
OMDoc: Towards an Internet Standard for the

Administration, Distribution and Teaching of

mathematical Knowledge

Michael Kohlhase

FB Informatik, Universität des Saarlandes, Saarbrücken
http://www.ags.uni-sb.de/~kohlhase

Abstract. In this paper we present an extension OMDoc to the Open-

Math standard that allows to represent the semantics and structure of
various kinds of mathematical documents, including articles, textbooks,
interactive books, courses. It can serve as the content language for agent
communication of mathematical services on a mathematical software bus.

1 Introduction

It is plausible to expect that the way we do (conceive, develop, communicate
about, and publish) mathematics will change considerably in the next ten years.
The Internet plays an ever-increasing role in our everyday life, and most of
the mathematical activities will be supported by mathematical software sys-
tems (we will call them mathematical services) connected by a commonly ac-
cepted distribution architecture, which we will call the mathematical software
bus. We have argued for the need of such an architecture in [SHS98,FHJ+99],
and we have in the meantime gained experiences with the MathWeb system
that provides a general distribution architecture (see [FK99b]); other groups
have conducted similar experiments [DCN+00,AZ00] based on other implemen-
tation technologies, but with the same vision of creating a world wide web of
cooperating mathematical services. In order to avoid fragmentation, double in-
ventions and to foster ease of access it is necessary to define interface standards
for MathWeb1. In [FHJ+99], we have already proposed a protocol based on the
agent communication language Kqml [FF94] and the emerging Internet standard
OpenMath [AvLS96,CC98] as a content language (see Fig. 1). This layered ar-
chitecture which refines the unspecific “application layer” of the OSI protocol
stack is inspired by the results from agent-oriented programming [Sho90], and is
based on the intuition, that all agents (not only mathematical services) should
understand the agent communication language, even if they do not understand
the content language, which is used to transport the actual mathematical con-
tent. The agent communication language is used to establish agent identity,

1 We will for the purposes of this paper subsume all of the implementations by the
term MathWeb, since the communication protocols presented in this paper will
make the constructions of bridges between the particular implementation simple, so
that that the combined systems appear to the outside as one homogenous web.



2

Performative Layer, e.g. KQML

Network Layer, e.g. IP

Link Layer, e.g. X.21

Physical Layer, e.g. Ethernet

Transport Layer, e.g. TCP

Session Layer, e.g. LU6.2

Presentation Layer, e.g. XML (DTD)

Application Layer
= OMDoc

OpenMath + CASL
Content Layer: 

Fig. 1. Artificial Communication: Kqml and the OSI Reference Model

reference and – in general – model the communication protocols (see [AK00] for
details in the case of mathematical services). Thus we can concentrate on the
content language in this paper.

The experience with MathWeb in general, and with the Ωmega system – a
mathematical assistant system based on several MathWeb services (see [BCF+97])
– in particular have shown that it is not sufficient to be able to communicate
mathematical objectsobject, but alsomathematical knowledgeknowledge!mathematical
in general. Support for the communication of mathematical objects is already
provided by OpenMath, which is

[. . . ] a standard for representing mathematical objects, allowing them
to be exchanged between computer programs, stored in databases, or
published on the worldwide web. [. . . ] [CC98]

This is sufficient for symbolic computation services like computer algebra sys-
tems, which manipulate (simplify) or compute objects like equations or groups.
Even though the logical formulae constructed or manipulated by reasoning sys-
tems like the Ωmega system can be expressed as OpenMath objects, mathe-
matical services like reasoners or presentation systems need more information
e.g.:

1. is this formula an axiom, a definition, or a theorem to be proven?
2. what is a good strategy to proceed with the proof in this domain?
3. is this constant basic, or defined (so that it can be expanded to a formula

involving simpler concepts)?
4. what is the common name of this concept (and its grammatical category)?

Unfortunately, OpenMath fulfills this goal only partially, since it exclusively
deals with the representation of the mathematical objects proper. Of course it
would be possible to characterize an axiom by applying a predicate “axiom” to
a formula or using a special variant of the equality relation for definitions, but
this would only solve item 1 above.



3

This paper is concerned with the question about a communication standard
for mathematical knowledge. We propose an extension OMDoc of the Open-

Math standard to alleviate this perceived limitation. We will use mathematical
documents as a guiding intuition for mathematical knowledge, since almost all
of mathematics is currently communicated in this form (publications, letters,
e-mails, talks,. . . ). To ensure widespread applicability, we will use the term doc-
ument in an inclusive, rather than exclusive way (including papers, letters, inter-
active books, e-mails, talks, communication between mathematical services (see
for instance [FK99b,FHJ+99]) on the Internet,. . . ), claiming that all of these can
be fitted into a common representation. Since such documents normallly have a
complex structure of their own, the specific task to be solved in the extension to
OpenMath is to provide a standardized infrastructure for this as well. As we
will use the Internet standard Xml [BPSM97] (see section 2) as a basis for this,
we can consider the syntax problem for communication in MathWeb as solved
by the imminent wider acceptance of Xml (OpenMath is based on Xml and
we have defined an Xml representation for Kqml in [FK99a]).

