standard (XLink) also allows to express graph structures, but the
admissibility of graphs is not covered by the DTD. See also our section 2.2 on cross-referencing in OMDoc
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manage all the available knowledge manually, because of the volume of information distributed
over the Web. Generally, it is very hard to automate anything for documents whose structure is
specified by presentation markup, therefore, we have to develop powerful content markup schemes
for mathematical documents to make them also machine-understandable.

The OMDoc format presented in this report is an attempt to do just this, based on existing
Internet standards like Xml and ideas from mathematical practice, text theory and the field
of algebraic specification. In order to structure the discussion, we will distinguish two levels of
markup structure, the “microscopic” level that is used to mark up the mathematical objects,
usually encoded by mathematical formulae, and the “macroscopic” level of document markup,
which is concerned with the (closely related) questions of document structure and the structure
of the underlying mathematical theories. In mathematical texts, there is possibly a third level,
in which both microscopic and macroscopic are especially tightly intertwined. Proofs, are about
mathematical objects, but have a very explicit, specialized (and important) structure; we will
leave discussion of them to section 2.7.

1.2 The microscopic level: OpenMath, and MathMl

The two best-known open4 markup formats for representing mathematics for the Web are MathMl

and OpenMath.
MathMl [CIMP01] is an Xml-based markup scheme for mathematical formulae, in a nutshell,

its main goal is to bring TEX formula presentation to the Web. Since the aim is to do most of the
formatting inside the browser, where ressource considerations play a large role, it restricts itself to
a fixed set of mathematical concepts – the so-called K-12 fragment of mathematics (Kindergarten
to 12th grade), a large set of commonly used glyphs for mathematical symbols and very general
and powerful presentation primitives, as they make up the lower level of TEX. It does however
not offer the programming language features of TEX5 for the obvious computing ressource consid-
erations. Fully aware of the advantages of content markup, it also offers infrastructure for that,
called content MathMl, and a specialized semantics element that allows to annotate MathMl

formulae with content information in any format. This is intended to hold representations of the
formulae in other markup schemes, e.g. so that they can be passed on to the computer algebra
system we discussed above.

In contrast to this very rich language that defines the meaning of extended presentation prim-
itives, the meaning of the concepts of K-12 mathematics, the OpenMath standard [CC98] builds
on an extremely simple kernel (mathematical objects represented by content formulae), and adds
an extension mechanism, the so-called content dictionaries. These are machine-readable speci-
fications of the meaning of the mathematical concepts expressed by the OpenMath symbols. Just
like the library mechanism of the C programming language, they allow to externalize the definition
of extended language concepts. As a consequence, K-12 need not be part of the OpenMath

language. Moreover, OpenMath is purely based on content markup. The central construct of
OpenMath is that of an OpenMath object (OMOBJ), which has a tree-like representation made
up of applications (OMA), binding structures (OMBIND using OMBVAR to tag the bound vari-
ables), variables (OMV) and symbols (OMS). For convenience, OpenMath also provides other
basic data types useful in mathematics: OMI for integers, OMB for byte arrays, OMSTR for s, and
OMF for floating point numbers, and finally OME for errors. Just like MathMl, OpenMath offers
an element for annotating (parts of) formulae with external information (e.g. MathMl or LATEX
presentation): the OMATTR6 element. The content dictionaries that make up the extention mech-
anism provided in OpenMath are tied into the object representation by the cd attribute of the

4There are various other formats that are proprietary or based specific mathematical software packages like
Wolfram Research’ Mathematica. We will not concern ourselves with them for the obvious reasons.

5TEX contains a full, Turing-complete – if somewhat awkward – programming language that is mainly used to
write style files. This is separated out by MathMl to the Xsl language it inherits from Xml.

6Note that the meaning of this element is somewhat underdefined, it is stated in the standard, that any Open-

Math compliant application is free to disregard attribuitions (so they do not have a meaning), but in practice, they
are often used for specifying e.g. type information.
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OMS element that specifies the defining content dictionary.
OpenMath and MathMl are well-integrated:

• the basic content dictionaries of OpenMath mirror the MathMl constructs, there are
converters between the two formats.

• MathMl supports the semantics element that can be used to annotate MathMl presen-
tations of mathematical objects with their OpenMath encoding, and OpenMath supports
the presentation attribute that can be used for annotating with MathMl presentation.

• OpenMath is the designated extension mechanism for MathMl beyond K-12 mathematics.

Therefore, it is not a limitation of the presentational capabilities to use OpenMath for marking
up mathematical objects. As MathMl can be viewed by the WebEQ plug-in and is going
to be natively supported by the primary browsers MS Internet Explorer and Netscape

Navigator in version 6 (see http://www.mozilla.org for Mozilla, the open source version),
MathMl will be the primary presentation language for OMDoc.

<OMOBJ id="commutativity-formula">
<OMBIND>

<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/>
<OMV name="b"/>

</OMBVAR>
<OMA><OMS cd="logic1" name="implies"/>

<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/><OMV name="a"/><OMS cd="reals" name="real"/></OMA>
<OMA><OMS cd="set1" name="in"/><OMV name="b"/><OMS cd="reals" name="real"/></OMA>

</OMA>
<OMA><OMS cd="relation" name="eq"/>

<OMA><OMS cd="reals" name="plus-real"/><OMV name="a"/><OMV name="b"/></OMA>
<OMA><OMS cd="reals" name="plus-real"/><OMV name="b"/><OMV name="a"/></OMA>

</OMA>
</OMA>

</OMBIND>
</OMOBJ>

Figure 1.1: An OpenMath representation of ∀a, b.a+ b = b+ a.

Since OMDoc uses OpenMath at the microscopic level, let us build up our intuition about it
with an example. Figure 1.2 shows an OpenMath representation of the law of commutativity for
addition on the reals (the logical formula ∀a, b.a ∈ R∧ b ∈ R→ a+ b = b+a). The mathematical
meaning of a symbols (that of applications and bindings is known from the folklore) is specified in
a so-called content dictionary, which contain formal (FMP “formal mathematical property”)
or informal (CMP “commented mathematical property”) specifications of the mathematical
properties of the symbols. For instance, the specification

<CDDefinition>

<Name>plus</Name>

<Description>Addition on real numbers</Description>

<CMP>Addition is commutative</CMP>

<FMP><OMOBJ xref="commutativity-formula"/></FMP>

</CDDefinition>

could be part of the content dictionary7 reals.ocd for elementary properties of real numbers (cf.
section 2.5.2 for the relation of content dictionaries with OMDoc documents).

7In fact the reference <OMOBJ xref="commutativity-formula"/> pointing to the OMOBJ with the id attribute
commutativity-formula uses an extension of OMDoc to OpenMath that allows to represent formulae as directed
acyclic graphs preventing exponential blowup (see section C). It is licensed by the OpenMath standard, since pure
OpenMath trees can be generated automatically from it.
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1.3 The Macroscopic level: OMDoc

In the last section we have seen that the microscopic level of formula markup has been sufficiently
dealt with by OpenMath and MathMl. This level of support is sufficient for the communication
needs of symbolic computation services like computer algebra systems, which manipulate (simplify)
or compute objects like equations or groups. Even though the logical formulae constructed or
manipulated by reasoning systems like the Ωmega system can be expressed as OpenMath objects,
mathematical services like reasoners or presentation systems need more information e.g.:

1. is this formula an axiom, a definition, or a theorem to be proven?

2. what is a good strategy to proceed with the proof in this domain?

3. is this mathematical concept basic, or defined (so that it can be expanded to a formula
involving simpler concepts)?

4. is this concept, proof, or theory, a generalization or special case, of some other?

5. what is the common name of this concept (and its grammatical category), how is it usually
written?

6. who is the author of this theorem, article, proof?

Unfortunately, OpenMath fulfills this goal only partially, since it exclusively deals with the
representation of the mathematical objects proper.

[. . . ] a standard for representing mathematical objects, allowing them to be exchanged
between computer programs, stored in databases, or published on the worldwide web.
[. . . ] [CC98]

Of course it would be possible to characterize an axiom by applying a predicate “axiom” to a
formula or using a special variant of the equality relation for definitions, but this would only solve
item 1 above.

To define a “macroscopic” structure level that classifies the kind of knowledge discussed above,
we will use mathematical documents as a guiding intuition for mathematical knowledge, since
almost all of mathematics is currently communicated in this form (publications, letters, e-mails,
talks,. . . ). To ensure widespread applicability, we will use the term document in an inclusive, rather
than exclusive way (including papers, letters, interactive books, e-mails, talks, communication
between mathematical services (see for instance [FK99, FHJ+99]) on the Internet,. . . ), claiming
that all of these can be fitted into a common representation.

The general pattern “definition, theorem, proof” has long been considered paradigmatic of
mathematical documents like math. textbooks and papers. To support this structure, OMDoc

provides elements for them which we will describe in sections 2.6 and 2.5. This structure is
augmented by the large-scale structure of mathematical theories, here we build on concepts (see
section 2.8) from the field of algebraic specification where structured representation of large corpora
of formal scientific knowledge (about the meaning of programs) has been studied extensively. But
mathematical documents contain more than this: specialized document parts like proofs (see
section 2.7, exercises, applets, notation (see section 2.9) are intermixed with explanatory text
(section 2.4). Instead of motivating and explaining them here (that will be the role of the next
chapter), let us evaluate the scope of OMDoc by looking at a few possible applications. OMDoc

can serve as

• a communication standard between mechanized reasoning systems, e.g. the Clam-Hol

interaction [BSBG98], or the Ωmega-TPS [BBS99] integration.

• a data format that supports the controlled refinement from informal presentation to formal
specification of mathematical objects and theories. Basically, an informal textual presenta-
tion can first be marked up, by making its discourse structure8 explicit, and then formalizing

8classifying text fragments as definitions, theorems, proofs, linking text, and their relations; we follow the
terminology from computational linguistics here.
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the textually given mathematical knowledge in logical formulae (by adding FMP elements;
see sections 2.6 and 1.2).

• an interface language of a mathematical knowledge base like the MBase system [FK00,
KF00]. The system offers a service that allows to store and (flexibly) reproduce (parts of)
OMDoc documents.

• a the document preparation language; a system like MBase supports the maintenance of
large-scale document- and conceptual structures, if they are made explicit in OMDoc. As
OMDoc can directly be transformed to e.g. LATEX, external input to MBase can directly
be published.

• a basis for individualized (interactive) books. Personalized OMDoc documents can be gen-
erated from MBase making use of the discourse structure encoded in MBase together with
a user model.

• an interface for proof presentation [HF97, Fie99]: since the proof part of OMDoc allows
small-grained interleaving of formal (FMP) and textual (CMP) presentations.

These and similar applications are pursued in the Ωmega project at the Saarland University,
Saarbrücken (see http://www.ags.uni-sb.de/~omega) in cooperation with the RIACA project
at Eindhoven (see http://www.riaca.win.tue.nl) and the automated reasoning project at Ed-
inburgh (see http://dream.dai.ed.ac.uk).
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Chapter 2

OMDoc: Open Mathematical
Documents

In this chapter, we discuss the OMDoc language features and their meaning. We will group
by their meaning: first we will show the general text elements, after all, OMDoc is a markup
language for mathematical documents/texts. Then we will concern ourselves with mathematical
structures in the documents, i.e. theorems and proofs in section 2.6. In section 2.5, we will present
markup elements for specifying the macroscopic structure of a mathematical document or theory.
Finally, we will devote section 2.9 to auxiliary elements in OMDoc, which escape the classification
in the other sections. The only part of OMDoc, which will not be shown in this chapter is the
infrastructure for presenting OpenMath symbols, since it is very much tied to the processing of
OMDocs. It will be presented in section 3.2.

In appendix A, we give a quick-reference table of the OMDoc elements, their attributes and
contents.

2.1 Document Structure

Since OMDoc is an extension of OpenMath, it inherits its connections to Xml and MathMl.
The structure of OMDoc documents is defined in the the OMDoc document type definition
DTD (cf. appendix C).

An OMDoc document is bracketed by the Xml tags <omdoc> and </omdoc>, and consists
of a sequence of OMDoc elements, that contain specialized representations for text, assertions,
theories, definitions,. . . (see below). In contrast to markup languages like LATEX, OMDoc does not
partition the documents into specific units like chapters, sections, paragraphs, by tags and nesting
information, but makes these document relations explicit with omgroup elements (see section 3.2).
This choice is motivated by the generality of the document classes and the fact that the relative
position of OpenMath documents can be determined in the presentation phase. In particular,
since OpenMath documents can be hypertext documents, or generated from a database, it can be
impossible to determine the structure of a document in advance, therefore we consider document
structure information as presentation information and describe it in section 3.2.

<?xml version="1.0">

<!DOCTYPE omdoc SYSTEM "http://www.mathweb.org/omdoc/omdoc.dtd" []>

<omdoc xmlns="http://www.mathweb.org/omdoc" id="omdoc.example">

...

</omdoc>

Figure 2.1: The General Structure of an OMDoc.
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Let us now take a look at the structure of an OMDoc document: Since OMDoc documents
are Xml documents specified by the OMDoc document type definition, all text is contained in a
root node, the element omdoc, which has an attribute that uniquely identifies the document. Thus
an OMDoc is has the general structure shown in Figure 2.1.

The omdoc element is the Xml document element (i.e. the root node of the tree representing
the document). As usual in Xml there may only be one document node in an Xml file. The
xmlns attribute declares the OMDoc namespace, giving the elements used in the document an
unambiguous meaning; the one described in the material at http://www.mathweb.org/omdoc/
omdoc, i.e. the one described in this manual. Note that it can be left out in some cases1, but if
you put it, then it has to be exactly the string http://www.mathweb.org/omdoc, character for
character, since otherwise applications will not recognize the vocabulary as OMDoc.

The omdoc element contains the various other elements that we will describe in this report
(see appendices A for an overview and C for the document type definition, which is the primary
reference).

Note that some OMDoc elements (those that have the ANY content model, most notably CMP
and extradata) can contain elements other than the ones described in this manual, if they are
declared in the internal subset of the DOCTYPE declaration (the empty [] in Figure 2.1). This
allows to embed other Xml vocabularies into these elements. In particular, in CMP, we would
like to embed XHtML or MathMl for formatted markup of the text sections. The extradata is
intended for user-defined metadata. If we want to use elements <abstraction> or <difficulty>
in extradata and MathMl in the CMP, then we need a document type declaration like the one
in figure Figure 2.1.

<!DOCTYPE omdoc SYSTEM "http://www.mathweb.org/omdoc/omdoc.dtd"

[<!ELEMENT abstraction EMPTY>

<!ATTLIST abstraction level CDATA #REQUIRED>

<!ELEMENT difficulty EMPTY>

<!ATTLIST difficulty level CDATA #REQUIRED>

<!ENTITY % mathmldtd SYSTEM "http://www.w3.org/Math/DTD/mathml1/mathml.dtd"

%mathmldtd;]>

Figure 2.2: A Document Type Declaration with Internal Subset

Let us now come to the more conceptual points: OMDoc is concerned with general markup
for mathematical documents. Such documents are usually very carefully structured to make
understanding of the complex material as simple as possible for the reader. The OMDoc format
aims a providing Xml-based content markup for this structure.

There are various problems that have to be overcome to reach this goal:

1. mathematical documents (at least larger ones, such as books) are usually structured along
two axes, the document structure, and the and the theory structure. These can be compatible
(and in well-structured mathematical documents often are), but need not in general. In
this section we will concern ourselves with the document structure and leave the theory
structure to chapter 2.5. At the moment it is sufficient to note that the theory structure
will be represented by specialized theory elements that group mathematical objects like
symbol declarations, axioms, etc. and specifies the dependency relations among them (see
section 2.5). The document structure will be expressed directly by Xml constructs.

2. mathematical documents (as other argumentative discourses) are normally not linear, but
have a tree structure. OMDoc adopts the well-known “Rhetorical Structure Theory”
RST [MT83, Hor98] content model, which models a text as a tree whose leaves are the

1It is declared in the document type definition, so validating Xml applications can pick it up from there, if you
are not sure whether your document will be handled only by validating applications, better put it there.
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sentences (or phrases) and whose internal nodes model the relations between their daugh-
ters. In OMDoc, we use omgroup elements for the internal nodes of the tree and omtext
nodes for the leaves. We use the rsrelation attributes to make this information explicit.
These attributes specify the relation type in a type attribute and the RST tree daughters
in attributes for (for the head daughter) and from for the others. At the moment OMDoc

uses a variant of the RST [MT83] content model that supports the relation types abstract,
introduction, conclusion, thesis, antithesis, elaboration, motivation, evidence,
linkage, narrative, sequence, alternative, general with the obvious meanings, mo-
tivated by the application to mathematical argumentative texts (see also [Hor98]). The
relation type also determines the default presentation.

This markup scheme generalizes those for text fragments offered e.g. by LATEX into categories
like “Introduction”, “Remark”, or “Conclusion”.

3. mathematical document trees have nodes that are not present in “normal” argumentative
texts: Definitions, Lemmata, Proofs, represented by the mathematical elements covered in
section 2.6. As they can be seen as specialized text elements, they also have rsrelation
attributes. Their internal discourse structure is determined by the specialized markup they
provide.

4. mathematical documents normally do not have a tree structure, which could be naturally
represented in Xml. Therefore, we have ref elements that can be used to reference to
elements defined elsewhere (cf. footnote 4 in the context of OpenMath elements).

Element Attributes D Content
Required Optional C

omdoc id type,
catalogue

+ OMDoc element

catalogue – loc*
loc theory omdoc, cd – EMPTY
omgroup + OMDoc element
ref xref,

theory,
name kind

– ANY

omtext id rsrelation + CMP+,FMP?
CMP type,

xml:lang
– ANY

Figure 2.3: The general OMDoc elements

This structuring approach allows to “flatten” the tree structure in a document into a list of
leaves and relation declarations (see Figure 2.1 for an example). While this is a much more flexible
(database-like) approach to representing structured documents2, it puts a much heavier load on
a system for presenting the text to humans. In essence the presentation system must be able to
recover the left representation from the right one in Figure 2.1. Generally, any OMDoc element
defines a fragment of the OMDoc it is contained in: everything that this element contains,

2The simple tree model is sufficient for simple markup of existing mathematical texts and to replay them verbatim
in a browser, but is insufficient e.g. for generating individualized, presentations at multiple levels of abstractions
from the representation. The OMDoc text model – if taken to its extreme – allows to specify the respective role and
contributions of smaller text units, even down to the sub-sentence level, and make the structure of mathematical
texts “machine understandable”. Thus an advanced presentation engine like the ActiveMath system [SBC+00]
can – for instance – extract document fragments based on the preferences of the respective user.
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and (recursively) those elements that are reached from it by following the cross-references. In
particular, the text fragment corresponding to the element with (id=text) in the right OMDoc

of Figure 2.1 is just the one on the right.

<omtext id="text">

TEXT1
<omgroup type="enumeration">

<omtext id="t2">TEXT2</omtext>
<omtext id="t3">TEXT3</omtext>

</omgroup>

TEXT4
</omtext>

←→

<omtext id="t1">TEXT1</omtext>
<omtext id="t2">TEXT2</omtext>
<omtext id="t3">TEXT3</omtext>
<omtext id="t4">TEXT4</omtext>

<omgroup id="text" type="narrative">

<ref xref="#t1"/>

<ref xref="#enum"/>

<ref xref="#t4"/>

</omgoup>

<omgroup id="enum" type="sequence">

<ref xref="#text2"/>

<ref xref="#text3"/>

</omgoup>

Figure 2.4: Flattening a tree structure

2.2 Cross-referencing and the OMDoc Catalogue

Let us now take a closer look at the hyperlinks and cross-referencing across OMDoc files. The
ref elements support the two structural axes mentioned in item 1 above, since these are the
principal two coordinate systems, an OMDoc author thinks in. The attribute xref is used for
the document structure axis and the attributes theory and name are used for the theory axis.

As we have seen above, OpenMath uses the theory axis to reference symbols (theories closely
correspond to content dictionaries, see 2.5.2). This assumes that it is always known, where the
defining OMDoc

3 can be found. This is not always granted in the times of the Internet, where
documents can be widely distributed.

OMDoc specifies the document structure using the Xml primitives for grouping and hyperlinks
(in particular the XLink/XPointer specification; see[DMOT01, DJM01]).

If we know where the defining OMDoc is, then the two methods of referencing are equivalent.
In particular, if the target element is defined in the same OMDoc, then it is sufficient to specify
its id attribute in the xref attribute, otherwise, it must include the relevant URL or xpointer ma-
terial. Say it can be found at the URL http://www.somewhere.org/theo, then we can substitute
<ref theory="theo" name="nam"/> with <ref xref="http://www.somewhere.org/theo#nam"/>
and vice versa. The situation for the OpenMath element OMS is similar, only that we have the
cd attribute instead of theory for historical reasons.

It is important to support the structural axis in OMDoc for tool support (see section 3), and
the theory axis for the users, since it is closer to the conceptualization of the content. Therefore,
OMDoc supports a catalog mechanism that allows to specify the location of defining OMDocs.
This can be done in two ways

globally The global specification of a catalogue is done by the catalogue attribute in the omdoc
element. It is a URI reference to another OMDoc whose catalog is inherited for the refer-
encing OMDoc.

locally The local catalogue is declared in the catalogue element, it contains a sequence of
location elements, which empty and has three attributes to convey the following decla-
ration: The theory specified by the theory attribute is defined in the OMDoc, the URL in
the attribute omdoc points to, and analogously for the cd attribute.

3i.e. the OMDoc that contains the theory definition; equivalently, the defining document could actually be an
OpenMath content dictionary (which amounts to the same, as one can be transformed into the other).
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The effective catalogue for an OMDoc is a sequence of location declarations. It (recursively)
computed in the following way. First, the effective catalogues of the OMDocs at the URIs given in
the catalogue attribute of the omdoc element are concatenated in the same order, then the local
catalogue declaration is appended at the end. Then double location declarations are eliminated,
later declarations overwriting the earlier.

This effective catalogue is then used to determine the location of any theory referenced in the
OMDoc.

2.3 Metadata

The World Wide Web was originally built for human consumption, and although everything on it is
machine-readable, this data is not machine-understandable. The accepted solution to use metadata
to describe the data contained on the Web. In OMDoc, we use one of the best-known metadata
schemas for documents – the Dublin Core. This decision also makes OMDoc compatible with
e.g. the standard [Gro99] proposed by the open eBook initiative.

The OMDoc metadata element is used to provide information about the publication as a
whole, as well as specific fragments of the document. It contains specific publication-level metadata
as defined by the Dublin Core initiative (http://purl.org/dc/). The descriptions below are
included for convenience, and the Dublin Core’s own definitions take precedence (see http://
www.ietf.org/rfc/rfc2413.txt).

The OMDoc metadata element can contain any number of instances of any Dublin Core
elements in any order (see appendix B for a specification and appendix C for a document type
definition); in fact, multiple instances of the same element type (multiple Creator elements, for
example) can be interspersed with other metadata elements without change of meaning.

As OpenMath documents, are often used to formalized existing mathematical texts for use
in mechanized reasoning and computation systems, it is sometimes subtle to specify authorship.
We will discuss some typical examples to give a guiding intuition.

• If editor R gives the sources (e.g. in LATEX) of a document D written by author A to secretary
S for conversion into OMDoc format (yielding D′), then the metadata declaration of D′

should have the following form:

<metadata>
<Title>The Joy of Jordan $C^*$ Triples</Title>
<Creator role="aut">A</Creator>
<Contributor role="edt">R</Contributor>
<Contributor role="trc">S</Contributor>
</metadata>

• Researcher R formalizes the theory of natural numbers and for this looks into the standard
textbook B (written by author A) for number theory. In this case we recommend something
like the left declaration for the whole document and and the right one for for specific math
elements, e.g. a definition inspired by or adapted from one in book B. See appendix B for
details and Figure 2.3 for quick-reference.

<metadata>

<Title>Natural Numbers</Title>

<Creator role="aut">R</Creator>
</metadata>

<metadata>

<Title>Natural Numbers</Title>

<Creator role="aut">R</Creator>
<Contributor role="ant">A</Contributor>
<Source>B</Source>

</metadata>

2.4 Text Elements

The OMDoc text elements are Xml elements that can be used to accommodate and classify the
explanatory text parts in mathematical documents. We have two kinds of them:
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Element Attributes D Content
Required Optional C

metadata – (element)*
Title xml:lang – ANY
Contributor role – ANY
Creator role – ANY
Subject – ANY
Description – ANY
Publisher – ANY
Date action – ANY
Type – ANY
Format – ANY
Identifier scheme – ANY
Source – ANY
Lanugae – ANY
Relation – ANY
Coverage – ANY
Rights – ANY
extradata – ANY

Figure 2.5: The OMDoc metadata

CMP These text elements are used for comments and describing mathematical properties inside
other OMDoc elements. They have an xml:lang attribute that specifies the language, they
are written in, thus using groups of CMPs with different languages can be used for OMDoc

index*internationalization. In conformance with the Xml recommendation, we use the ISO
639 two-letter country codes (en =̂ English, de =̂ German, fr =̂ French, nl =̂ Dutch. . . ).
CMPs may contain arbitrary text interspersed with OpenMath objects (OMOBJ elements) (see
the OpenMath standard [CC98] for details), omlets (see section 2.9) and hyperlinks (see
below). No other elements are allowed. In particular, presentation elements like paragraphs,
emphases, itemizes,. . . are forbidden, since OMDoc is concerned with content markup.
Generating presentation markup from this is the duty of specialized presentation compo-
nents, e.g. Xsl style sheets, which can base their decisions on presentation information (see
section 3.2) and then rsrelation information described in this section.

omtext OMDoc text elements can appear on top level (inside omdoc elements). They have an id
attribute, so that they can be cross-referenced, (optional) rsrelation attributes specifying
the rhetorical structure relation of the text to other OMDoc elements, and contain

1. an (optional) metadata declaration (we use the well-known Dublin Core schema, cf. http:
//purl.org/dc/ or see appendix 2.3)

2. a non-empty set of CMP elements that contain the text proper.

Element Attributes D Content
Required Optional C

omdoc id type,
catalogue

+ OMDoc element

catalogue – loc*
loc theory omdoc, cd – EMPTY
omgroup + OMDoc element
ref xref,

theory,
name kind

– ANY

omtext id rsrelation + CMP+,FMP?
CMP type,

xml:lang
– ANY

Figure 2.6: The OMDoc Text Elements

2.5 Simple Theories

Traditionally, mathematical knowledge has been partitioned into so-called theories, often centered
about certain mathematical objects like groups, fields, or vector spaces. Theories theories have
been formalized as collections of

• signature declarations (the symbols used in a particular theory, together with optional
typing information).

• axioms (the logical laws of the theory).

• theorems; these are in fact logically redundant, since they are entailed by the axioms.
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In software engineering a closely related concept is known under the label of an (algebraic) speci-
fication, that is used to specify the intended behavior of programs. There, the concept of a theory
(specification) is much more elaborated to support the structured development of specifications.
Without this structure, real world specifications become unwieldy and unmanageable. In this sec-
tion we will only discuss simple theories and leave the discussion of the more advanced structuring
concepts to sections 2.8 and 2.5.1.

Element Attributes D Content
Required Optional C

theory id + commonname*,CMP*,most below
symbol id type,

scope
+ CMP*,(commonname|type|selector)*

commonname xml:lang – ANY
signature id, for,

system
–

type system – OMOBJ
axiom id + private*,symbol*,CMP*,FMP?
definition id, for type,

just-by
+ CMP*,(FMP+|requation+|OMOBJ)?

requation – pattern, value
pattern – OMA|OMS
value – OpenMath element
imports id, from type,

hiding
– CMP*,morphism?

morphism id base – requation*
inclusion for –
adt id type + CMP*,commonname*,sortdef+
sortdef id kind,

scope
– commonname*,(symbol|insort)*

constructor id type,
scope

+ commonname*,argument*

argument sort + selector?
insort for –
selector id type,

scope,
kind

– commonname*

theory-inclusion id,
from,
to, by

timestamp + (morphism,decomposition?)

axiom-inclusion id,
from, to

timestamp + morphism?,
(path-just|assertion-just))

assertion-just ids timestamp – EMPTY
decomposition links timestamp – EMPTY
path-just local,

globals
timestamp – EMPTY

Figure 2.7: The OMDoc Theory Elements

Theories are specified by the theory element in OMDoc. Since signature and axiom informa-
tion is particular to a given theory, the symbol, definition, axiom elements must be contained
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in a theory as sub-elements.

<theory id="monoid-thy">. . .
<symbol id="monoid">

<commonname xml:lang="en">monoid</commonname>

<commonname xml:lang="de">Monoid</commonname>

<commonname xml:lang="it">monoide</commonname>

<type system="simply-typed">

set[any] -> (any -> any -> any) -> any -> bool

</type>

</symbol>. . .
</theory>

Figure 2.8: An OMDoc symbol declaration

symbol This element specifies the symbols for mathematical concepts, such as 1 for the natural
number “one”, + for addition, = for equality, or group for the property of being a group.
The symbol element has an id attribute which uniquely identifies it. This information is
sufficient to allow referring back to this symbol as an OpenMath symbol. For instance the
symbol declaration in Figure 2.5 gives rise to an OpenMath symbol that can be referenced
as <OMS cd="monoid" name="monoid"/>. If the document containing this symbol element
were stored in a data base system, the OpenMath symbol could be looked up by its common
name. The type information specified in the signature element characterizes a monoid as a
three-place predicate (taking as arguments the base set, the operation and a neutral element).

definition Definitions give meanings to (groups of) symbols (declared in a symbol element
elsewhere) in terms of already defined ones. For example the number 1 can be defined as
the successor of 0 (specified by the Peano axioms). Addition is usually defined recursively,
etc.

The OMDoc definition element supports several kinds of definition mechanisms specified
in the type attribute currently:

simple The FMP (see section 2.6) contains an OpenMath representation of a logical formula
that can be substituted for the symbol specified in the for attribute of the definition.

inductive The formal part is given by a set of recursive equations whose left and right
hand sides are specified by the pattern and value elements in requation elements.
The termination proof necessary for the well-definedness of the definition can be spec-
ified in the just-by attribute of the definition.

implicit Here, the FMP elements contain a set of logical formulae that uniquely determines
the value of the symbols that are specified in the for slot of the definition. Again, the
necessary proof of unique existence can be specified in the just-by attribute.

obj This can be used to directly give the concept defined here as an OpenMath object,
e.g. as a group representation generated by a computer algebra system.

Figure 2.5 gives an example a (simple) definition of a monoid.

2.5.1 Abstract Data Types

All specification languages support mechanisms for specifying signature and axiom information
using mechanisms similar to the ones discussed above, most also support abstract data types
as a convenient shorthand for sets of inductively defined objects and recursive functions on these.

Abstract data types are a definition mechanism for sets that are inductively built up by a
set of constructors. The adt element is a piece of special syntax for the concise statement of such
sets that follows the model used in Casl [CoF98]. There, abstract data types declare a set of
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<definition id="mon.d1" for="monoid" type="simple">

<CMP>

A structure (M, ∗, e), in which (M, ∗) is a semi-group

with unit e is called a monoid.

</CMP>

</definition>

Figure 2.9: A Definition of a monoid

sorts (inductively defined sets), constructors (the sorts contain exactly the objects constructed
only by constructors), and selectors (partial inverses of the constructors) together with type/sort
information for the latter two. An abstract data type is called free, iff there are no identities
between constructor terms, i.e. if two objects represented by different constructor terms can never
be equal. An example of a free abstract data type is the theory of natural numbers. It has a single
sort Nat, two constructors (zero and suc (for the successor function)), and the selector pred (for
the predecessor function). An example of a abstract data type that is not free is the theory of finite
sets given by the constructors emptyset and insert since the set {a} can be obtained by inserting
a into the empty set an arbitrary (positive) number of times. This kind of abstract data type is
called generateds, since it only contains elements that are expressible in the constructors. If a
abstract data type is loose, then it may contain other elements together with the ones generated
by the constructors.

In OMDoc, we use the adt element to specify abstract data types. It has a type attribute that
can have the values free and generated and loose and contains one or more sortdef elements.
For instance, we could have expressed the theory of natural numbers, which we have imported
from in Figure 2.8 by the construction using adt in Figure 2.5.1. The abstract data type nat-adt

<theory id="nat-thy">
<commonname>natural number theory</commonname>
<CMP>The Peano Axiomatization of Natural Numbers</CMP>
<adt id="nat-adt" type="free">
<sortdef id="pos-nat">
<commonname>the set of positive natural numbers</commonname>
<constructor id="succ">
<commonname>The successor function</commonname>
<argument sort="nat">
<selector type="total" id="pred">
<commonname>The predecessor function</commonname>

</selector>
</argument>
</constructor>

</sortdef>
<sortdef id="nat">
<commonname>the set of natural numbers</commonname>
<constructor id="zero"/>
<insort for="nat"/>

</sortdef>
</adt>
</theory>

Figure 2.10: The Natural numbers using adt

is free and has two sorts pos and nat for the (positive) natural numbers. Positive numbers are
generated by the successor function on the natural numbers (all positive naturals are successors).
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On pos, the inverse pred of succ is total. The set nat of all natural numbers is defined to be the
union of pos and the constructor zero. Note that this definition implies the well-known Peano
Axioms: the first two specify the constructors, the third and fourth exclude identities between
constructor terms, while the induction axiom states that nat is generated by zero and succ.