Another piece of infrastructure which will play a role for understanding OM-

Doc is the MBase system [FK00,KF00], a MathWeb service that acts as a
distributed mathematical knowledge baseknowledge base system that can answer
questions as the ones shown above. OMDoc serves as a input output language
for MBase, so that MBase can be used as a and as document preparation
language. Thus the system offers a service that allows to store and (flexibly) re-
produce (parts of) OMDoc documents. As OMDoc can directly be transformed
to e.g. LATEX, external input to MBase can directly be published.

To evaluate the scope of OMDoc, let us look at a few possible applications.
OMDoc can serve as

– a communication standard between mechanized reasoning systems, e.g. the
Clam-Hol interaction [BSBG98], or the Ωmega-TPS [BBS99] integration.

– a data format that supports the controlled refinement from informal presen-
tation to formal specification of mathematical objects and theories. Basi-
cally, an informal textual presentation can first be marked up, by making
its discourse structure2 explicit, and then formalizing the textually given
mathematical knowledge in logical formulae (by adding FMP elements; see
sections 5 and 2).

– a basis for individualized (interactive) booksbook!interactiveindividualized
book. OMDoc documents can be generated from MBase making use of the
*discourse structurestructure!discourse information encoded in MBase.

– an interface for proof presentation [HF97,Fie99]: since the proof part of OM-

Doc allows small-grained interleaving of formal (FMP) and textual (CMP)
presentations.

These and similar applications are pursued in the Ωmega project at the Saarland
University, Saarbrücken (see http://www.ags.uni-sb.de/~omega) in coopera-
tion with the RIACA project at Eindhoven.

2 classifying text fragments as definitions, theorems, proofs, linking text, and their
relations; we follow the terminology from computational linguistics here.



4

In the next section we will review the Internet standards and their architec-
ture that are the basis before we come to the definition of OMDoc proper.

2 Markup, Xml, OpenMath, MathMl, and OMDoc

Mathematical (and other) texts are often written on text processors (which are
often WYSIWYG type). Many authors consistently confuse information and doc-
ument structure with presentation by associating formatting characteristics with
various textual document components. Even in LATEX, one can mix structural
markup like \chapter{Title} or

\begin{Definition}[Title]. . . \end{Definition}

with presentation markupmarkup!presentation, such as font size information, or
using

{\bf proof}:. . . \hfill\Box

to indicate the extent of a proof.
The problem with presentation markup is that it is specified for human

consumption, and although it is machine-readable, the data presented in the
document is not machine-understandable. Generally, it is very hard to automate
anything for documents, where the structure is specified by presentation markup.

With the advent of the Internet, which is quickly becoming the world’s fastest
growing repository of mathematical documents, it is not possible to manage all
the available knowledge manually, because of the volume of information dis-
tributed over the Web.

The generally accepted solution is to use logicallogical markupmarkup!logical
or genericgeneric markupmarkup!generic markup, i.e. to describe the structure
of the data contained in the documents. In this markup scheme, the logical
function of all document elements – title, section, paragraphs, figures, tables,
bibliographic references, or mathematical equations or definitions – must be
clearly defined in a machine-understandable way.

This motivation has led to the development of the “Simple Generalized
Markup Language” SGML, and more recently to the “eXtensible Markup Lan-
guage” Xml [BPSM97] family of markup languages. Xml was designed as a sim-
plified subset of SGML that can serve as a rational reconstruction of the “Hyper-
text Markup Language” HtML [RHJ98], which carries most of the markup on
the Internet today. From SGML, Xml inherits the concept of a “document type
definition” (DTD), i.e. a grammar that defines the set of well-formed documents
in a given Xml language and in particular, allows documents to be validated by
generic tools (parsers). Moreover, presentation markup for the data specified in
an Xml document can be flexibly generated by using the Xsl style sheet mech-
anism [Dea99]. In particular, it is possible to use more than one Xsl style-sheet
for a given document to generate specialized presentations (e.g. personalized to
the tastes of a specific reader) of contained data using the content markup in
the document.

Thus the “content markup” paradigm gives improved presentation (for hu-
man consumption) and improved machine readability at the same time. This



5

has led to considerable activity in developing specialized markup schemes for
specific application areas (This paper is an instance of this activity).

OpenMath is a content markup language for communicating mathematical
objects realized as an Xml language. Its syntax (given by a DTD) and semantics
are specified in the evolving OpenMath standard [CC98]. The central construct
of OpenMath is that of an OpenMath object (OMOBJ), which has a tree-like
representation made up of applications (OMA), binding structures (OMBIND using
OMBVAR to tag the bound variables), variables (OMV) and symbols (OMS).

Fig. 2 shows an OpenMath representation of the law of commutativity for
addition on the reals (the logical formula ∀a, b.a ∈ R ∧ b ∈ R → a+ b = b+ a).
The mathematical meaning of a symbols (that of applications and bindings is

<OMOBJ id="commutativity-formula">
<OMBIND>

<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/>
<OMV name="b"/>

</OMBVAR>
<OMA><OMS cd="logic1" name="implies"/>

<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/><OMV name="a"/><OMS cd="barshe" name="real"/></OMA>
<OMA><OMS cd="set1" name="in"/><OMV name="b"/><OMS cd="barshe" name="real"/></OMA>

</OMA>
<OMA><OMS cd="relation" name="eq"/>

<OMA><OMS cd="barshe" name="plus-real"/><OMV name="a"/><OMV name="b"/></OMA>
<OMA><OMS cd="barshe" name="plus-real"/><OMV name="b"/><OMV name="a"/></OMA>