2.5.2 OMDoc Theories and OpenMath Content Dictionaries

In the examples we have already seen that OMDoc documents contain definitions of mathemat-
ical concepts, which need to be referred to using OpenMath symbols. In particular, documents
describing theories like barshe.omdoc or ida.omdoc even reference OpenMath symbols they de-
fine themselves. Thus it is necessary to generate OpenMath content dictionaries from OMDoc

documents, or develop an alternative mechanism to establish symbol identity in OMS. The genera-
tion of content dictionaries is already supported in the MBase system, but can also be achieved
by writing specialized Xsl style sheets. For the purposes of this paper, we will only assume that
one of these measures has been taken.

2.6 Mathematical Elements

Element Attributes D Content
Required Optional C

FMP – assumption*,conclusion)|OMOBJ
assertion id type,

theory
+ private*,symbol*,CMP*,FMP?

assumption id + CMP*,OMOBJ?
concluson id + CMP*,OMOBJ?
example id type,

assertion,
proof

+ CMP|OMOBJ

alternative-def id, for,
theory,
entailed-by,
entails,
entailed-by-thm,
entails-thm

type + CMP*,(FMP|requation*|OMOBJ)

Figure 2.11: The OMDoc Math Elements

We will now present the mathematical elements that are not integral parts of a theory, since
they are optional (they can be derived from the material specified in the theory), they can be
specified outside a theory element. We have the following elements:

FMP This is the general element for representing mathematical formulae as OpenMath objects4,
for instance the formula in Figure 1.2. As logical formulae often come as sequents, i.e.

4In fact OMDoc uses a variant of the OpenMath standard that extends their Xml representation by co-
references. That is, then OMOBJ, OMA, OMBIND and OMATTR elements carry extra id and xref attributes that allow to
reuse parts of a formula (see Figure 4.1 on page 37). Thus we can represent formulae as directed acyclic graphs
preventing exponential blowup (see section C). Furthermore, OMDoc allows the attribute bracket-hint on OMA

elements, which can take the values on (default) and off and gives the presentation module (see section 3.2) a hint
on whether to put brackets.

Note that these extensions are licensed by the OpenMath standard, since pure OpenMath trees can be generated
automatically from it.
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a conclusion is drawn from a set of assumptions, OMDoc also allows the content of an
FMP to be a (possibly empty) set of assumption elements followed by a conclusion. The
intended meaning is that the FMP asserts that the conclusion is entailed by the assumptions
in the current context. As a consequence, <FMP><conclusion>A</conclusion></FMP> is
equivalent to <FMP>A</FMP>. The assumption and conclusion elements allow to specify
the content by an OpenMath object (OMOBJ) or in natural language (using CMPs).

assertion This is the element for all statements (proven or not) about mathematical objects (see
Figure 2.6). Traditional mathematical documents discern various kinds of these: theorems,
lemmata, corollaries, conjectures, problems, etc. These all have the same structure (formally,
a closed logical formula). Their differences are largely pragmatic (theorems are normally
more important in some theory than lemmata) or proof-theoretic (conjectures become theo-
rems once there is a proof). Therefore, we represent them in the general assertion element
and leave the type distinction to a type attribute. These type specifications in OMDoc

documents should only be regarded as defaults, since e.g. reusing a mathematical paper as
a chapter in a larger monograph, may make it necessary to downgrade a theorem (e.g. the
main theorem of the paper) and give it the status of a lemma in the overall work.

<assertion id="ida.c6s1p4.l1" type="lemma">

<CMP> A semi-group has at most one unit.</CMP>

</assertion>

Figure 2.12: An assertion about semigroups

alternative-def Since there there can be more than one definition per symbol, OMDoc supplies
the alternative-def element that can be specified outside a theory that can be specified
outside a given theory. Of course, its theory attribute must be set to the theory of the
symbol it defines.

An alternative definition for a symbol can only be added to a theory in a consistent way,
if it is guaranteed that it is equivalent to the existing ones. Therefore, alternative-def
has the attributes entails, and entailed-by, that specify assertions that state this. It
is an integrity condition of OMDoc that any alternative-def element references at least
one definition or alternative-def element that entails it and one that it is entailed by
(more can be given for convenience). The entails-thm, and entailed-by-thm attributes
specify the corresponding theorems. This way we can always reconstruct equivalence of all
definitions for a given symbol.

example In mathematical practice, examples play an equally great role as proofs, e.g. in con-
cept formation (as witnesses for definitions or as either supporting evidence, or as coun-
terexamples for conjectures). Therefore, examples are given status as primary objects in
OMDoc. Conceptually, we model an example for a mathematical concept C as a triple
(W,A,P), where W = (W1, . . . ,Wn) is an n-tuple of mathematical objects, A is an as-
sertion of the form A = ∃W1 . . .Wn.B, and P is a proof that shows A by exhibiting the
witnesses Wi for Wi. The example (W,∃W1 . . .Wn.¬B,P) is a counter-example to a con-
jecture T: = ∀W1 . . .Wn.B, and (W,A,P ′) a supporting example for T.

OMDoc specifies this intuition in an element example that contains a set of OpenMath

objects (the witnesses), and has the attributes

• for (for what concept or assertion is it an example),

• type (one of the keywords for or against for the function)

• assertion (a reference to the assertion A mentioned above)

• proof (a reference to the constructive proof P)
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Consider for instance the structure W: = (A∗, ◦) of the set of words over an alphabet A
together with word concatenation ◦. Then (W,∃W.monoid(W ),P1) is an example for the
concept of a monoid (with the empty word as the neutral element), if e.g. P1 uses W to
show the existence of W . The example (W,∃Vmonoid.¬group(V ),P2 and a proof that usesW
as a witness for V , it is a counterexample to the conjecture C: = ∀Vmonoid.group(V ), since
Q→ ¬C. Figure 2.6 gives the OMDoc representation of this example of an example.

<example id="mon.ex1" for="monoid" type="for"

assertion="strings-are-monoids" proof="sam-pf">

<CMP>The set of strings with concatenation</CMP>

<OMOBJ><OMS cd="simple-monoids" name="strings"/></OMOBJ>

</example>

<example id="mon.ex2" for="monoid" type="against"

assertion="monoids-are-groups" proof="mag-pf">

<CMP>The set of strings with concatenation is not a group</CMP>

<OMOBJ><OMS cd="simple-monoids" name="strings"/></OMOBJ>

</example>

Figure 2.13: An OMDoc representation of an example

2.7 Proofs

Proofs form an essential part of mathematics and modern sciences, conceptually they are a rep-
resentation of un-controversial evidence for the truth of an assertion. As a consequence, some
of the knowledge about given objects of interest can be inferred from simpler assumptions about
it. Thus the role of proofs is twofold, they allow to push back the assumptions about the world
to simpler and simpler assumptions (often called a model), and they allow to test the model by
deriving consequences of these basic assumptions that can be tested against the data.

The question of what exactly constitutes a proof has been controversially discussed. The
clearest (an most radical) definition is given by theoretical logic, where a proof is a sequence (or
tree or directed acyclic graph DAG) of applications of inference rules from a formally defined
logical calculus, that meets a certain set of well-formedness conditions. There is a whole zoo of
logical calculi that are optimized for various applications. They have in common that they are
extremely explicit and verbose, and that the proofs even for simple theorems can become very
large. The advantage of having formal (and fully explicit) proofs is that they can be very easily
verified, even by simple computer programs.

In modern mathematics the notion of a proof is more flexible, and more geared for consumption
by humans: any line of argumentation is considered as a proof, if it convinces its readers (that it can
be expanded to a formal proof in the sense given above). Since this process is extremely tedious,
this option is very seldomly exercised. Moreover, as proofs are geared towards communication
among humans, they are given at vastly differing levels of abstraction. From a very informal proof
idea to the initiated specialist of the field, who can fill in the details himself, down to a very
detailed (but still well above the formal level) account for skeptics or novices. Moreover proofs
will normally be tailored to the specific characteristics of the audience, who may be specialists
in one part of a proof, while unfamiliar to the material in others. Typically, such proofs have
a sequence/tree/DAG-like structure where the leaves are natural language sentences interspersed
with mathematical formulae (often called “mathematical vernacular”).

To reconcile these notions of “proof” and provide a common markup system for them, OMDoc

concentrates on the tree/DAG-like structure of proofs and supports a proof format whose structural
and formal elements are derived from the PDS structure developed for semi-automated theorem
proving (satisfying the logical side), but also allows natural language representations at every level
(allowing for natural representation of mathematical vernacular.) The Proof plan Data Structure
(PDS) was introduced in the Ωmega [BCF+97] system to facilitate hierarchical proof planning
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and proof presentation at more than one level of abstraction. The PDS is a DAG of nodes (the
proof steps) that contain a representation of the local subgoal or assertion and a justification by
either a logical inference rule or higher-level evidence for the truth of the assertion. This evidence
can consist either of a proof method that can be used to prove the assertion, or by a separate
subproof, that could be presented if the hearer was unconvinced. Conceptually, both possibilities
are equivalent, since the method can be used to compute the subproof (called its expansion).

In a PDS, expansions of nodes justified by method applications are computed, but the infor-
mation about the method itself is not discarded in the process as in tactical theorem provers like
Isabelle or NuPrL. Thus proof nodes may have justifications at multiple levels of abstraction
in a hierarchical proof data structure. Note that the assertions in the nodes can be given as
mathematical vernacular (in CMPs) or as logical formulae (in FMPs). This mixed representation
enhances multi-modal proof presentation [Fie97], and the accumulation of proof information
in one structure. Informal proofs can be formalized [Bau99]; formal proofs can be transformed
to natural language [HF96]. The first is important, since it will be initially infeasible to totally
formalize all mathematical proofs needed for the correctness management of the knowledge base.
Moreover, the hierarchical format allows to integrate various other proof representations there
like proof scripts (Ωmega replay files, Isabelle proof scripts,. . . ), references to published proofs,
resolution proofs, etc, to enhance the coverage.

Element Attributes D Content
Required Optional C

proof id, for,
theory

+ symbol*,CMP*,
(hypothesis|derive|metacomment)*,
conclude

proofobject id, for,
theory

+ CMP*,OMOBJ

metacomment id – CMP*
hypothesis id – symbol*,CMP*,FMP?
derive id – CMP*,FMP?,method?,premise*,

(proof|proofobject)?
conclude id – CMP*,method?,premise*,

(proof|proofobject)?
method – (ref|OMSTR),parameter*
parameter – OMOBJ
premise xref – EMPTY

Figure 2.14: The OMDoc Proof Elements

Let us now come to the concrete markup scheme provided by OMDoc (see Figure 2.7 for an
overview). Due to the complex structure of proofs in the PDS, we cannot directly utilize the
tree-like structure provided by Xml, but use cross-referencing (see the discussion in section 2.2).
Proofs are specified by proof elements in OMDoc that has the attributes id, for, and theory.
The for attribute points to the assertion that is justified by this proof (this can be an assertion
element or a derive proof step5). Note that there can in general be more than one proof for a
given assertion.

The content of a proof consists of a sequence of proof steps, whose DAG structure is given by
cross-referencing. These proof steps are specified in two major kinds of OMDoc elements: derive
specify normal proof steps that derive a new assertion from already known ones, from assertions or
axioms in the current theory, or from the assumptions of the assertion that is under consideration

5Thereby making it possible to specify expansions of justifications and thus hierarchical proofs.
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in the proof. We will explain them in detail below. hypothesis elements allow to specify local
assumptions, well-known from calculi like Gentzen’s Natural Deduction calculus [Gen35]. They
allow the hypothetical reasoning discipline need for instance to specify proof by contradiction, by
case analysis, or simply to show that A implies B, by assuming A and then deriving B from this
local hypothesis (it is not accessible outside this subproof). The conclude element is a variant of
derive that does not contain a FMP, it is reserved for the last step in a proof, which states the
conclusion of the assertion. This is advantageous, since it is error-prone to repeat the FMP and in
mathematical vernacular, the last step is often explicitly verbalized to mark the end of the proof.
Similarly, OMDoc supplies the metacomment element to allow for intermediate text that does not
have a logical correspondence, but e.g. guides the reader of the proof.

The derive elements can contain the following child elements (in this order)

CMP This gives the natural language representation of the proof step.

The rest of the children form the formal content of the derive step, together, they represent
the information present e.g. in a PDS node.

FMP A formal representation of the assertion made by this proof step, they contain CMP and FMP
elements. Local assumptions from the FMP should not be referenced to outside the derive step
they were made in. Thus the derive step serves as a grouping device for local assumptions.
In Figure 2.7, the first derive step is used to show a ∈ U ∪ V from the local assumption
a ∈ U , while the second one introduces the implication.

method is an OpenMath symbol representing a proof method or inference rule that justifies the
assertion made in the FMP element.

premise These are empty elements whose xref attribute is used to refer to the proof- or local
assumption nodes that the method was applied to to yield this result. These attributes
specify the DAG structure of the proof.

proof If a derive step is a logically (or even mathematically) complex step that can be expanded
into sub-steps, then the embedded proof element can be used to specify the sub-derivation
(which can have similar expansions in embedded proof environments again).

This embedded proof allows us to specify generic markup for the hierarchic structure of
proofs. Note that the same effect as embedding the proof element into a derive or conclude
step can be obtained by specifying the proof at top-level and using the for attribute to
refer to the identity of the enclosing proof step (given by its id attribute).

<derive id="barshe.2.1.2.proof.a.proof.D2.1">

<CMP>By <OMOBJ><OMS cd="barshe" name="alg-prop-reals.A2"/></OMOBJ>

we have z + (a+ (−a)) = a+ (−a)
</CMP>

<conclusion>(z + a) + (−a) = z + (a+ (−a))</conclusion>
<method><OMS cd="omega-base-calc" name="foralli*"/>c

<parameter><OMOBJ><OMV name="z"/></OMOBJ></parameter>

<parameter><OMOBJ><OMV name="a"/></OMOBJ></parameter>

<parameter>−a</parameter>
</method>

<premise xref="alg-prop-reals.A2"/>

</derive>

Figure 2.15: A derive proof step
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<proof id="t1_p1" for="t1" theory="sets">

<conclude id="t1_p1_c">

<CMP> We prove the assertion by a case analysis over <ref xref="t1_a1"/>.</CMP>

<proof id="t1_p1_c_p" for="t1_p1_c" theory="sets">

<derive id="l1">

<CMP> If a ∈ U, then a ∈ U ∪ V.</CMP>

<FMP>

<assumption id="l1_A">

<CMP> a ∈ U</CMP>

<OMOBJ/>

</assumption>

<conclusion id="l1_C">

<CMP> a ∈ U ∪ V.</CMP>

<OMOBJ/>

</conclusion>

</FMP>

<method><ref theory="bla" name="Method-1"/></method>

<proof id="l1_p" for="l1" theory="sets">

<conclude id="l1_p_d1">

<CMP>a ∈ U ∪ V by definition of ∪.</CMP>
</conclude>

</proof>

</derive>

<derive id="l2">

<CMP> If a ∈ V, then a ∈ U ∪ V.</CMP>

<FMP>

<assumption id="l2_A">

<CMP> a ∈ V</CMP>

<OMOBJ/>

</assumption>

<conclusion id="l2_C">

<CMP> a ∈ U ∪ V.</CMP>

<OMOBJ/>

</conclusion>

</FMP>

<method><ref theory="bla" name="Method-2"/></method>

<proof id="l2_p" for="l2" theory="sets">

<conclude id="l2_p_d1">

<CMP>a ∈ U ∪ V by definition of ∪.</CMP>
</conclude>

</proof>

</derive>

<conclude id="t1_p_c_c1">

<CMP> We have considered both cases from <ref xref="t1_a1"/>,

so we have a ∈ U ∪ V

</CMP>

</conclude>

</proof>

</conclude>

</proof>

Figure 2.16: A proof by cases

2.8 Complex Theories and Inheritance

In OMDoc, we support the structured specification of theories; we build upon the technical
notion of a development graph [Hut99], since this supplies a simple set of primitives for struc-
tured specifications and also supports management of theory change. Furthermore, it is logically
equivalent to a large fragment of the emerging Casl standard [CoF98] for algebraic specification
(see [AHMS00]).

Not all definitions and axioms need to be explicitly stated in a theory; they can be inherited
from other theories, possibly transported by signature morphism. The inheritance information is
stated in an imports element.
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imports This element has a from attribute, which specifies the theory which exports the formulae.

For instance, given a theory of monoids using the symbols set, op, neut (and axiom elements
stating the associativity, closure, and neutral-element axioms of monoids), a theory of groups
can be given by the theory definition using import in Figure 2.8.

Furthermore, it is possible to hide symbols from the source theory by specifying them in
the hiding attribute. The intended meaning is that the underlying signature mapping is
defined (total) on all symbols in the source theory except on the hidden ones6.

<theory id="group">

<imports id="group.import" from="monoid" type="global"/>

<axiom><CMP> Every object in

<OMOBJ><OMS cd="monoid" name="set"/></OMOBJ> has an inverse.

</CMP></axiom>

</theory>

Figure 2.17: A theory of groups based on that of monoids

morphism The morphism is a recursively defined function (it is given as a set of recursive equa-
tions using the requation element, described above). It allows to carry out the import of
specifications modulo a certain renaming. With this, we can e.g. define a theory of rings
given as a tuples (R,+, 0,−, ∗, 1) by importing from a group (M, ◦, e, i) via the morphism
{M 7→ R, ◦ 7→ +, e 7→ 0, i 7→ −} and from a monoid (M, ◦, e) via the {M 7→ R∗, ◦ 7→ ∗, e 7→
1}, where R∗ is R without 0 (as defined in the theory of monoids). Figure 2.8 gives the
OMDoc representation of this exercise.

inclusion This element can be used to specify applicability conditions on the import construc-
tion. Consider for instance the situation given in Figures 2.8 and 2.8, where the theory of
lists of natural numbers is built up by importing from the theories of natural numbers and
lists (of arbitrary elements). The latter imports the element specification from the parameter
theory of elements, thus to make the actualization of lists to lists of natural numbers, all the
symbols and axioms of the parameter theory must be fulfilled by the natural numbers. For
instance if the parameter theory specifies an ordering relation on elements, this must also
be present in theory Nat, and have the same properties there. These requirements can be
specified in the inclusion element of OMDoc. Due to lack of space, we will not elaborate
this and refer the reader to [Hut99].

Figure 2.18: A Structured Specification of Lists

Finally, there are OMDoc elements that allow to augment the structure of the theory-graph.
We have already seen the possibility to define (parts of) theories by so-called theory morphism
specified in imports and include elements above. Following Hutter’s development graph [Hut99],
we can use the knowledge about theories to establish so-called inclusion morphisms that es-
tablish the source theory as included (modulo renaming by a morphism) in the target theory.
This information can be used to add further structure to the theory graph and help maintain the
knowledge base with respect to changes of individual theories.

An axiom-inclusion element contains a morphism (see section 2.8), and the attributes from
and to specify the source and target theories. For any axiom in the source theory there must be
an assertion in the target theory (whose FMP is just the image of the FMP of the axiom under the

6Of course, if we hide a sort symbol, we also have to hide all symbols using it (see [CoF98] for details)
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<theory id="Param">

<symbol id="Elem" type="sort"/>

<symbol id="ord"/>

<axiom ... ord is a partial order on Elem ... /axiom>

</theory>

<assertion id="geq-ord" theory="nat-thy">

<CMP><OMOBJ><OMS name="geq" cd="nat"/></OMOBJ> is a

partial order on <OMOBJ><OMS name="nat" cd="nat"/><OMOBJ>

</CMP>

<assertion>

<theory id="List">

<imports id="List.im" type="global" from="Param"/>

<symbol id="List-sort" type="sort"/>

<symbol id="cons"/><symbol id="nil"/>

<symbol id="ordered"/>

</theory>

<theory id="nat-list.thy">

<imports id="nat-list.im-nat"

type="global" from="nat-thy"/>

<imports id="nat-list.im-Element"

type="local" from="List">

<morphism id="elem-nat">

<requation>

<pattern><OMS cd="Param" name="Elem"/></pattern>

<value>

<OMOBJ><OMS cd="nat.thy" name="Nat"/></OMOBJ>

</value>

</requation>

</morphism>

</imports>

<inclusion for="elem-nat-incl"/>

</theory>

<axiom-inclusion id="elem-nat-incl"

from="nat.thy"

to="Param" by="ord-nat">

<morphism id="elem-nat-incl-morph"

base="elem-nat"/>

</axiom-inclusion>

Figure 2.19: A theory of Lists of Natural Numbers

morphism) with a proof. These are represented by an empty by element, which has the attributes
axiom, assertion, and proof with the obvious meanings.

A theory-inclusion is a global variant of axiom-inclusion that can be obtained as a path
of axiom-inclusions (or other theory-inclusion) which are specified in the by attribute.

2.9 Auxiliary Elements

In this section we will present OMDoc elements that are not strictly mathematical content, but
have useful functions mathematical documents or knowledge bases.

2.9.1 Exercises

Exercises are vital parts of mathematical textbooks. Mathematical exercises are often given as
questions or multiple-choice exercises. In OMDoc, we use the exercise element for this. The
Questions are represented in the CMP, the solution and a hint are (optionally) given using the
solution and hint element, which can contain a CMP or a FMP. A special case of this is the case,
where the questions contains an assertion whose proof is not displayed and left to the reader. In
this case, the solution contains a proof.

Multiple-choice exercises (see Figure 2.9.1) are represented by a list of mc elements. These
represent a single choice together with the answer to that choice. The verdict attribute specifies
the truth of the answer.

2.9.2 Non-Xml Data and Program Code in OMDoc

Sometimes mathematical services have to be able to communicate (e.g. to the MBase system
for storage) data in non-Xml syntax, or whose format is not sufficiently fixed to warrant for a
general Xml encoding. Examples of this are pieces of program code, like tactics of tactical theorem
provers, linguistic data of proof presentation system, etc. One characteristic of such data seems
to be that it is private to certain applications, but may be relevant to more than one user. For
this, OMDoc provides the private element, which contains a the usual CMPs and a data element
described below. It has the attributes

pto specifies the system to which this data is private.

pto-version its version, this may be necessary, if the data (format) changes with versions.

format/type the type of the data and the format the data is in, the meaning of these fields is
determined by the system itself.

requires specifies the identifiers of the elements that this data depends upon, this will often be
code elements.

theory allows to specify the mathematical theory (see section 2.5) that the data is associated
with.

The data element contains the data of a in a CDATA section (this is the Xml way of allowing
data that cannot be parsed by the Xml parser). If the content of this field is too large to store
directly in the OMDoc or often changes, then it can be substituted by a link, specified in the
xref attribute.

The code element is for embedding pieces of code into an OMDoc document. This element
has the same attributes as the private element, like it, it can contain CMP, and data elements.
Furthermore, it can contain documentation elements input, output and effect that specify the
behavior of the procedure defined by the code fragment.
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<theory id="ring">
<symbol id="ring.set"/>
<symbol id="ring.plus"/>
<symbol id="ring.times"/>
<symbol id="ring.zero"/>
<symbol id="ring.one"/>
<symbol id="ring.setstar"/>
<imports id="ring.add.import" from="group" type="global">

<morphism>
<requation>

<pattern><OMS cd="group" name="set"/></pattern>
<value><OMS cd="ring" name="ring.set"/></value>

</requation>
<requation>

<pattern><OMS cd="group" name="op"/></pattern>
<value><OMS cd="ring" name="ring.plus"/></value>

</requation>
<requation>

<pattern><OMS cd="group" name="neut"/></pattern>
<value><OMS cd="ring" name="ring.zero"/></value>

</requation>
</morphism>

</imports>
<imports id="ring.mult.import" from="monoid" type="global">

<morphism>
<requation>

<pattern><OMS cd="monoid" name="set"/></pattern>
<value><OMS cd="ring" name="ring.setstar"/></value>

</requation>
<requation>

<pattern><OMS cd="monoid" name="op"/></pattern>
<value><OMS cd="ring" name="ring.times"/></value>

</requation>
<requation>

<pattern><OMS cd="monoid" name="neut"/></pattern>
<value><OMS cd="ring" name="ring.one"/></value>

</requation>
</morphism>

</imports>
<definition id="Ring.setstar.def" for="ring.setstar">

<CMP> <OMOBJ><OMS cd="ring" name="ring.setstar"/></OMOBJ> is
<OMOBJ><OMS cd="ring" name="ring.set"/></OMOBJ> without
<OMOBJ><OMS cd="ring" name="ring.zero"/></OMOBJ>.

</CMP>
</definition>
<axiom id="Ring.distribution">

<CMP><OMOBJ><OMS cd="monoid" name="plus"></OMOBJ> distributes over
<OMOBJ><OMS cd="monoid" name="times"></OMOBJ>

</CMP>
</axiom>

</theory>

Figure 2.20: A theory of rings

2.9.3 Applets in OMDoc

omlet elements contain OMDoc specifications of applets (program code that can in some way
executed during document manipulation). omlets generalize the well-known applet concept in
two ways: The computational engine is not restricted to plug-ins, of the browser (current servlet
technology can be used and specified using code and omlet elements in OMDocs) and the program
code can be specified and distributed more easily. Making document-centered computation easier
to manage.

Like the HtML applet tag, the omlet element can be used to wrap any (set of) well-formed
element. It has the following attributes.

type This specifies the computation engine that should execute the code. Depending on the
application, this can be a programming language, such as javascript (js) or Oz, or a
process that is running (in our case the LΩUI or Ωmega services).

function The code that should be executed by the omlet is specified in the function attribute.
This points to an OMDoc code element that is somehow accessible (e.g. in the same
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Element Attributes D Content
Required Optional C

exercise id, for rsinfo + private*,symbol*,CMP*,FMP?,hint?,
(solution*|mc*)

hint id + private*,symbol*,CMP*,FMP?
solution id for + (private*,symbol*,CMP*,FMP?)|proof
mc id – symbol*,choice,hint?,answer
choice id + private*,symbol*,CMP*,FMP?
answer id,

verdict
+ private*,symbol*,CMP*,FMP?

Figure 2.21: The OMDoc Auxiliary Elements for Exercises

<exercise for="ida.c6s1p4.l1" id="ida.c6s1p4.mc1">

<CMP>What is the unit element of the semi-group Q
with operation a ∗ b = 3ab.

</CMP>

<mc><choice><FMP><OMOBJ><OMI>1</OMI></OMOBJ></FMP></choice>

<answer verdict="F"><CMP>No, 1 ∗ 1 = 3 and not 1</CMP></answer>

</mc>

<mc><choice><CMP>1/3</CMP></choice>

<answer verdict="T"></answer>

</mc>

<mc><choice><CMP>It has no unit.</CMP></choice>

<answer verdict="F"><CMP>No, try another answer</CMP></answer>

</mc>

</exercise>

Figure 2.22: An Exercise

OMDoc). This indirection allows us to reuse the machinery for storing code in OMDocs.
For a simple example see Figure 2.9.3.

argstr allows to specify an (optional) argument string for function, so that the program in the
can be kept general. A call to the LΩUI interface, would then have the form in Figure 2.9.3.
Here, the code in the code element sendtoloui (which we have not shown) would be Java
code that simply sends the argstr to LΩUI’s remote control port.

The expected behavior of the omlet can be implemented in the Xsl style sheet, that in the case
of e.g. translation to Mozilla will put the callmint code directly into the generated html.
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Element Attributes D Content
Required Optional C

omlet id argstr,
function

+ ANY

private id for, ,
theory,
type,
pto,
pto-version,
format,
requires,
classid,
codebase,
width,
height

+ CMP*,data

code id,
theory

for,
type,
pto,
pto-version,
format,
requires,
classid,
codebase,
width,
height

+ CMP*,input?,output?,effect?,data

input – CMP*
output – CMP*
effect – CMP*
data href – <![CDATA[...]]>
ignore type,

comment
ANY

Figure 2.23: The OMDoc Auxiliary Elements for non-Xml Data

<code id="callmint">

<input>None</input>

<output>The result</output>

<effect>None</input>

<data><![CDATA[... the call-mint code goes here ...]]></data>

</code>

<derive id="monp_1">

<CMP> <omlet type="js" function="callMint">Intros.</omlet></CMP>

<method><OMS name="Intros" cd="COQ"/></method>

</derive>

Figure 2.24: An Omlet
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<CMP> Let’s prove it

<omlet id="bla type="java" function="sendtoloui"

argstr="load(problem=’monoid_uniq)">

interactively

</omlet>

</CMP>

Figure 2.25: An omlet calling an external process
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Chapter 3

Processing OMDoc

Before we address the issues pertaining to processing OMDoc documents, we have to be more
explicit about the intended meaning of OMDoc documents. In the last section, we have specified
the structure of text- and math elements, and we have motivated this by explaining their intended
meaning. Now, let us explicitly state, what does not have meaning in OMDoc documents,

Whitespace (including line-feeds) has no meaning, and can therefore added and deleted without
effecting the semantics.

Xml comments (i.e. anything between <!-- and -->) are not considered either. Suitable OM-

Doc text elements should be used for any comments that are relevant to the reader of an
OMDoc document.

the ignore element is a variant of comments provided by OMDoc. Unlike the Xml comments
it is read by the Xml parsers and can survive the transformation by an Xsl style sheet (this
is also their reason for existence.)

CDATA sections are an Xml device for including material in the document that would not pass
the Xml parser, since it e.g. contains angle brackets or elements that are unbalanced or not
defined in the DTD. Since for the Xml parser, the escaped and CDATA form are equiv-
alent, for instance <[CDATA[a<b<sup>3</sup>]] and a&lt;b&lt;sup&gt;3&lt;/sup&gt;
are equivalent, you should not rely on any particular form.

most OpenMath attributions In contrast to the text elements, the formal mathematical prop-
erties contain logical formulae that are specified only for content markup. The background
for this is that the semantic status of OpenMath attributions (via the OMATTR element) is
somewhat unclear. The OpenMath standard states that attributions can, but need not be
considered.

Consequently, OMDoc compliant applications should preserve OpenMath attributions in
OpenMath objects embedded in OMDoc text elements, so that they can be transmitted to
other OpenMath applications. In particular, presentation attributes should be preserved.

Applications may disregard all OpenMath attributions in OpenMath objects in FMP ele-
ments, that are not meaningful in the logical system specified in the logic attribute of the
FMP element. In particular, presentation attributes should be disregarded, since they are
irrelevant for the logical content.

3.1 Transforming OMDocs by Xsl Style Sheets

In the introduction we have stated that one of the design intentions behind OMDoc is to separate
content from presentation, and leave the latter to the user. In this section, we will briefly touch
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upon presentation issues. The technical side of this is simple: OMDoc documents are regular Xml

documents that can be processed by Xsl [Dea99] style sheet to produce other representations
from OMDocs. These style sheets can be used to several tasks in maintaining OMDoc, such as for
instance extracting stand-alone catalogs from OMDocs (see standalone-catalogue.xsl), con-
verting other Xml-based input formats into OMDoc (e.g. cd2omdoc.xsl for converting Open-

Math content dictionaries into OMDoc format), or – in the future – even migrating between
different versions of OMDoc.

Note that the material discussed in this section is quite preliminary and under development,
since the OMDoc version 1.0 format has just been released. It should be considered as proof-
of-concept, development of production versions has just begun. For an up-to-date account, see
http://www.mathweb.org/omdoc under the Xsl and tools headings.

Another related task is to convert OMDoc to the input languages of mathematical software
systems like theorem provers or computer algebra systems (not all of these systems) directly
understand OpenMath or OMDoc yet). Usually, the task of writing a style sheet for such a
conversion is a relatively simple task. At the moment we have style sheets the Ωmega, InKa,
TPS and λClam systems (they can be found at http://www.mathweb.org/omdoc/xsl). The
other direction of the translation needed for communication is usually much more complicated,
since it involves parsing the often idiosyncratic output of these systems. A better way (which we
have taken with the systems above) is to write specialized output generators for these systems
that directly generate OMDoc representations. This is usually a rather simple thing to do, if the
systems have internal data structures that provide all the information required1 in OMDoc.

Finally, there is the task of transforming OMDoc into human-readable formats, i.e. to re-
generate all the (implicit) notation conventions that we had talked about in the introduction. We
speak of of OMDoc presentation for this task.

Due to the complex nature of the task, only part of it can actually be performed by Xsl style
sheets. For instance, subtasks like reasoning about the prior knowledge of the user, or her experi-
ence with certain proof techniques is clearly better left to specialized applications. Our processing
model is the following: presenting an OMDoc is a two-phase process. The first one is indepen-
dent of the final output format (e.g. HtML, MathMl, or LATEX) and produces another OMDoc

specialized to the respective user or audience taking into account prior knowledge, structural pref-
erences, bandwidth and time constraints, etc. This is followed by a formatting process that can
be done by Xsl style sheets that transforms the resulting specialized OMDoc into the respective
output format, taking into account notational- and layout preferences of the audience. We will
only discuss the second one and refer the reader for ideas about the first process to systems like
P.rex [Fie99].