</OMA>
</OMA>

</OMBIND>
</OMOBJ>

Fig. 2. An OpenMath representation of ∀a, b.a + b = b + a.

known from the folklore) is specified in a so-called content dictionary, which
contain formal (FMP “formal mathematical property”) or informal (CMP “com-
mented mathematical property”) specifications of the mathematical properties
of the symbols. For instance, the specification

<CDDefinition>

<Name>plus</Name>

<Description>Addition on real numbers</Description>

<CMP>Addition is commutative</CMP>

<FMP><OMOBJ xref="commutativity-formula"/></FMP>

</CDDefinition>

could be part of the content dictionary3 barshe.cd for elementary properties of
real numbers (cf. section 4.3 for the relation of content dictionaries with OMDoc

documents).

3 In fact the reference <OMOBJ xref="commutativity-formula"/> pointing to the
OMOBJ with the id attribute commutativity-formula uses an extension of OMDoc

to OpenMath that allows to represent formulae as directed acyclic graphs pre-
venting exponential blowup. It is licensed by the OpenMath standard, since pure
OpenMath trees can be generated automatically from it.



6

MathMl [IM98] is another Xml-based markup scheme for mathematics, in
contrast to OpenMath, it is more concerned with presentation markup (trying
to reach LATEX quality on the web) than with logical markup, moreover, it is
mainly concerned with the K-12 fragment of mathematics (Kindergarten to 12th

grade). OpenMath is well-integrated with MathMl:

– the basic content dictionaries of OpenMath mirror the MathMl con-
structs, there are converters between the two formats.

– MathMl supports the semantics element that can be used to annotate
MathMl presentations of mathematical objects with their OpenMath en-
coding, and OpenMath supports the presentation attribute that can be
used for annotating with MathMl presentation.

– OpenMath is the designated extension mechanism for MathMl beyond
K-12 mathematics.

Therefore, it is not a limitation of the presentational capabilities to use Open-

Math for marking up mathematical objects. As MathMl can be viewed by the
WebEQ plug-in and is going to be natively supported by the primary browsers
MS Internet Explorer and Netscape Navigator in version 6 (see http:
//www.mozilla.org for Mozilla, the open source version), MathMl will be
the primary presentation language for OMDoc.

Since OMDoc is an extension of OpenMath, it inherits its connections
to Xml and MathMl. The structure of OMDoc documents is defined in the
OMDoc document type definition DTD (cf. [Koh00b] or http://www.mathweb.
org/ilo/omdoc, where you can also find worked examples (including part of a
mathematical textbook [BS82] and an interactive book [CCS99] (IDA))).

An OMDoc document is bracketed by the Xml tags <omdoc> and </omdoc>,
and consists of a sequence of OMDoc items, that contain specialized represen-
tations for text, assertions, theories, definitions,. . . (see below). In contrast to
markup languages like LATEX, OMDoc does not partition the documents into
specific units like chapters, sections, paragraphs, by tags and nesting informa-
tion, but makes these document relations explicit with omgroup elements (see
section 7.3). This choice is motivated by the generality of the document classes
and the fact that the relative position of OpenMath documents can be de-
termined in the presentation phase. In particular, since OpenMath documents
can be hypertext documents, or generated from a database, it can be impossi-
ble to determine the structure of a document in advance, therefore we consider
document structure information as presentation information and describe it in
section 7.3.

The general pattern “definition, theorem, proof” has long been considered
paradigmatic of mathematical documents like textbooks and papers. To support
this structure, OMDoc provides elements for mathematical items and theory
items which we will describe in sections 4 and 5. Since proofs have a more
complex internal structure, we will defer them to section 6. Before we come to
these, we will describe the structure of intermediate explanatory text (section 3).
Finally, we will reserve section 7 for auxiliary items like exercises, applets, etc.



7

3 Text Items

The OMDoc text items are Xml elements that can be used to accommodate
and classify the explanatory text parts in mathematical documents. We have
two kinds of them:

CMP These text items are used for comments and describing mathematical prop-
erties inside other OMDoc elements. They have an xml:lang attribute that
specifies the language, they are written in, thus using groups of CMPs with
different languages can be used for OMDoc internationalization. In confor-
mance with the Xml recommendation, we use the ISO 639 two-letter country
codes (en =̂ English, de =̂ German, fr =̂ French, nl =̂ Dutch. . . ).
CMPsmay contain arbitrary text interspersed with OpenMath objects (OMOBJ
elements) (see the OpenMath standard [CC98] for details), omlets (see
section 7) and hyperlinks (see below). No other elements are allowed. In
particular, presentation elements like paragraphs, emphases, itemizes,. . . are
forbidden, since OMDoc is concerned with logical markup. Generating pre-
sentation markup from this is the duty of specialized presentation compo-
nents, e.g. Xsl style sheets, which can base their decisions on presentation
information (see section 7.3) and the rsrelation element described in this
section.

ref elements are used to specify hyperlinks via the XLink/XPointer specifi-
cation (see http://www.w3c.orgTR/{xlink/xptr}). If the reference object
is defined in the same document, then it is sufficient to specify its id at-
tribute in the xlink:href attribute, otherwise, it must include the relevant
URL or xpointer material.

omtext OMDoc text elements can appear on top level (in omdoc elements).
They have an id attribute, so that they can be cross-referenced and contain
1. an (optional) metadata declaration (we use the well-known Dublin Core

schema, cf. http://purl.org/dc/ or see [Koh00b])
2. an (optional) rsrelation element specifying the rhetorical structure

relation of the text to other OMDoc elements.
3. a non-empty set of CMP elements that contain the text proper.