At the moment, we have Xsl style sheets to convert OMDoc to HtML, and LATEX. They
consist of two parts: a generic part that implements the presentation decision for the OMDoc (and
OpenMath) elements, and a theory-specific part for the presentation of OpenMath symbols.
The first part is carried out by the style sheets omdoc2html.xsl for HtML and omdoc2tex.xsl
for LATEX. They share a large common code base omdoc2share.xsl, basically the first two only
redefine some format-specific things. They also share the internationalization part, which uses
locale.xml as a keyword table. This file contains all the keywords necessary for presenting the
OMDoc elements discussed so far, e.g. “Lemma” and “Lemme” for <assertion type="lemma">
in English and French. In order to obtain the presentation in your language, set the language
parameter to the appropriate ISO 639 two-letter country codes (en =̂ English, de =̂ German,
fr =̂ French, nl =̂ Dutch. . . ) when invoking the style sheet. Of course, mathematical texts
elements (see section 2.4) in the OMDoc also have to exist in translated form, in order to get a
fully localized version of the OMDoc.

Since the presentation of OpenMath symbols cannot be deduced from general principles it is
specified in the OMDoc that introduces them. For a given OMDoc (say usesall.omdoc) and a

1It is sometimes a problem with these systems that they only store the name of a symbol (logical constant)
and not its home theory. Sometimes it is also a problem that the internal records of proofs in theorem provers are
optimized towards speed and not towards expressivity, so that some of the information that had been discarded
has to be recomputed for OMDoc output.

31



output format (say html), we use a specialized style sheet expres.xsl to generate a style sheet
usesall-html.xsl that contains specialized Xsl templates for the OpenMath symbols used
in usesall.omdoc:expres.xsl looks up their defining OMDocs (using the catalogue mechanism
described in section 2.2) and derives the templates from the presentation elements there (see the
next section). Of course, it also takes into account the presentation elements in usesall.omdoc
itself. The result is a standalone Xsl style-sheet usesall-html.omdoc that can be used to present
usesall.omdoc in HtML.

3.2 Specifying the Presentation of OpenMath Symbols

Element Attributes D Content
Required Optional C

presentation id, for fixity,
parent,
lbrack,
rbrack,
separator,
bracket-style

– use*

use format lbrack,
rbrack,
separator,
crossref-symbol

– ANY

Figure 3.1: The OMDoc Auxiliary Elements for Presenation Information

The mathematical concepts and symbols introduced in an OMDoc document (symbol el-
ements) often carry typographic conventions that cannot be determined by general principles
alone. Therefore, they need to be specified in the document itself, so that typographically good
representations can be generated from this (and subsequent) documents. Since we use Xsl style
sheets for this task, we want to product Xsl templates like the shown in Figure 3.2. This style

<xsl:template match="OMA[OMS[position()=1 and

@name=’monoid’ and

@cd=’ida.monoid’]]">

(<xsl:apply-templates select="*[2]"/>,

<xsl:apply-templates select="*[3]"/>,

<xsl:apply-templates select="*[4]"/>)\in{\bf MON}

</xsl:template>

Figure 3.2: An Xsl template for the symbol in Figure 2.5

sheet information will cause an OpenMath expression

<OMA>

<OMS cd="ida" name="monoid"/><OMV name="M"><OMV name="o"><OMV name="e">

</OMA>

to be rendered as (M,o, e) ∈ MON in a TEX or LATEX document derived from ida.xml via a
suitable Xsl style sheet.

The simplest (and least effective) way to introduce style sheet information in OMDocs would
be to literally include this template declaration (using an Xml CDATA section) in a presentation
in the OMDoc where the symbol is defined. The meta-stylesheet expres.xsl would then simply
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have to copy them into the into usesall-html.xsl. We could even combine templates for more
that one format in one presentation element.

Obviously, all of these templates share a great deal of structure, moreover, hand-coding Xsl-
templates is a tedious and error-prone process, therefore OMDoc goes another way and supplies
a set of abbreviations that are sufficient for most presentation applications. The user only needs
to specify the relevant information in the presentation element and expres.xsl generates the
needed Xsl templates from that.

The OMDoc presentation element uses its attributes to specify the information that is
common to all output formats, such as whether a symbol is written infix, and the use element
for information that is format-specific. Therefore use carries a format attribute that specifies for
which output format the presentation is intended; we use the TeX for TEX and LATEX, mathml
for MathMl, html for HtML, mathematica for Mathematica notebooks. See http://www.
mathweb.org/omdoc/xsl.html for available formats. Some of the attributes of the presentation
element can also occur in the use element, the meaning of this is that the use attributes overwrite
the presentation-attributes. Let us now come to the attributes themselves.

The presentation element has the attributes

mode This optional attribute is not used at the moment, it is provided to specify the mode at-
tributes in the Xsl templates. This allows to specify different notational conventions for
symbols.

fixity This optional attribute can be one of the keywords prefix (the default), infix, postfix,
and assoc. If it is given, then it determines the placement of the function (symbol). For
prefix it is placed in front of the arguments, (this is the generic mathematical function
notation). For postfix the function is put behind the arguments, e.g. for derivatives: f ′.
The case infix is reserved for binary operators, where the function is put between the two
arguments. Finally, assoc is used for associative operators like addition, it puts the function
symbol between any two arguments.
Note that infix is almost a special case of assoc, but since it is reserved for binary operators,
it disregards any arguments but the first two.

bracket-style The fixity information can be combined with the bracketing style, which can be
one of lisp (LISP-style brackets) and math (generic mathematical function notation). We
have the following combinations:

attribute combination yields
prefix and lisp (f 1 2 3)
postfix and lisp (1 2 3 f)
prefix and math f(1, 2, 3)
postfix and math (1, 2, 3)f

The default value of this attribute is math.

parent This attribute specifies parent element, in which the symbol plays the head role (it can
be one of OMA, OMBIND, and OMATTR). In the examples above, we have assumed the head to
be an OMA, since we treated function application. It can also be an OMBIND, as in the case of
a quantifier in Figure 3.2.

lbrack and rbrack These two attributes can be used to specify the brackets to be used in pre-
sentation of the complex expression. They will only be used, if the bracket-hint (see
footnote 4 on page 4) attribute of the OpenMath expression in the parent is set to on
(which is the default).

separator This specifies the separator to be used for separating the arguments. The default
for this is the comma to give the usual mathematical function notation together with the
default bracket-style=math, in the table above, we have substituted it with separator="
" for bracket-style=lisp.
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larg-group and rarg-group These two attributes, which only appear in the use element can be
used to specify the grouping constructs for driving the tokenizer of the output formatter.

Take for instance the presentation for sums in TeX. We want to use the \sum macro for this.
\sum takes three arguments: e.g. $\sum^n{i=1}g(i)$. To be able to use this, we need to
have a way to generate the TeX grouping characters “{” and “}” in the second argument.

crossref-symbol This attribute is also private to the use element. It specifies which parts of
the symbol presentation elements to attach the cross-references to: In some formats like
HtML, and recently also in LATEX (thanks to the hyperref.sty package), there it may
be good to attach a hyperlink from the symbol name to its definition. Some symbols are
constructed by using the lbrack and rbrack, or the separator attributes as part of the
symbol presentation. For instance the notation for (a, b) pairs, there the binary function
symbol for pairing is really composed of three parts “(”, “)”, and “,”, which should be cross-
referenced. The attribute values no, yes, brackets, separator, lbrack, rbrack all, can
be used to specify this behavior. no, means cross-referencing is forbidden, yes – which is
the default value – means cross-referencing only on the print-form of the function symbol,
lbrack, rbrack, brackets, only on the (left, right, both) brackets, separator, on the
separator, and finally all on all presentation elements (the brackets, the separator, and the
print-form of the symbol).

precedence is reserved to specify the operator precedence. This will be used in future versions
of he presentation style sheets to eliminate brackets according to precedence. For details see
future versions of this report or http://www.mathweb.org/omdoc/xsl.html.

<presenation for="forall" parent="OMBIND"

separator="."> <OMBIND>

<use format="TeX">\forall</use> <OMS cd="quant1" name="forall"/>

<use format="html">&#8704;</use> <OMBVAR><OMV name="X"/></OMBAR>

</use> <OMS cd="logic1" name="true"/>

</presentation> </OMBIND>

using the left presentation element on the right OpenMath expression yields
LATEX: \href{http://www.mathweb.org/omdoc/ocd/logic1.ps#true}{\forall}X.

\href{http://www.mathweb.org/omdoc/ocd/logic1.ps#true}{{\sf true}}

HtML: <a href="http://www.mathweb.org/omdoc/ocd/logic1.html#forall">&#8704;</a> X.

<a href="http://www.mathweb.org/omdoc/ocd/logic1.html#true"><b>true</b></a>

which in turn is formatted to ∀X.true, only that (given a suitable output device like
a browser or a recent version of dvips)

Figure 3.3: presentation with parent=OMBIND

Note that there can be more than one use element per presentation element allowing to reuse the
attributes in the presentation element. This is just a notational convenience that is equivalent
to copying the presentation element and using single use elements in them.
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Chapter 4

Creating OMDoc representations
from LATEX

In this chapter we describe the LATEX style latex2omdoc.sty that allows to create OpenMath

objects and OMDoc representations from inside LATEX documents. This is at the moment the
only way to author OMDoc other than directly typing it.

This LATEX-based approach is particularly useful when migrating existing mathematical texts
from LATEX representation, e.g. in papers to OMDoc, or as a maintenance tool for authors that
are more efficient/used to generating LATEX than Xml.

One of the primary advantages of using LATEX to generate OMDoc documents over directly
writing them in a text editor is that LATEX allows to define macros (see 4.2). Thus one can reuse
frequently recurring patterns in OpenMath objects and OMDoc structures instead of retyping
them every time.

Moreover the latex2omdoc.sty style file can be used as a migration tool from LATEX texts to
OMDoc documents. For instance it is possible to transport much of the structure that is present
in a well-structured mathematical LATEX document (definition, theorem, proof) into OMDoc

simply by redefining the LATEX macros used structuring the original document (see section 4.4).
In the next section, we will present an abbreviation mode for OpenMath objects that allows

to specify these by single characters. Then (section 4.3), we will use this to discuss the facilities
for creating OMDoc documents. Finally, in appendix D, we will work an example text that shows
most of facilities in action.

4.1 OpenMath Objects

In this section, we will first briefly review the possible types of OpenMath objects and show the
two LATEX representations provided by the latex2omdoc style (full LATEX mode and abbreviation
mode; see Figure 4.1).

Both modes write the generated OpenMath representations to an auxiliary file that can be
specified by the user in the omoutput environment. \begin{omoutput}[test.xml] will prepare
a file test.xml for output and direct all OpenMath output to it. The default for the optional
argument is the name of the top-level LATEX file with extension xml, \end{omoutput} will close the
file, so that it can for instance directly be inserted into the LATEX itself, say with a \verbatiminput
statement from the moreverb.sty style (see also the source of this document in section 4.4). Note
that the second call to an omoutput environment with the same file name will overwrite a first
one.

The omoutput environment has a variant OMoutput, which wraps the output with an Xml

declaration, and declaration of the document type definition so that the result can be used as a
standalone Xml file that can e.g. be validated. For this it is necessary to specify the specify the
URL of the Xml document type definition (DTD) with the \dtdurl command, the default setting
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is omdoc.dtd, i.e. assuming that the dtd is in the same directory as the top-level LATEX file. For
instance \dtdurl{http://www.mathweb.org/dtd/omdoc.dtd} will use the current distribution
version.

Note that omoutput and OMoutput environments can be nested (both individually and among
each other up to 15 levels), so that it is possible to generate more than one file at a time. Since
the DTD will probably not vary between these, it is probably good to specify \dtdurl in the
document header.

The abbreviation mode can be turned on by the environment given by the bracketings \< and
\> or \( and \). The latter differs from the former in that it additionally wraps an <OMDOC>
element bracketing in the output (this is often a useful abbreviation).

Figure 4.1 shows an example of a λ-abstraction λXY.X−Y and Figure 4.1 an attribuition of
the variable X with the type (ι→ o) and the color green.

category Xml representation full LATEX abbreviation
symbol <OMS cd="CD" name="N"/> \oms{CD}{N} #CD:N:
variable <OMV name="N"/> \omv{N} $N:

application
<OMA>
<OM*>...<OM*>

</OMA>

\begin{oma}
<OM*>...<OM*>

\end{oma}

(<OM*>
...<OM*>)

binding
structure

<OMBIND>

<OMS.../>

<OMBVAR>

<OMV*>...<OMV*>

</OMBVAR>

<OM*>

</OMBIND>

\begin{ombind}

\oms{a}{b}

\begin{ombvar}

\omv{x}...\omv{z}

\end{ombvar}

<OM*>

\end{ombind}

{#a:b:
$x:$z:
.<OM*>}

attribution

<OMATTR>

<OMATP>

<OMS*><OM*>...

<OMS*><OM*>

</OMATP>

<OM*>

</OMATTR>

\begin{omattr}

\begin{omatp}

\oms{a}{b}<OM*>

\oms{c}{d}<OM*>

\end{omatp}

<OM*>

\end{omattr}

[#a:b:<OM*>,

#c:d:<OM*>

|<OM*>]

<OM*> stands for an arbitrary OpenMath object and <OMV*> stands for a
variable or an attribuited variable.

Figure 4.1: LATEX representations of OpenMath objects

Note that these macros do not check for validity of the Xml output, this is left to an Xml

validator. Moreover, little work has gone into generating good error messages. In particular, some
of the macros in the abbreviated mode make assumptions about the OpenMath-well-formedness;
most notably, the start tag { for an OpenMath binding object only works, iff the next object is
a valid OpenMath symbol, i.e. of the form #cd:name:.

latex2omdoc.sty also supports OMDoc’s id/xref extension to OpenMath objects (see
footnote 4). In short, this allows to re-use OpenMath objects by reference. For instance, the
left hand side OMDoc element in Figure 4.1 can be realized by the expression below it and has
the same meaning as the OpenMath object on the right hand side. latex2omdoc.sty provides
two primitives for this: ~ for adding id attributes to the next element. This takes one token as
argument, so if the attribute needs more than one letter, it has to be grouped by < and >. ^ for
adding xref attributes to the next element, the same token conventions as above apply.
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\begin{omobj}

\begin{ombind}

\omsref{lambda}

\begin{ombvar}

\omv{X}

\omv{Y}

\end{ombvar}

\begin{oma}

\omsref{exp}

\omv{X}

\begin{oma}

\omsref{inv}

\omv{Y}

\end{oma}

\end{oma}

\end{ombind}

\end{omobj}

<OMOBJ>

<OMBIND>

<OMS cd="ecc" name="lambda"/>

<OMBVAR>

<OMV name="X"/>

<OMV name="Y"/>

</OMBVAR>

<OMA>

<OMS cd="arith1" name="exp"/>

<OMV name="X"/>

<OMA>

<OMS cd="arith1" name="unary-minus"/>

<OMV name="Y"/>

</OMA>

</OMA>

</OMBIND>

</OMOBJ>

λXY.X−Y \({#ecc:lambda:$X:(#arith1:unary-minus:$Y:)}\)

Figure 4.2: The representations of the functions λXY.X−Y

\begin{omattr}
\begin{omatp}
\oms{ecc}{type}
\begin{oma}
\oms{mltt}{funtype}
\oms{typeind}
\oms{typebool}

\end{oma}
\oms{colors}{colorattr}
\oms{colors}{green}

\end{omatp}
\end{omattr}

<OMATTR>

<OMATP>

<OMS cd="ecc" name="type"/>

<OMA>

<OMS cd="mltt" name="funtype"/>

<OMS cd="types" name="individuals"/>

<OMS cd="types" name="booleans"/>

</OMA>

<OMS cd="colors" name="colorattr"/>

<OMS cd="colors" name="green"/>

</OMATP>

<OMV name="X"/>

</OMATTR>

Xgreen
ι→o

\<[#ecc:type:,
(#mltt:funtype:#types:ind:#types:bool:);

#colors:colorattr:,#colors:green:
|$X:]\>

Figure 4.3: An OpenMath attribuition

<OMA> <OMA>

<OMV name="f"/> <OMV name="f"/>

<OMA id="a"> <OMA>

<OMV name="g"/> <OMV name="g"/>

<OMV name="x" id="aa"/> <OMV name="x"/>

<OMV xref="2"/> <OMV name="x"/>

</OMA> </OMA>

<OMA xref="first"/> <OMA>

</OMA> <OMV name="g"/>

<OMV name="x"/>

<OMV name="x"/>

\(($f:~a($g:~<aa>$x:^<aa>$:^a())\) </OMA>

</OMA>

Figure 4.4: Reusing OpenMath objects by reference
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4.2 Defining Macros

One of the primary advantages of using LATEX to generate OMDoc documents over directly
writing them in a text editor is that LATEX allows to define macros. They can be simply be defined
using LATEX’s \(re)newcommand, \(re)newenvironment facilities. Currently, latex2omdoc.sty
only allows to use the full-form macros in definitions. For instance, we can use the definitions to
simplify the attribuition example above to \<\oftypeiogreen<$X:>\>.

\newcommand{\typeio}% the type of unary predicates on individuals

{\begin{oma}\oms{mltt}{funtype}\oms{types}{individuals}\oms{types}{booleans}\end{oma}}

\newcommand{\colgreen}% the attribute value pair for the color green

{\oms{colors}{colorattr}\oms{colors}{green}}

\newcommand{oftypeiogreen}[1]% attribuition stating that the content is of \typeio

{\begin{omattr}\begin{omatp}\oms{ecc}{type}\typio\colgreen\end{omatp}#1\end{omattr}}

4.3 OMDoc Elements

In Figure 4.3, we have given an overview over the macros that write OMDoc material for the Xml

file. Since these generate OMDoc output, they must be enclosed in an omdoc environment. This
is a variant of the OMoutput environment that also wraps the content into an <omdoc> element
that is the Xml top-level element for OMDoc documents.

Note that as in the case of the OpenMath macros described in section 4.1, they do not check
for validity of the Xml output, this is left to an Xml validator.

4.4 Useful Redefinitions of commonly used Macros

The latex2omdoc.sty style file can be used as a migration tool from LATEX texts to OMDoc

documents. In this section, we will present a set of useful macros that can be used transport much
of the structure that is present in a well-structured mathematical LATEX document (definition,
theorem, proof) into OMDoc.

For instance there are the environments theorem, lemma, corollay, conjecture, definition,
remark that allow to use the file migrationex.tex, in Figure 4.4 to generate the OMDoc file
migration.xml in Figure 4.4, generating the DVI output in Figure 4.4 in the process. As we
can see for migrating the a file with LATEX markup like the first part (above the comment) of
migrationex.tex in Figure 4.4, can be migrated by using the corresponding migration macros
provided by latex2omdoc.sty, and adding the omverb environment for all parts that should go
to the Xml file verbatim.

Of course we have to specify the language used in the texts in the document using a \ommiglanguage
statement and the OMDoc theory by \ommigtheory. These two details go into the Xml file and
cannot be deduced by latex2omdoc.sty itself.

4.5 Wishlist

This style file is far from finished, so please help it, if you can. The wishlist for latex2omdoc.sty
includes the following items

1. Indentation in the Xml file, to make the output more readable.

2. a definition mechanism that uses the abbreviated form for OpenMath objects.

3. better error messages, and some validity warnings.

4. extend the abbreviated mode by parser tags for <OMSTR>, <OMI>, <OMF>,. . .

38



macro Type Arguments Env
omdoc root label +
omgroup struc label, type +
omtext text label +
omCMP text [lang], label +
omrsrelation text type, for, from +
omassertion math label, theory, type +
omFMP math +
omassumption math label +
omconclusion math label +
omproof math label, for, theory +
omexample math label, for +
omhypothesis proof label +
omderive proof label +
omconclude proof label +
ommethod proof theory, name -
omparameter proof —- +
ompremise proof refersto -
omextpremise proof href -
omsymbol theory label +
omstructure theory label +
omfeature theory label +
omcommonname theory [lang] +
omdefinition theory label, for +
omexercise aux label, for +
omsolution aux label +
omhint aux label +
ommcgroup aux —- +
ommc aux label +
omchoice aux —- +
omanswer aux verdict +
omomlet aux href +
omref aux tolabel -

Figure 4.5: OMDoc elements

5. an Xsl style sheet to generate latex2omdoc input from OMDoc representations: a first
version exists at http://www.mathweb.org/omdoc/xsl/omdoc2latex.xsl, but it is largely
untried.
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\newtheorem{thm}{Theorem}[section]
\newtheorem{defn}{Definition}[thm]
\begin{defn}[Monoid]

A monoid is a semigroup with a unit element
\end{defn}
\begin{thm}[Hauptsatz]

A monoid has at most one unit.
\end{thm}

%%%%%%% migrates to
%%%%%%% (we leave the stuff up there to see the old version in the DVI)

\begin{omdocout}[migrationex.xml]
\ommiglanguage{eng}
\begin{ommetadata}
\dctitle{Monoids migrated from LaTeX}
\end{ommetadata}

\begin{omtheory}{monoids}
\ommigtheory{monoids}
\begin{definition}[Monoid]

\begin{omverb}
A monoid is a semigroup with a unit element

\end{omverb}
\end{definition}
\end{omtheory}

\begin{remark}[Hauptsatz]{monoids}
\begin{omverb}

A monoid has at most one unit.
\end{omverb}

\end{remark}

\begin{omassertion}{sin}{trig}{theorem}
\begin{omFMP}

\mathematica{sin[1+1] == 2}
\end{omFMP}

\end{omassertion}

\end{omdocout}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "omdoc"
%%% End:

Figure 4.6: The file migrationex.tex

Definition 4.4.0.1 (Monoid) A monoid is a semigroup with a unit element

Theorem 4.4.1 (Hauptsatz) A monoid has at most one unit.

OMDoc(1): monoids.
OMDoc(2): Monoid.sym.
OMDoc(3): 1-Monoid. 1-Monoid-cmp
OMDoc(4): 2-Hauptsatz. 2-Hauptsatz-cmp
OMDoc(5): sin. Mathematicasin[1+1] == 2

Figure 4.7: The DVI output of migrationex.tex
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<?xml version="1.0"?>
<!DOCTYPE omdoc SYSTEM "http://www.mathweb.org/omdoc/dtd/omdoc.dtd" []>

<!-- generated from omdoc.tex, do not edit -->

<omdoc id="top">

<metadata>
<dc:Title xml:lang="en">
Monoids migrated from LaTeX
</dc:Title>

</metadata>

<theory id="monoids">
<symbol id="Monoid.sym">
<commonname xml:lang="eng">Monoid</commonname>
</symbol>

<definition id="1-{Monoid}" for="Monoid-{sym}">
<metadata>
<dc:Title xml:lang="eng">
Monoid
</dc:Title>

</metadata>

<CMP xml:lang="eng" format="omtext">
A monoid is a semigroup with a unit element

</CMP>
</definition>

</theory>

<omtext id="2-{Hauptsatz}">
<metadata>
<dc:Title xml:lang="eng">
Hauptsatz
</dc:Title>

</metadata>

<rsrelation type="elaboration" for="monoids" />
<CMP xml:lang="eng" format="omtext">

A monoid has at most one unit.

</CMP>
</omtext>

<assertion id="sin" theory="trig" type="theorem">
<FMP>
</FMP>

</assertion>

</omdoc>

Figure 4.8: The file migrationex.xml generated form migrationex.tex
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Chapter 5

Conclusion

We have proposed an extension to the OpenMath standard that allows to represent the semantics
and structure various kinds of mathematical documents, including articles, textbooks, interactive
books, courses. We have motivated and described the language and presented an Xml document
type definition for it.

We are currently testing this in the development of a user-adaptive interactive book including
proof explanation based on IDA [CCS99] in close collaboration with the authors. This case study
unites several of the application areas discussed in the introduction. The re-representation of
IDA in the OMDoc format makes it possible to machine-understand the structure of the docu-
ment, read it into the MBase [FK00, KF00] knowledge base system without loss of information,
preserving the structure, and generate personalized sub-documents or linearizations of the struc-
tured data based on a simple user model. Furthermore, the OMDoc representation supports the
formalization of (parts of) the mathematical knowledge in IDA and makes it accessible to the
Ωmega mathematical assistant system [BCF+97], which can prove some of the problems either
fully automatically (by proof planning) or in interaction with the authors. This newly developed
formal data (it is not present in IDA now) will enable the reader to read and experiment with the
proofs behind the mathematical theory, much as she can in the present version with the integrated
computer algebra system GAP [S+95]. Finally, OMDoc will serve as the input format for the
Lima system (see [Bau99]), an experimental natural language understanding system specialized
to mathematical texts (this can be used to develop formalization in FMPs from the text in the
respective CMPs).

In the context of this project, we have developed first authoring tools for OMDoc that
try to simplify generating OMDoc documents for the working mathematician. There is a simple
OMDoc mode for emacs, and a LATEX style [Koh00] that can be used to generate OMDoc repre-
sentations from LATEX sources and thus help migrate existing mathematical documents. A second
step will be to integrate the LATEX to OpenMath conversion tools. Michel Vollebregt has built a
program that traverses an OMDoc and substitutes various representations for formulae (includ-
ing the Mathematica, GAP, and Maple representations) with the corresponding OpenMath

representations.
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Appendix A

Quick-Reference Table to the
OMDoc Elements

We give a quick-reference table for the OMDoc elements

Element Type Attributes D Content

Required Optional C

omdoc general id type,

catalogue

+ OMDoc element

catalogue general – loc*

loc general theory omdoc, cd – EMPTY

omgroup general + OMDoc element

ref general xref,

theory,

name kind

– ANY

omtext general id rsrelation + CMP+,FMP?

CMP general type,

xml:lang

– ANY

FMP math – assumption*,conclusion)|OMOBJ

assertion math id type,

theory

+ private*,symbol*,CMP*,FMP?

assumption math id + CMP*,OMOBJ?

concluson math id + CMP*,OMOBJ?

example math id type,

assertion,

proof

+ CMP|OMOBJ

alternative-def math id, for,

theory,

entailed-by,

entails,

entailed-by-thm,

entails-thm

type + CMP*,(FMP|requation*|OMOBJ)

proof proof id, for,

theory

+ symbol*,CMP*,

(hypothesis|derive|metacomment)*,

conclude

proofobject proof id, for,

theory

+ CMP*,OMOBJ

metacomment proof id – CMP*

hypothesis proof id – symbol*,CMP*,FMP?

derive proof id – CMP*,FMP?,method?,premise*,

(proof|proofobject)?
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conclude proof id – CMP*,method?,premise*,

(proof|proofobject)?

method proof – (ref|OMSTR),parameter*

parameter proof – OMOBJ

premise proof xref – EMPTY

theory theory id + commonname*,CMP*,most below

symbol theory id type,

scope

+ CMP*,(commonname|type|selector)*

commonname theory xml:lang – ANY

signature theory id, for,

system

–

type theory system – OMOBJ

axiom theory id + private*,symbol*,CMP*,FMP?

definition theory id, for type,

just-by

+ CMP*,(FMP+|requation+|OMOBJ)?

requation theory – pattern, value

pattern theory – OMA|OMS

value theory – OpenMath element

imports theory id, from type,

hiding

– CMP*,morphism?

morphism theory id base – requation*

inclusion theory for –

adt theory id type + CMP*,commonname*,sortdef+

sortdef theory id kind,

scope

– commonname*,(symbol|insort)*

constructor theory id type,

scope

+ commonname*,argument*

argument theory sort + selector?

insort theory for –

selector theory id type,

scope,

kind

– commonname*

theory-inclusion theory id, from,

to, by

timestamp + (morphism,decomposition?)

axiom-inclusion theory id, from,

to

timestamp + morphism?, (path-just|assertion-just))

assertion-just theory ids timestamp – EMPTY

decomposition theory links timestamp – EMPTY

path-just theory local,

globals

timestamp – EMPTY

exercise aux id, for rsinfo + private*,symbol*,CMP*,FMP?,hint?,

(solution*|mc*)

hint aux id + private*,symbol*,CMP*,FMP?

solution aux id for + (private*,symbol*,CMP*,FMP?)|proof

mc aux id – symbol*,choice,hint?,answer

choice aux id + private*,symbol*,CMP*,FMP?

answer aux id,

verdict

+ private*,symbol*,CMP*,FMP?

omlet aux id argstr,

function

+ ANY
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private aux id for, ,

theory,

type, pto,

pto-version,

format,

requires,

classid,

codebase,

width,

height

+ CMP*,data

code aux id,

theory

for,

type, pto,

pto-version,

format,

requires,

classid,

codebase,

width,

height

+ CMP*,input?,output?,effect?,data

input aux – CMP*

output aux – CMP*

effect aux – CMP*

data aux href – <![CDATA[...]]>

ignore aux type,

comment

ANY

presentation aux id, for fixity,

parent,

lbrack,

rbrack,

separator,

bracket-style

– use*

use aux format lbrack,

rbrack,

separator,

crossref-symbol

– ANY

metadata meta – (element)*

Title meta xml:lang – ANY

Contributor meta role – ANY

Creator meta role – ANY

Subject meta – ANY

Description meta – ANY

Publisher meta – ANY

Date meta action – ANY

Type meta – ANY

Format meta – ANY

Identifier meta scheme – ANY

Source meta – ANY

Lanugae meta – ANY

Relation meta – ANY

Coverage meta – ANY

Rights meta – ANY

extradata meta – ANY

and the OMDoc attributes.

Attribute Description
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id associates a unique identifier to an element, which can thus be referenced by
an for attribute.

for can be used to reference an element by its unique identifier given in its id
attribute.

logic specifies the logical system used to encode the property in an FMP.
system specifies the type system used in the signature element
from, to only appear in the linkage1 element, they specify the elements between whom

the linkage text mediates.
type the type of an element. The value of this attribute is largely unspecified, its

interpretation depends on the application.
xml:lang the language the text in the element is expressed in. This must be a 1766-

compliant specification of the primary language of the content.
xref a uniform resource locator (URL).
verdict only appears in the answer element, it specifies the truth or falsity of the

answer. This can be used e.g. by a grading application.

1This is not right anymore
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Appendix B

Dublin Core Metadata

In the following we will describe individual Dublin Core metadata elements.

Title The title of the publication. Although an OMDoc document must include at least one
instance of this element type, multiple instances are permitted. Any reading system that
displays title metadata to the user should either use the first Title only, or all Title
elements.

Creator A primary creator or author of the publication. Additional contributors whose contri-
butions are secondary to those listed in Creator elements should be named in Contributor
elements. Publication with multiple co-authors should provide multiple Creator elements,
each containing one author. The order of Creator elements is presumed to define the order
in which the creators’ names should be presented by the reading system. This specification
recommends that the content of the Creator elements hold the text for a single name as
it would be presented to the user. The Creator elements has the optional role attribute,
which can take the values defined in appendix B.1.

Subject Multiple instances of the Subject element are supported, each including an arbitrary
phrase or keyword.

Description Plain text describing the publication’s content.

Publisher The publisher as defined in RFC2413.

Contributor A party whose contribution to the publication is secondary to those named in
Creator elements. Other than significance of contribution, the semantic of this element
are identical to those of Creator.

Date Date of publication, in the format defined by “Date and Time Formats” at http://www.w3.
org/TR/NOTE-datetime and by ISO 8601 on which it is based. In particular, dates without
times are represented in the form YYYY[-MM[-DD]]: a mandatory 4-digit year, an optional
2-digit month, and if the month is given, an optional 2-digit day of month.

Type Dublin Core provides examples of resource types “such as home page, novel, poem, working
paper, technical report, essay, dictionary.” The Dublin Core is currently considering revisions
to the usage of this field, and should be consulted for updated definitions.

Format An enumerated list of formats for this content is being developed by the Dublin Core.

Identifier A string or number used to uniquely identify the resource. At least one Identifier
must have an id attribute specified.

Source Information regarding a prior resource from which the publication was derived (see RFC
2413).
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Language If specified, the content must be an RFC 1766-compliant specification of the primary
language of the content. (See http://www.ietf.org/rfc/rfc1766.txt) US English (en-us)
is the default.

Coverage The place or time which the publication’s content addresses.

Rights A statement about rights, or a link to one. In this specification, the copyright notice and
any further rights description should appear directly.

Because the Dublin Core metadata fields for Creator and Contributor do not distinguish
roles of specific contributors (such as author, editor, and illustrator), we will follow the Open
eBook specification and use optional role attributes for this purpose. (see section B.1)

B.1 Roles in Dublin Core Metadata

The normative list of values used for the role attribute is defined by the USMARC relator code
list (http://www.loc.gov/marc/relators/re9802r1.html). The overview given here is only for
convenience.

Currently, OMDoc only supports the following roles:

Author aut Use for a person or corporate body chiefly responsible for the intellectual or artistic
content of a work. This term may also be used when more than one person or body bears
such responsibility.

Author in quotations or text extracts aqt Use for a person whose work is largely quoted or
extracted in a works to which he or she did not contribute directly. Such quotations are
found particularly in exhibition catalogs, collections of photographs, etc.

Author of afterword, colophon, etc. aft Use for a person or corporate body responsible for
an afterword, postface, colophon, etc. but who is not the chief author of a work.