The rsrelation element allows to markup the discourse structure markup!discourse
structure of a document in form of so-called discourse relations following the the
well-known “Rhetorical Structure Theory” RST [MT83,Hor98] content model,
which models a text as a tree whose leaves are the sentences (or phrases) and
whose internal nodes model the relations between their daughters. This general-
izes markup schemes of text fragments offered e.g. by LATEX into categories like
“Introduction”, “Remark”, or “Conclusion”. This is sufficient for simple markup
of existing mathematical texts and to replay them verbatim in a browser, but is
insufficient e.g. for generating individualized, presentations at multiple levels of
abstractions from the representation. The OMDoc text model – if taken to its
extreme – allows to specify the respective role and contributions of smaller text
units, even down to the sub-sentence level, and make the structure of mathe-
matical texts “machine understandable”.



8

Concretely, the rsrelation element specifies the relation type in a type at-
tribute and the RST tree daughters in attributes for (for the head daughter) and
from for the others. At the moment OMDoc uses a variant of the RST [MT83]
content model that supports the relation types introduction, conclusion,
thesis, antithesis, elaboration, motivation, evidence, linkage with the
obvious meanings, motivated by the application to mathematical argumentative
texts (see also [Hor98]). The relation type also determines the default presenta-
tion.

4 Theory Items

Traditionally, mathematical knowledge has been partitioned into so-called theo-
riestheory, often centered about certain mathematical objects like groups, fields,
or vector spaces. Theories theories have been formalized as collections of

– signature declarations (the symbols used in a particular theory, together with
optional typing information).

– axioms (the logical laws of the theory).
– theorems; these are in fact logically redundant, since they are entailed by

the axioms.

In software engineering a closely related concept is known under the label of
an (algebraic) specification, that is used to specify the intended behavior of
programs. There, the concept of a theory (specification) is much more elaborated
to support the structured development of specifications. Without this structure,
real world specifications become unwieldy and unmanageable.

In OMDoc, we support this structured specification of theories; we build
upon the technical notion of a development graphgraph!development [Hut99],
since this supplies a simple set of primitives for structured specifications and
also supports management of theory change. Furthermore, it is logically equiv-
alent to a large fragment of the emerging Casl standard [CoF98] for algebraic
specification (see [AHMS00]).

All specification languages support mechanisms for specifying signature and
axiom information, in particular, most also support abstract data types as a con-
venient shorthand for sets of inductively defined objects and recursive functions
on these. We will subsume these under the label of simple theories and discuss
their representation in OMDoc in the next section. After that we will use sec-
tion 4.2 to discuss the issue of structuring and reusing theories by importing
material from other theories.

4.1 Simple Theories

Theories are specified by the theory element in OMDoc. Since signature and ax-
iom information is particular to a given theory, the symbol, definition, axiom
elements must be contained in a theory as sub-elements.

symbol This element specifies the symbols for mathematical concepts, such as
1 for the natural number “one”, + for addition, = for equality, or group

for the property of being a group. The symbol element has an id attribute



9
<theory id="monoid-thy">. . .

<symbol id="monoid">

<commonname xml:lang="en">monoid</commonname>

<commonname xml:lang="de">Monoid</commonname>

<commonname xml:lang="it">monoide</commonname>

<type system="simply-typed">

set[any] -> (any -> any -> any) -> any -> bool

</type>

</symbol>. . .

</theory>

Fig. 3. An OMDoc symbol declaration
which uniquely identifies it. This information is sufficient to allow referring
back to this symbol as an OpenMath symbol. For instance the symbol dec-
laration in Fig. 3 gives rise to an OpenMath symbol that can be referenced
as <OMS cd="monoid" name="monoid"/> If the document containing this
symbol element were stored in a data base system, the OpenMath symbol
could be looked up by its common name. The type information specified
in the signature element characterizes a monoid as a three-place predicate
(taking as arguments the base set, the operation and a neutral element).

definition Definitions give meanings to (groups of) symbols (declared in a
symbol element elsewhere) in terms of already defined ones. For example
the number 1 can be defined as the successor of 0 (specified by the Peano
axioms). Addition is usually defined recursively, etc.
The OMDoc definition element supports several kinds of definition mech-
anisms specified in the type attribute currently:
simple The FMP (see section 5) contains an OpenMath representation of

a logical formula that can be substituted for the symbol specified in the
item attribute of the definition.

inductive The formal part is given by a set of recursive equationsequa-
tion!recursive whose left and right hand sides are specified by the pattern
and value elements in requation elements. The termination proof nec-
essary for the well-definedness of the definition can be specified in the
just-by attribute of the definition.

implicit Here, the FMP elements contain a set of logical formulae that
uniquely determines the value of the symbols that are specified in the
items slot of the definition. Again, the necessary proof of unique exis-
tence can be specified in the just-by attribute.

obj This can be used to directly give the concept defined here as an Open-

Math object, e.g. as a group representation generated by a computer
algebra system.