Author of introduction, etc. aui Use for a person or corporate body responsible for an in-
troduction, preface, foreword, afterword, or other critical matter, but who is not the chief
author. The author of a specific part of the book may be expressed using a metadata element
in that part.

Bibliographic antecedent ant Use for the author responsible for a work upon which the work
represented by the catalog record is based. This may be appropriate for adaptations, sequels,
continuations, indexes, etc.

Collaborator clb Use for a person or corporate body that takes a limited part in the elaboration
of a work of another author or that brings complements (e.g., appendices, notes) to the work
of another author.

Editor edt Use for a person who prepares for publication a work not primarily his/her own, such
as by elucidating text, adding introductory or other critical matter, or technically directing
an editorial staff.

Thesis advisor ths Use for the person under whose supervision a degree candidate develops and
presents a thesis, memoir, or text of a dissertation.

Transcriber trc Use for a person who prepares a handwritten or typewritten copy from original
material, including from dictated or orally recorded material.

Translator trl Use for a person who renders a text from one language into another, or from an
older form of a language into the modern form.
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Appendix C

The OMDoc Document Type
Definition

In this section, we reprint the current version of the OMDoc Document type definition. The
original can be found at http://www.mathweb.org/omdoc/dtd/omdoc.dtd. It includes a variant
document type definition for OpenMath objects that differs from the original (see http://www.
openmath.org) in that it allows to represent OpenMath objects as directed acyclic graphs. This
extension is licensed by the OpenMath Standard that says that any extension, from which valid
OpenMath can be directly be generated is allowed.

<!--
An XML Document Type Definition for the OMDoc format (OpenMath documents)
Initial Version: Michael Kohlhase 1999-09-07
URL: http://www.mathweb.org/omdoc/omdoc.dtd (current released version)
URL: http://www.mathweb.org/omdoc/dtd/omdoc.dtd (current experimental)
URL: http://www.mathweb.org/omdoc/dtd/omdoc*.dtd (old)
This DTD is still experimental, it is intended as a basis for discussion.
Comments are welcome! (send mail to kohlhase@mathweb.org)
See the documentation and examples at http://www.mathweb.org/omdoc
(c) 1999, 2000 Michael Kohlhase, released under the GNU Public License

-->

<!-- first we define a couple of useful abbreviations -->

<!ENTITY % midmatter "mid CDATA #IMPLIED">
<!-- attribute mid is an URIref, pointing to the MBase identifier of the element -->

<!ENTITY % idmatter "id CDATA #REQUIRED %midmatter;">
<!ENTITY % idimatter "id CDATA #IMPLIED %midmatter;">

<!ENTITY % idrefmatter "%idmatter; for CDATA #REQUIRED">
<!ENTITY % idirefmatter "%idimatter; for CDATA #REQUIRED">
<!-- attribute for is an URIref -->

<!ENTITY % timestamp "timestamp NMTOKEN #REQUIRED">

<!-- The current XML-recommendation doesn’t yet support the three-letter
short names for languages (ISO 693-2). So the following section
will be using the two-letter (ISO 693-1) encoding for the languages.

en : English, de : German, fr : French,
la : Latin, it : Italian, nl : Dutch,
ru : Russian, pl : Polish, es : Spanish,
tr : Turkish, zh : Chinese, ja : Japanese,
ko : Korean -->

<!ENTITY % ISO639 "(en|de|fr|la|it|nl|ru|pl|es|tr|zh|ja|ko)">

<!ENTITY % langmatter "xml:lang %ISO639; ’en’">

<!ENTITY % frommatter "from NMTOKEN #REQUIRED">
<!ENTITY % fromtomatter "%frommatter; to CDATA #REQUIRED">
<!-- attribute to is an URIref -->

<!ENTITY % fromtobymatter "%fromtomatter; by CDATA #REQUIRED">
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<!-- attribute by is an URIref -->

<!ENTITY % linkmatter "%midmatter; id CDATA #IMPLIED xref CDATA #IMPLIED">
<!-- attribute xref is an URIref -->

<!ENTITY % rstype "abstract|introduction|conclusion|thesis|antithesis|
elaboration|motivation|evidence|linkage|narrative|
sequence|alternative|general">

<!ENTITY % rsmatter "type NMTOKEN #IMPLIED
for CDATA #IMPLIED
from CDATA #IMPLIED">

<!-- attribute for is a URIref, from a URIrefs -->
<!-- best use one of the %rstype; for type -->

<!-- Now comes a NON-STANDARD (experimental) variant of the OpenMath
Object DTD omobj.dtd (see http://www.openmath.org)

It is extended with coreferences! (by adding the xlink linkmatter
attributes to all open math elements).
In particular, it adds the attributes id and xref to
OMOBJ OMA OMBIND and OMATTR

These extensions are licensed by the OpenMath Standard that says that any
extension, from which valid OpenMath can be directly be generated is
allowed.

Note that this makes it less restrictive for OMA, OMS and OMV
than the original. Maybe this can be changed in a future version
by using XML schema. -->

<!ENTITY % omel "OMS | OMV | OMI | OMB | OMSTR | OMF | OMA | OMBIND | OME | OMATTR">

<!ENTITY % omns "xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’">
<!-- things which can be variables -->

<!ENTITY % omvar "OMV | OMATTR" >

<!-- symbol, original OM, links make no sense -->
<!ELEMENT OMS EMPTY>
<!ATTLIST OMS name CDATA #IMPLIED

cd CDATA #IMPLIED
%omns;>

<!-- variable original OM, links make no sense -->
<!ELEMENT OMV EMPTY>
<!ATTLIST OMV name CDATA #IMPLIED %omns;>

<!-- integer; links make sense, since integers can be big -->
<!ELEMENT OMI (#PCDATA)>
<!ATTLIST OMI %linkmatter; %omns;>

<!-- byte array; links make sense, since byte arrays can be big -->
<!ELEMENT OMB (#PCDATA) >
<!ATTLIST OMB %linkmatter; %omns;>

<!-- string; links make sense, since strings can be big -->
<!ELEMENT OMSTR (#PCDATA) >
<!ATTLIST OMSTR %linkmatter; %omns;>

<!-- floating point; links make sense, since Integers can be big -->
<!ELEMENT OMF EMPTY>
<!ATTLIST OMF dec CDATA #IMPLIED

hex CDATA #IMPLIED
%linkmatter; %omns;>

<!-- apply constructor; links make sense, no copied substructure -->
<!ELEMENT OMA (%omel;)*>
<!ATTLIST OMA %linkmatter; %omns;>

<!-- binding constructor & variable; links make sense, no copied substructure -->
<!ELEMENT OMBIND ((%omel;), OMBVAR, (%omel;))? >
<!ATTLIST OMBIND %linkmatter; %omns;>

<!-- bound variables, original OM, links make no sense -->
<!ELEMENT OMBVAR (%omvar;)+ >
<!ATTLIST OMBVAR %omns;>

<!-- error; original OM, links make no sense -->
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<!ELEMENT OME (OMS, (%omel;)* ) >
<!ATTLIST OME %omns;>

<!-- attribution constructor & attribute pair constructor -->
<!ELEMENT OMATTR (OMATP, (%omel;))? >
<!ATTLIST OMATTR %linkmatter; %omns;>

<!ELEMENT OMATP (OMS, (%omel;))+ >
<!ATTLIST OMATP %omns;>

<!-- OM object constructor; links make sense to avoid copying substructure -->
<!ELEMENT OMOBJ (%omel;)? >
<!ATTLIST OMOBJ %omns; %linkmatter;>

<!-- OMDoc Metadata comes in two forms:
1) Bibliographic Metadata corresponding to the model of the

Dublin Metadata initiative (http://purl.org/dc)
2) other, mostly guided by the intuitions of the MBase system

-->

<!ENTITY % dcdata "Contributor | Creator | Translator
| Subject | Title
| Description | Publisher | Date | Type
| Format | Identifier | Source | Language
| Relation | Coverage | Rights">

<!ENTITY % dcns "xmlns CDATA #FIXED ’http://purl.org/DC’">
<!ENTITY % rolematter "role (aut|aqt|aft|aui|ant|clb|edt|ths|trc|trl) ’aut’">

<!ELEMENT metadata ((%dcdata;)*,extradata?)>

<!-- first the Dublin Core Metadata model of the
Dublin Metadata initiative (http://purl.org/dc) -->

<!ELEMENT Contributor ANY><!ATTLIST Contributor %dcns; %rolematter;>
<!ELEMENT Title ANY><!ATTLIST Title %langmatter; %dcns;>
<!ELEMENT Creator ANY><!ATTLIST Creator %dcns; %rolematter;>
<!ELEMENT Translator ANY><!ATTLIST Translator %dcns; %langmatter;>
<!ELEMENT Subject ANY><!ATTLIST Subject %dcns;>
<!ELEMENT Description ANY><!ATTLIST Description %dcns;>
<!ELEMENT Publisher ANY><!ATTLIST Publisher %dcns;>
<!ELEMENT Date ANY><!ATTLIST Date action NMTOKEN #IMPLIED %dcns;>
<!ELEMENT Type ANY><!ATTLIST Type %dcns;>
<!ELEMENT Format ANY><!ATTLIST Format %dcns;>
<!ELEMENT Identifier ANY><!ATTLIST Identifier %dcns; scheme NMTOKEN "ISBN">
<!ELEMENT Source ANY><!ATTLIST Source %dcns;>
<!ELEMENT Language ANY><!ATTLIST Language %dcns;>
<!ELEMENT Relation ANY><!ATTLIST Relation %dcns;>
<!ELEMENT Coverage ANY><!ATTLIST Coverage %dcns;>
<!ELEMENT Rights ANY><!ATTLIST Rights %dcns;>

<!-- other metadata that is not bibliographic can be included in the
<extradata> element, declare any needed XML elements in the
internal subset of the DTD declaration -->

<!ELEMENT extradata ANY>

<!-- ========= OMDoc Math elements ============ -->

<!ENTITY % mathitem "assertion|alternative-def|example|
theory-inclusion|axiom-inclusion|
proof|proofobject">

<!ENTITY % cf "symbol*,CMP*,FMP?">
<!ENTITY % cfm "(metadata?,private*,%cf;)">

<!ELEMENT FMP ((assumption*,conclusion)|OMOBJ)>
<!ATTLIST FMP logic NMTOKEN #IMPLIED

%midmatter;>

<!ELEMENT assertion %cfm;>
<!ATTLIST assertion theory NMTOKEN #IMPLIED

type (theorem|lemma|corollary|conjecture) "conjecture"
%idmatter;>

<!ELEMENT assumption (CMP*,OMOBJ?)>
<!ATTLIST assumption %idmatter;>

<!ELEMENT conclusion (CMP*,OMOBJ?)>
<!ATTLIST conclusion %idmatter;>
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<!ELEMENT alternative-def (metadata?,CMP*,(FMP|requation*|OMOBJ))>
<!ATTLIST alternative-def theory NMTOKEN #REQUIRED

type (simple|inductive|implicit|obj) "simple"
just-by CDATA #IMPLIED
entailed-by CDATA #REQUIRED
entails CDATA #REQUIRED
entailed-by-thm CDATA #REQUIRED
entails-thm CDATA #REQUIRED
%idrefmatter;>

<!-- the CDATA attributes are URIres
just-by, points to the theorem justifying well-definedness
entailed-by, entails, point to other (equivalent definitions
entailed-by-thm, entails-thm point to the theorems justifying the

entailment relation -->

<!-- proofs consist of sequences of steps. The for attribute specifies the
assertion it is for. -->

<!ELEMENT proof (metadata?,symbol*,CMP*,(metacomment|derive|hypothesis)*,conclude)>
<!ATTLIST proof theory NMTOKEN #REQUIRED

%idrefmatter;>

<!ELEMENT proofobject (metadata?,CMP*,OMOBJ)>
<!ATTLIST proofobject theory NMTOKEN #REQUIRED

%idrefmatter;>

<!ELEMENT metacomment (CMP*)>
<!ATTLIST metacomment %idimatter;>

<!ENTITY % justmatter "method?,premise*,(proof|proofobject)?">

<!ELEMENT derive (CMP*,FMP?,%justmatter;)>
<!ATTLIST derive %idmatter;>

<!ELEMENT conclude (CMP*,%justmatter;)>
<!ATTLIST conclude %idimatter;>

<!ELEMENT hypothesis (%cf;)>
<!ATTLIST hypothesis %idmatter;>

<!ELEMENT method ((ref|OMSTR),parameter*)>

<!ELEMENT parameter (OMOBJ)>

<!ELEMENT premise EMPTY>
<!ATTLIST premise href CDATA #REQUIRED>

<!ELEMENT example (metadata?,symbol*,CMP*,OMOBJ?)>
<!ATTLIST example type (for|against) #IMPLIED

assertion CDATA #IMPLIED
proof CDATA #IMPLIED
%idrefmatter;>

<!-- attributes assertion and proof are URIref -->

<!ELEMENT axiom-inclusion (metadata?,morphism?,(path-just|assertion-just))>
<!ATTLIST axiom-inclusion %timestamp;

%fromtomatter;
%idmatter;>

<!ELEMENT theory-inclusion (metadata?,morphism,decomposition?)>
<!ATTLIST theory-inclusion %timestamp;

%idmatter;
%fromtobymatter;>

<!ELEMENT path-just EMPTY>
<!ATTLIST path-just %timestamp;

local CDATA #REQUIRED
globals CDATA #REQUIRED
%midmatter;>

<!-- attribute local is an URIref, points to axiom-inclusion
globals is an URIrefs, points to a list of theory-inclusions -->

<!ELEMENT assertion-just EMPTY>
<!ATTLIST assertion-just %timestamp;

ids CDATA #REQUIRED
%midmatter;>

<!-- attribute ids is an URIrefs, points to a list of assertions -->

<!ELEMENT decomposition EMPTY>
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<!ATTLIST decomposition %timestamp;
links CDATA #REQUIRED
%midmatter;>

<!-- attribute links is an URIrefs, points to a list of axiom-inlcusions -->

<!-- OMDoc theory elements -->

<!ENTITY % onlyintheoryitem "symbol|axiom|definition|adt|imports|inclusion">
<!ENTITY % alsointheoryitem "alternative-def|proof|signature|assertion|exercise|presentation|example|omtext|omgroup|private|code|ignore">
<!ENTITY % intheoryitem "%onlyintheoryitem;|%alsointheoryitem;">

<!ENTITY % insymbolmatter ’%idmatter;
kind (type|sort|object) "object"
scope (global|local) "global"’>

<!ELEMENT theory (metadata?,commonname*,CMP*,(%intheoryitem;)*)>
<!ATTLIST theory %idmatter;>

<!ELEMENT symbol (metadata?, CMP*,(commonname|type|selector)*)>
<!ATTLIST symbol %insymbolmatter;>

<!ELEMENT commonname ANY>
<!ATTLIST commonname %langmatter;

%midmatter;>

<!ELEMENT signature EMPTY>
<!ATTLIST signature %idrefmatter;

system NMTOKEN #REQUIRED>

<!ELEMENT type (OMOBJ)>
<!ATTLIST type system NMTOKEN #REQUIRED

%midmatter;>

<!ELEMENT axiom %cfm;>
<!ATTLIST axiom %idmatter;>

<!-- Definitions contain CMPs, FMPs and concept specifications. The latter define
the set of concepts defined in this element. They can be reached under this name
in the content dictionary of the name specified in the theory attribute of
the definition. -->

<!ELEMENT definition (metadata?,CMP*,(FMP|requation+|OMOBJ)?)>
<!ATTLIST definition just-by CDATA #IMPLIED

type (simple|inductive|implicit|obj) "simple"
%idrefmatter;>

<!-- attribute just-by is an URIref points to an assertion -->

<!ELEMENT requation (pattern,value)>
<!ATTLIST requation %idimatter;>

<!ELEMENT pattern (OMA|OMS)>

<!ELEMENT value (%omel;)>

<!-- adts are abstract data types, they are short forms for groups of symbols and -->
<!-- their definitions, therefore, they have much the same attributes. -->

<!ELEMENT adt (metadata?,CMP*,commonname*,sortdef+)>
<!ATTLIST adt type (loose|generated|free) "loose"

%idmatter;>

<!ELEMENT sortdef (commonname*,(constructor|insort)*)>
<!ATTLIST sortdef %idimatter;

kind NMTOKEN #FIXED "sort"
scope (global|local) "global">

<!ELEMENT constructor (commonname*,argument*)>
<!ATTLIST constructor %insymbolmatter;>

<!ELEMENT argument (selector?)>
<!ATTLIST argument sort CDATA #REQUIRED>
<!-- sort is a reference to the sort symbol element -->

<!ELEMENT insort EMPTY>
<!ATTLIST insort for CDATA #REQUIRED>
<!-- sort is a reference to the sort symbol element -->