Fig. 4 gives an example a (simple) definition of a monoid.

For a description of abstract data types see [Koh00b]

4.2 Complex Theories and Inheritance

Not all definitions and axioms need to be explicitly stated in a theory; they can
be inherited from other theories, possibly transported by signature morphism.
The inheritance information is stated in an imports element.



10
<definition id="mon.d1" item="monoid" type="simple">

<CMP>

A structure (M, ∗, e), in which (M, ∗) is a semi-group

with unit e is called a monoid.

</CMP>

</definition>

Fig. 4. A Definition of a monoid

imports This element has a from attribute, which specifies the theory which
exports the formulae.
For instance, given a theory of monoids using the symbols set, op, neut
(and axiom elements stating the associativity, closure, and neutral-element
axioms of monoids), a theory of groups can be given by the theory definition
using import in Fig. 5.

<theory id="group">

<imports id="group.import" from="monoid" type="global"/>

<axiom><CMP> Every object in

<OMOBJ><OMS cd="monoid" name="set"/></OMOBJ> has an inverse.

</CMP></axiom>

</theory>

Fig. 5. A theory of groups based on that of monoids

morphism The morphism is a recursively defined function (it is given as a set of
recursive equations using the requation element, described above). It allows
to carry out the import of specifications modulo a certain renaming. With
this, we can e.g. define a theory of rings given as a tuples (R,+, 0,−, ∗, 1) by
importing from a group (M, ◦, e, i) via the morphism {M 7→ R, ◦ 7→ +, e 7→
0, i 7→ −} and from a monoid (M, ◦, e) via the {M 7→ R∗, ◦ 7→ ∗, e 7→ 1},
where R∗ is R without 0 (as defined in the theory of monoids).

inclusion This element can be used to specify applicability conditions on the
import construction. Consider for instance the situation given in Fig. 6,
where the theory of lists of natural numbers is built up by importing from
the theories of natural numbers and lists (of arbitrary elements). The latter
imports the element specification from the parameter theory of elements,
thus to make the actualization of lists to lists of natural numbers, all the
symbols and axioms of the parameter theory must be fulfilled by the natural
numbers. For instance if the parameter theory specifies an ordering relation
on elements, this must also be present in theory Nat, and have the same
properties there. These requirements can be specified in the inclusion ele-
ment of OMDoc. Due to lack of space, we will not elaborate this and refer
the reader to [Hut99,Koh00b].

4.3 OpenMath Documents and Content Dictionaries

In the examples we have already seen that OMDoc documents contain def-
initions of mathematical concepts, which need to be referred to using Open-

Math symbols. In particular, documents describing theories like barshe.omdoc
or ida.omdoc even reference OpenMath symbols they define themselves. Thus



11

theory−inclusion

Proof Obligations

Actualization

imports

imports imports

NatOrd

0, s, Nat, <
cons, nil cons, nil

Elem, <

0, s, Nat, <
TOSet

Elem, <

NatOrdList OrdList

Fig. 6. A Structured Specification of Lists
it is necessary to generate OpenMath content dictionariescontent dictionary
from OMDoc documents, or develop an alternative mechanism to establish
symbol identity in OMS. The generation of content dictionaries is already sup-
ported in the MBase system, but can also be achieved by writing specialized
Xsl style sheets. For the purposes of this paper, we will only assume that one
of these measures has been taken.

5 Mathematical Items

We will now present the mathematical items that are not integral parts of a
theory, since they are optional (they can be derived from the material specified
in the theory), they can be specified outside a theory element. We have the
following elements:

FMP This is the general element for representing mathematical formulae as Open-

Math objects, for instance the formula in Fig. 2. As logical formulae of-
ten come as sequents, i.e. a conclusion is drawn from a set of assump-
tions, OMDoc also allows the content of an FMP to be a (possibly empty)
set of assumption elements followed by a conclusion (all of which con-
tain OMOBJ elements). The intended meaning is that the FMP asserts that
the conclusion is entailed by the assumptions in the current context. As a
consequence, <FMP><conclusion>A</conclusion></FMP> is equivalent to
<FMP>A</FMP>.

assertion This is the element for all statements (proven or not) about math-
ematical objects (see Fig. 7). Traditional mathematical documents discern
various kinds of these: theorems, lemmatalemma, corollariescorollary, conjec-
tures, problems, etc. These all have the same structure (formally, a closed log-
ical formula). Their differences are largely pragmatic (theorems are normally
more important in some theory than lemmata) or proof-theoretic (conjec-
tures become theorems once there is a proof). Therefore, we represent them
in the general assertion element and leave the type distinction to a type

attribute. These type specifications in OMDoc documents should only be
regarded as defaults, since e.g. reusing a mathematical paper as a chapter in
a larger monography, may make it necessary to downgrade a theorem (e.g.
the main theorem of the paper) and give it the status of a lemma in the
overall work.



12
<assertion id="ida.c6s1p4.l1" type="lemma">

<CMP> A semi-group has at most one unit.</CMP>

</assertion>

Fig. 7. An assertion about semigroups

alternative-def Since there there can be more than one definition per sym-
bol, OMDoc supplies the alternative-def element that can be specified
outside a theory that can be specified outside a given theory.

example In mathematical practice, examples play an equally great role as proofs,
e.g. in concept formation (as witnesses for definitions or as either supporting
evidence, or as counterexamples for conjectures). Therefore, examples are
given status as primary objects in OMDoc. Conceptually, we model an
example for a mathematical concept C as a triple (W,A,P), where W =
(W1, . . . ,Wn) is an n-tuple of mathematical objects, A is an assertion of
the form A = ∃W1 . . .Wn.B, and P is a proof that shows A by exhibiting
the witnesses Wi for Wi. The example (W,∃W1 . . .Wn.¬B,P) is a counter-
example to a conjecture T: = ∀W1 . . .Wn.B, and (W,A,P ′) a supporting
example for T.

OMDoc specifies this intuition in an element example that contains a set
of OpenMath objects (the witnesses), and has the attributes

– item (for what concept or assertion is it an example),

– type (one of the keywords for or against for the function)

– assertion (a reference to the assertion A mentioned above)

– proof (a reference to the constructive proof P)

Consider for instance the structure W: = (A∗, ◦) of the set of words over an
alphabetA together with word concatenation ◦. Then (W,∃W.monoid(W ),P1)
is an example for the concept of a monoid (with the empty word as the neu-
tral element), if e.g. P1 uses W to show the existence of W . The example
(W,∃Vmonoid.¬group(V ),P2 and a proof that uses W as a witness for V , it is
a counterexample to the conjecture C: = ∀Vmonoid.group(V ), since Q → ¬C.
Fig. 8 gives the OMDoc representation of this example of an example.

<example id="mon.ex1" item="monoid" type="for"

assertion="strings-are-monoids" proof="sam-pf">

<CMP>The set of strings with concatenation</CMP>

<OMOBJ><OMS cd="simple-monoids" name="strings"/></OMOBJ>

</example>

<example id="mon.ex2" item="monoid" type="against"

assertion="monoids-are-groups" proof="mag-pf">

<CMP>The set of strings with concatenation is not a group</CMP>

<OMOBJ><OMS cd="simple-monoids" name="strings"/></OMOBJ>

</example>

Fig. 8. An OMDoc representation of an example

Finally, there are OMDoc elements that allow to structure the knowledge in
theories. We have already seen the possibility to define (parts of) theories by



13

so-called theory morphism specified in imports and include elements in sec-
tion 4.2. Following Hutter’s development graph [Hut99], we can use the knowl-
edge about theories to establish so-called inclusion morphismsmorphism!inclusion
that establish the source theory as included (modulo renaming by a morphism)
in the target theory. This information can be used to add further structure to
the theory graph and help maintain the knowledge base with respect to changes
of individual theories.

An axiom-inclusion element contains a morphism (see section 4.2), and the
attributes from and to specify the source and target theories. For any axiom in
the source theory there must be an assertion in the target theory (whose FMP

is just the image of the FMP of the axiom under the morphism) with a proof.
These are represented by an empty by element, which has the attributes axiom,
assertion, and proof with the obvious meanings.

A theory-inclusion is a global variant of axiom-inclusion that can be
obtained as a path of axiom-inclusions (or other theory-inclusion) which
are specified in the by attribute.

6 Proofs

Proofsproof are representations of evidence for the truth of assertion. Like in
the case of definitions, there can in general be more than one proof for a given
assertion. Furthermore, it will be initially infeasible to totally formalize all math-
ematical proofs needed for the correctness management of the knowledge base
in one universal proof format, therefore OMDoc supports a proof format whose
structural and formal elements are derived from the PDSPDSproof plan data
structure4 structure developed for the Ωmega system, but also allows natural
language representations at every level. In the future, it may be necessary and
advantageous to allow various other proof representations there like proof scripts
(Ωmega replay files, Isabelle proof scripts,. . . ), references to published proofs,
resolution proofs, etc, to enhance the coverage.

This mixed representation enhances multi-modal proof presentation [Fie97],
and the accumulation of proof information in one structure. Informal proofs
can be formalized [Bau99]; formal proofs can be transformed to natural lan-
guage [HF96].

The OMDoc proof environment contains a list of proof steps. Such derive

steps have the attributes id (so it can be referred to) and the optional type
attribute. It can contain the following child elements (in this order)

CMP This gives the natural language representation of the proof step.

4 The Proof plan Data Structure (PDS) was introduced in the
ΩmegaΩmega [BCF+97] system to facilitate hierarchical proof planning and
proof presentation at more than one level of abstraction. In a PDS, expansions
of nodes justified by tactic applications are expanded, but the information about
the tactic itself is not discarded in the process as in tactical theorem provers like
Isabelle or NuPrL. Thus proof nodes may have justifications at multiple levels of
abstraction in a hierarchical proof data structure.



14

The rest of the children form the formal content of the derive step, together,
they represent the information present e.g. in a PDS node.

assumption, conclusion A formal representation of the local assumptions and
the assertion made by this proof step, they contain CMP and FMP elements.
Local assumptions should not be referenced to outside the derive step they
were made in. Thus the derive step serves as a grouping device for local
assumptions.

method is an OpenMath symbol representing a proof method, tactic, or infer-
ence rule that justifies the assertion made in the conclusion element.

premise These are empty elements whose xlink:href attribute is used to refer
to the proof- or local assumption nodes that the method was applied to to
yield this result.

proof If a derive step is a logically (or even mathematically) complex step that
can be expanded into sub-steps, then the embedded proof element can be
used to specify the sub-derivation (which can have similar expansions in
embedded proof environments again).
This embedded proof allows us to specify generic markup for the hierarchic
structure of proofs.