<!ELEMENT selector (commonname)*>
<!ATTLIST selector %insymbolmatter;

type (total|partial) "partial">
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<!-- Now comes the support for theory inheritance, i.e. for building complex -->
<!-- theories. -->

<!ELEMENT imports (CMP*,morphism?)>
<!ATTLIST imports %idmatter;

%frommatter;
hiding CDATA #IMPLIED
type (local|global) "global">

<!-- hiding is a list of references to symbol elements -->

<!ELEMENT morphism (requation*)>
<!ATTLIST morphism %idimatter;

base CDATA #IMPLIED>
<!-- base points to some other morphism it extends -->

<!ELEMENT inclusion EMPTY>
<!ATTLIST inclusion for CDATA #REQUIRED

%midmatter;>
<!-- for points to a theory-inclusion -->

<!-- Auxiliary elements -->

<!ENTITY % auxitem "exercise|solution|omlet|private|code|presentation">

<!ELEMENT exercise (%cfm;,hint?,(solution*|mc*))>
<!ATTLIST exercise %idmatter;

%rsmatter;>

<!ELEMENT hint %cfm;>
<!ATTLIST hint %idimatter;>

<!ELEMENT solution (%cfm;|proof)>
<!ATTLIST solution for CDATA #IMPLIED

%idimatter;>

<!-- support for multiple choice interactions -->

<!ELEMENT mc (symbol*,choice,hint?,answer)>
<!ATTLIST mc %idimatter;>

<!ELEMENT choice %cfm;>
<!ATTLIST choice %idimatter;>

<!ELEMENT answer %cfm;>
<!ATTLIST answer verdict CDATA #REQUIRED

%idimatter;>

<!ELEMENT omlet ANY>
<!ATTLIST omlet %idimatter;

argstr CDATA #IMPLIED
function CDATA #IMPLIED>

<!-- attribute function is an URIref, points to a code element
attribute argstr is a string of arguments supplied to the function -->

<!ENTITY % privmatter "%idimatter;
theory CDATA #IMPLIED
pto NMTOKENS #IMPLIED
pto-version NMTOKENS #IMPLIED
format NMTOKEN #IMPLIED
requires CDATA #IMPLIED
type NMTOKEN #IMPLIED
classid CDATA #IMPLIED
codebase CDATA #IMPLIED
width CDATA #IMPLIED
height CDATA #IMPLIED">

<!ELEMENT private (metadata?,CMP*,data)>
<!ATTLIST private %privmatter;>

<!ELEMENT code (metadata?,CMP*,input?,output?,effect?,data)>
<!ATTLIST code %privmatter;>

<!ELEMENT input (CMP*)>
<!ATTLIST input %midmatter;>

<!ELEMENT output (CMP*)>
<!ATTLIST output %midmatter;>

57



<!ELEMENT effect (CMP*)>
<!ATTLIST effect %midmatter;>

<!ELEMENT data ANY>
<!ATTLIST data %midmatter;

href CDATA #IMPLIED>

<!-- this element can be used in lieu of a comment, it is read by the style sheet,
(comments are not) and can therefore be transformed by them -->

<!ELEMENT ignore ANY>
<!ATTLIST ignore type NMTOKEN #IMPLIED

comment CDATA #IMPLIED>

<!ENTITY % crossrefmatter "crossref-symbol (no|yes|brackets|separator|lbrack|rbrack|all) ’yes’">

<!ELEMENT presentation (use*)>
<!ATTLIST presentation fixity NMTOKEN "prefix"

parent (OMA|OMBIND|OMATTR) #IMPLIED
lbrack CDATA "("
rbrack CDATA ")"
separator CDATA ","
bracket-style (lisp|math) "math"
mode CDATA #IMPLIED
precedence NMTOKEN #IMPLIED
%crossrefmatter;
%idirefmatter;>

<!-- currently recognized fixities are prefix|infix|postfix|assoc -->

<!ELEMENT use ANY>
<!ATTLIST use format NMTOKEN #REQUIRED

%langmatter;
requires CDATA #IMPLIED
larg-group CDATA #IMPLIED
rarg-group CDATA #IMPLIED
lbrack CDATA #IMPLIED
rbrack CDATA #IMPLIED
separator CDATA #IMPLIED
precedence NMTOKEN #IMPLIED
crossref-symbol (no|yes|brackets|separator|lbrack|rbrack|all) "yes">

<!-- the attributes in the <use> element overwrite those in the
<presentation> element, therefore, they do not have defaults -->

<!ENTITY % omdocitem "omtext|%mathitem;|%auxitem;|theory|omgroup|ref|ignore">
<!ELEMENT omdoc (metadata,catalogue?,(%omdocitem;)*)>
<!ATTLIST omdoc %idmatter;

type NMTOKEN "document"
catalogue CDATA #IMPLIED
version CDATA #IMPLIED>

<!ELEMENT catalogue (loc)*>

<!ELEMENT loc EMPTY>
<!ATTLIST loc theory NMTOKEN #REQUIRED

omdoc CDATA #IMPLIED
cd CDATA #IMPLIED>

<!-- omdoc attributes omdoc and cd are URIRefs pointing to the omdoc
and/or the OpenMath content dictionary defining this theory -->

<!-- Now, we come to the text elements, they are very simple, since they can include
arbitrary text and markup -->

<!ELEMENT omtext (metadata?,CMP+,FMP?)>
<!ATTLIST omtext %idmatter;

%rsmatter;>
<!-- for/from point to some %omdocitem; -->

<!ELEMENT CMP ANY>
<!ATTLIST CMP format NMTOKEN "omtext"

%langmatter;>

<!-- grouping defines the structure of a document-->

<!ELEMENT omgroup (metadata?,(%omdocitem;)*)>
<!ATTLIST omgroup type NMTOKEN "sequence"

%idmatter;>
<!-- best use one of the %rstype; there -->
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<!-- co-referencing allows to use elements with an
’id’ attribute multiple times -->

<!ELEMENT ref ANY>
<!ATTLIST ref xref CDATA #IMPLIED

theory NMTOKEN #IMPLIED
name NMTOKEN #IMPLIED
mid NMTOKEN #IMPLIED
kind NMTOKEN #IMPLIED>

<!-- =============== omdoc.dtd ends here ==================== -->

59



Appendix D

A latex2omdoc Example

In this section, we will look at an example of an OMDoc file generated by latex2omdoc.sty

D.1 The LATEX source file

\begin{omdocout}

\begin{ommetadata}
\dccontributor{Contributor 1}
\dccreator[edt]{Creator as the editor}
\dctitle{The title of the document}

here we define the metadata of the document
\end{ommetadata}

\begin{omomtext}{intro}\omrsrelation{introduction}{}{}
\begin{omCMPverb}{omtext}

We will start out with an introductory text
\end{omCMPverb}

\end{omomtext}

\begin{omtheory}{testtheory}
\omcommonname[de]{Monoid Theorie}

\begin{omsymbol}{monoid}
\begin{omCMPverb}{omtext}

The monoids that we all know and love
\end{omCMPverb}
\begin{omCMPverb}[de]{omtext}

Die Monoide, wie wir sie alle kennen und lieben
\end{omCMPverb}
\omcommonname[de]{plus}\omcommonname{plus}
\begin{omtypeverb}{POST}

<OMOBJ><OMA><OMS cd="mltt" name="funtype"/><OMV name="alpha"/></OMA></OMOBJ>
\end{omtypeverb}
here we define monoids

\end{omsymbol}

\begin{omomtext}{testremark}
\omrsrelation{introduction}{}{}
\begin{omCMP}{omtext}

\begin{omverb}then we will use an omnote to\end{omverb}
\begin{omomletverb}{appl1}{js}{sdlfkj}{call-mint}

explain
\end{omomletverb}
\begin{omverb}the symbol\end{omverb}

\end{omCMP}
\end{omomtext}

\begin{omdefinition}{monoiddef}{monoid}
\begin{omCMPverb}{omtext}

Here comes the definition of monoids
\end{omCMPverb}
\begin{omFMP}\((#test:sym:$X:$Y:)\)\end{omFMP}
sdfsdfsdf

\end{omdefinition}
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\begin{omomtext}{testlinkage}
\omrsrelation{linkage}{monoiddef}{recursivemonoid}
\begin{omCMPverb}{omtext}

then a omlinkage to link the previous definition to the next
\end{omCMPverb}

\end{omomtext}

\begin{omdefinition}{recursivemonoid}{monoid}
\begin{omCMPverb}{omtext}

Here comes a recursive definition
\end{omCMPverb}
\begin{omrequation}

\<(#arith1:plus:$X:#arith1:zero:)\>\goesto\($X:\)
\end{omrequation}
sdfsdfsdf

\end{omdefinition}

\end{omtheory}

\begin{omassertion}{testtheorem}{testtheory}{theorem}
\begin{omCMPverb}{omtext}A theorem\end{omCMPverb}
\begin{omFMP}

\({#quant1:forall:$X:$Y:.(#relation:eq:$X:$Y:)}\)
\end{omFMP}

\end{omassertion}

\begin{omassertion}{testlemma}{testtheory}{lemma}
\begin{omCMPverb}{omtext}

Transitivity of equality
\end{omCMPverb}
\begin{omassumption}{A1}

\begin{omCMPverb}{omtext}\($X:\) and \($Y:\) are equal\end{omCMPverb}
\begin{omFMP}
\((#relation:eq:$X:$Y:)\)
\end{omFMP}

\end{omassumption}
\begin{omassumption}{A2}

\begin{omCMPverb}{omtext}\($Y:\) and \($Z:\) are equal\end{omCMPverb}
\begin{omFMP}\((#relation:eq:$Y:$Z:)\)\end{omFMP}

\end{omassumption}
\begin{omconclusion}{C1}

\begin{omCMPverb}{omtext}All objects are equal\end{omCMPverb}
\begin{omFMP}

\({#quant1:forall:$X:$Y:.(#relation:eq:$X:$Y:)}\)
\end{omFMP}

\end{omconclusion}
\end{omassertion}

\begin{omproof}{P1}{testlemma}{testtheory}
\begin{omCMPverb}{omtext}

A proof with two proof steps for the lemma above
\end{omCMPverb}
\begin{omderive}{D1}

\begin{omCMPverb}{omtext}The first proof step consists\end{omCMPverb}
\begin{omassumption}{D1.A}

\begin{omCMPverb}
This proof step makes a local hypothesis

\end{omCMPverb}
\end{omassumption}
\begin{omconclusion}{D1.C}
\begin{omCMPverb}{omtext}

The assertion of the first proof step
\end{omCMPverb}
\begin{omFMP}\(#test:formula:\)\end{omFMP}

\end{omconclusion}
\end{omderive}

\begin{omderive}{D2}
\begin{omCMPverb}{omtext}The second step\end{omCMPverb}
\begin{omconclusion}{D2.c}
\begin{omFMP}\(#test:formula:\)\end{omFMP}

\end{omconclusion}
\end{omderive}

\begin{omconclude}{Conc}
\begin{omCMPverb}{omtext}The last proof step\end{omCMPverb}

\end{omconclude}
\end{omproof}
\end{omdocout}
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%%% Local Variables:
%%% mode: latex
%%% TeX-master: "omdoc"
%%% End:

D.2 The log information in the dvi file

here we define the metadata of the document
OMDoc(6): intro.
OMDoc(7): testtheory.
OMDoc(8): monoid. here we define monoids
OMDoc(9): testremark.
OMDoc(10): monoiddef. sdfsdfsdf
OMDoc(11): testlinkage.
OMDoc(12): recursivemonoid. sdfsdfsdf
OMDoc(13): testtheorem.
OMDoc(14): testlemma.
OMDoc(15): P1.

D.3 The Xml document generated by this file
<?xml version="1.0"?>
<!DOCTYPE omdoc SYSTEM "http://www.mathweb.org/omdoc/dtd/omdoc.dtd" []>

<!-- generated from omdoc.tex, do not edit -->

<omdoc id="top">

<metadata>
<dc:Contributor role="aut">Contributor 1</dc:Contributor>
<dc:Creator role="edt">Creator as the editor</dc:Creator>
<dc:Title xml:lang="en">The title of the document</dc:Title>

</metadata>

<omtext id="intro">
<rsrelation type="introduction" />
<CMP xml:lang="en" format="omtext">

We will start out with an introductory text
</CMP>
</omtext>

<theory id="testtheory">
<commonname xml:lang="deu">Monoid Theorie</commonname>
<symbol id="monoid">
<CMP xml:lang="en" format="omtext">

The monoids that we all know and love
</CMP>
<CMP xml:lang="deu" format="omtext">

Die Monoide, wie wir sie alle kennen und lieben
</CMP>
<commonname xml:lang="deu">plus</commonname>
<commonname xml:lang="en">plus</commonname>
<type system="POST">

<OMOBJ><OMA><OMS cd="mltt" name="funtype"/><OMV name="alpha"/></OMA></OMOBJ>
</type>
</symbol>

<omtext id="testremark">
<rsrelation type="introduction"/>
<CMP xml:lang="en" format="omtext">
then we will use an omnote to
<omlet id="appl1" type="js" argstr="sdlfkj" function="call-mint">explain</omlet>
the symbol</CMP>
</omtext>

<definition id="monoiddef" item="monoid">
<CMP xml:lang="en" format="omtext">

Here comes the definition of monoids
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</CMP>
<FMP><OMOBJ><OMA><OMS cd="test" name="sym"/><OMV name="X"/><OMV name="Y"/></OMA></OMOBJ></FMP>
</definition>

<omtext id="testlinkage">
<rsrelation type="linkage" for="monoiddef" from="recursivemonoid"/>
<CMP xml:lang="en" format="omtext">

then a omlinkage to link the previous definition to the next
</CMP>
</omtext>

<definition id="recursivemonoid" item="monoid">
<CMP xml:lang="en" format="omtext">

Here comes a recursive definition
</CMP>
<requation>
<pattern>
<OMA><OMS cd="arith1" name="plus"/><OMV name="X"/><OMS cd="arith1" name="zero"/></OMA>

</pattern>
<value><OMOBJ><OMV name="X"/></OMOBJ></value>

</requation>
</definition>
</theory>

<assertion id="testtheorem" theory="testtheory" type="theorem">
<CMP xml:lang="en" format="omtext">A theorem</CMP>
<FMP><OMOBJ>
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR><OMV name="X"/><OMV name="Y"/></OMBVAR>
<OMA><OMS cd="relation" name="eq"/><OMV name="X"/><OMV name="Y"/></OMA>

</OMBIND>
</OMOBJ></FMP>
</assertion>

<assertion id="testlemma" theory="testtheory" type="lemma">
<CMP xml:lang="en" format="omtext">Transitivity of equality</CMP>
<assumption id="A1">
<CMP xml:lang="en" format="omtext">\($X:\) and \($Y:\) are equal</CMP>
<FMP><OMOBJ>
<OMA><OMS cd="relation" name="eq"/><OMV name="X"/><OMV name="Y"/></OMA>
</OMOBJ></FMP>
</assumption>
<assumption id="A2">
<CMP xml:lang="en" format="omtext">\($Y:\) and \($Z:\) are equal</CMP>
<FMP><OMOBJ>
<OMA><OMS cd="relation" name="eq"/><OMV name="Y"/><OMV name="Z"/></OMA>
</OMOBJ></FMP>
</assumption>
<conclusion id="C1">
<CMP xml:lang="en" format="omtext">All objects are equal</CMP>
<FMP><OMOBJ>
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR><OMV name="X"/><OMV name="Y"/></OMBVAR>
<OMA><OMS cd="relation" name="eq"/><OMV name="X"/><OMV name="Y"/></OMA>

</OMBIND>
</OMOBJ></FMP>
</conclusion>
</assertion>

<proof id="P1" item="testlemma" theory="testtheory">
<CMP xml:lang="en" format="omtext">

A proof with two proof steps for the lemma above
</CMP>
<derive id="D1">
<CMP xml:lang="en" format="omtext">The first proof step consis</CMP>
<assumption id="D1.A">
<CMP xml:lang="en" format="T">his proof step makes a local hypothesis</CMP>

</assumption>
<conclusion id="D1.C">
<CMP xml:lang="en" format="omtext">

The assertion of the first proof step
</CMP>
<FMP><OMOBJ><OMS cd="test" name="formula"/></OMOBJ></FMP>

</conclusion>
</derive>

<derive id="D2">
<CMP xml:lang="en" format="omtext">The second step</CMP>
<conclusion id="D2.c">
<FMP><OMOBJ><OMS cd="test" name="formula"/></OMOBJ></FMP>
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</conclusion>
</derive>

<conclude id="Conc">
<CMP xml:lang="en" format="omtext">The last proof step</CMP>

</conclude>
</proof>
</omdoc>
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