<derive id="barshe.2.1.2.proof.a.proof.D2.1">

<CMP>By <OMOBJ><OMS cd="barshe" name="alg-prop-reals.A2"/></OMOBJ>

we have z + (a + (−a)) = a + (−a)
</CMP>

<conclusion>(z + a) + (−a) = z + (a + (−a))</conclusion>
<method><OMS cd="omega-base-calc" name="foralli*"/>c

<parameter><OMOBJ><OMV name="z"/></OMOBJ></parameter>

<parameter><OMOBJ><OMV name="a"/></OMOBJ></parameter>

<parameter>−a</parameter>

</method>

<premise xlink:href="alg-prop-reals.A2"/>

</derive>

Fig. 9. A derive proof step

7 Auxiliary Elements

In this section we will present OMDoc elements that are not strictly mathemat-
ical content, but have useful functions mathematical documents or knowledge
bases. For the OMDoc representations of things like exercises we refer the reader
to [Koh00b] and concentrate on the representation of applets and presentation
information instead.

7.1 Non-Xml Data and Program Code in OMDoc

Sometimes mathematical services have to be able to communicate (e.g. to the
MBase system for storage) data in non-Xml syntax, or whose format is not
sufficiently fixed to warrant for a general Xml encoding. Examples of this are
pieces of program code, like tactics of tactical theorem provers, linguistic data of
proof presentation system, etc. One characteristic of such data seems to be that



15

it is private to certain applications, but may be relevant to more than one user.
For this, OMDoc provides the private element, which contains a the usual
CMPs and a data element described below. It has the attributes

pto specifies the system to which this data is private.
pto-version its version, this may be necessary, if the data (format) changes

with versions.
format/type the type of the data and the format the data is in, the meaning

of these fields is determined by the system itself.

requires specifies the identifiers of the items that this data depends upon, this
will often be code items.

theory allows to specify the mathematical theory (see section 4) that the data
is associated with.

The data element contains the data of a in a CDATA section (this is the Xml

way of allowing data that cannot be parsed by the Xml parser). If the content
of this field is too large to store directly in the OMDoc or often changes, then
it can be substituted by a link, specified in the xlink:href attribute.

The code element is for embedding pieces of code into an OMDoc docu-
ment. This element has the same attributes as the private element, like it, it
can contain CMP, and data fields. Furthermore, it can contain documentation
elements input, output and effect that specify the behavior of the procedure
defined by the code fragment.

7.2 Applets in OMDoc

omlet elements contain OMDoc specifications of applets (program code that
can in some way executed during document manipulation). omlets generalize
the well-known applet concept in two ways: The computational engine is not
restricted to plug-ins, of the browser (current servlet technology can be used
and specified using code and omlet elements in OMDocs) and the program
code can be specified and distributed more easily. Making document-centered
computation easier to manage.

<code id="callmint">

<input>None</input>

<output>The result</output>

<effect>None</input>

<data><![CDATA[... the call-mint code goes here...]]></data>

</code>

<derive id="monp_1">

<CMP> <omlet type="js" function="callMint">Intros.</omlet></CMP>

<method><OMS name="Intros" cd="COQ"/></method>

</derive>

Fig. 10. An omlet

Like the HtML applet tag, the omlet element can be used to wrap any (set
of) well-formed element. It has the following attributes.



16

type This specifies the computation engine that should execute the code. De-
pending on the application, this can be a programming language, such as
javascript (js) or Oz, or a process that is running (in our case the LΩUI
or Ωmega services).

function The code that should be executed by the omlet is specified in the
function attribute. This points to an OMDoc code element that is some-
how accessible (e.g. in the same OMDoc). This indirection allows us to
reuse the machinery for storing code in OMDocs. For a simple example see
Fig. 10.

argstr allows to specify an (optional) argument string for function, so that the
program in the can be kept general. A call to the LΩUI interface, would then
have the form in Fig. 11. Here, the code in the code element sendtoloui

(which we have not shown) would be java code that simply sends the argstr
to LΩUI’s remote control port.

The expected behavior of the omlet can be implemented in the Xsl style sheet,
that in the case of e.g. translation to Mozilla will put the callmint code
directly into the generated html.

<CMP> Let’s prove it

<omlet id="bla type="java" function="sendtoloui"

argstr="load(problem=’monoid_uniq)">

interactively

</omlet>

</CMP>

Fig. 11. An omlet calling an external process

7.3 Presentation

In the introduction we have stated that one of the design intentions behind OM-

Doc is to separate content from presentation, and leave the latter to the user.
In this section, we will briefly touch upon presentation issues. The technical side
of this is simple: OMDoc documents are regular Xml documents that can be
processed by Xsl [Dea99] style sheet to produce conventional presentations from
OMDoc representations of mathematical documents. At the moment, we have
Xsl style sheets to convert OMDoc to HtML (one each specialized to the re-
spective browsers), LATEX, and to the input languages of the Ωmega, InKa, and
λClam systems (they can be found at http://www.mathweb.org/ilo/omdoc).
At the moment, these hard-code certain presentation decisions for the overall
appearance of the documents, but we are working on style sheet generators that
make these user adaptive.

The mathematical concepts and symbols introduced in an OMDoc docu-
ment (symbol elements) often carry typographic conventions, that cannot be
determined by general principles alone. Therefore, they need to be specified in
the document itself, so that typographically good representations can be gen-
erated from this (and subsequent) documents. The presentation element in
Fig. 12 allows to add Xsl style sheet information to symbols, where they are



17
<presentation format="TeX">

<xsl:template match="OMA[OMS[position()=1 and

@name=’monoid’ and

@cd=’ida.monoid’]]">

(<xsl:apply-templates select="*[2]"/>,

<xsl:apply-templates select="*[3]"/>,

<xsl:apply-templates select="*[4]"/>)\in{\bf MON}

</xsl:template>

</presentation>

Fig. 12. Xsl Presentation for the symbol in Fig. 3
defined. In this case, the style sheet information will cause an OpenMath ex-
pression

<OMA>

<OMS cd="ida" name="monoid"/><OMV name="M"><OMV name="o"><OMV name="e">

</OMA>

to be rendered as (M,o, e) ∈ MOD in a TEX or LATEX document derived from
ida.xml via a suitable Xsl style sheet. Of course, this information will need to
be included into the respective style sheets. This is easily realized by a two-stage
style sheet process: in the first pass, a general (higher-order) style sheet extracts
the presentation information from the relevant OMDoc documents, and in the
second stage, this is used to present the OMOBJs in the source OMDoc.

The presentation elements discussed up to now, allow to specify the presen-
tation of OpenMath elements. To specify the overall structure of mathematical
texts, such as books, chapters, sections, or paragraph, but also enumerations,
itemizes, lists, we use the omgroup element. We use a general construct that
specifies the presentation in the type attribute, since the presentation compo-
nent (style sheet) may need to decide on that. omgroup elements contain an
optional metadata element and then a sequence of omgroup and ref elements.
The first allow to define a recursive document structure, and the second are used
to refer to other OMDoc elements by the use of xlink attributes (most notably
xlink:href for hyperlinks).

Note that this representation that relies on explicit (hyper)-references in-
stead of nesting information allows to specify more than one document using
the mathematical material specified in the other OMDoc items. In particular,
it becomes possible to specify and store more than one linearization of the ma-
terial in a document, or generate linearizations or “guided tours” see [SBC+00]
for a details.

8 Conclusion

We have proposed an extension to the OpenMath standard that allows to
represent the semantics and structure various kinds of mathematical documents,
including articles, textbooks, interactive books, courses. We have motivated and
described the language and presented an Xml document type definition for it.

We are currently testing this in the development of a user-adaptive interactive
book including proof explanation based on IDA [CCS99] in close collaboration
with the authors. This case study unites several of the application areas dis-
cussed in the introduction. The re-representation of IDA in the OMDoc format



18

makes it possible to machine-understand the structure of the document, read
it into the MBase [FK00,KF00] knowledge base system without loss of infor-
mation, preserving the structure, and generate personalized sub-documents or
linearizations of the structured data based on a simple user model. Furthermore,
the OMDoc representation supports the formalization of (parts of) the mathe-
matical knowledge in IDA and makes it accessible to the Ωmega mathematical
assistant system [BCF+97], which can prove some of the problems either fully
automatically (by proof planning) or in interaction with the authors. This newly
developed formal data (it is not present in IDA now) will enable the reader to
read and experiment with the proofs behind the mathematical theory, much
as she can in the present version with the integrated computer algebra system
GAP [S+95]. Finally, OMDoc will serve as the input format for the Lima system
(see [Bau99]), an experimental natural language understanding system special-
ized to mathematical texts (this can be used to develop formalization in FMPs

from the text in the respective CMPs).
In the context of this project, we have developed first authoring tools for OM-

Doc that try to simplify generating OMDoc documents for the working mathe-
matician. There is a simple OMDoc mode for emacs, and a LATEX style [Koh00a]
that can be used to generate OMDoc representations from LATEX sources and
thus help migrate existing mathematical documents. A second step will be to
integrate the LATEX to OpenMath conversion tools. Michel Vollebregt has built
a program that traverses an OMDoc and substitutes various representations
for formulae (including the Mathematica, GAP, and Maple representations)
with the corresponding OpenMath representations.

Acknowledgments

The work presented in this report was supported by the “Deutsche Forschungs-
gemeinschaft” in the special research action “Resource-adaptive cognitive pro-
cesses” (SFB 378), Project Ωmega.

The author would like to thank Armin Fiedler, Andreas Franke, Martin Pol-
let, and Julian Richardson for productive discussions, and the RIACA group
(specifically Arjeh Cohen, Olga Caprotti, Michel Vollebregt, and Manfred Riem)
for valuable input from the IDA case study.

References

[AHMS00] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Towards
an evolutionary formal software-development using CASL. In C. Choppy
and D. Bert, editors, Proceedings Workshop on Algebraic Development Tech-

niques, WADT-99. Springer, LNCS 1827, 2000.

[AK00] Alessandro Armando and Michael Kohlhase. Communication protocols for
mathematical services based on KQML and OMRS. In Manfred Kerber and
Michael Kohlhase, editors, CALCULEMUS-2000, Systems for Integrated

Computation and Deduction, 2000, AKPeters. forthcoming.

[AvLS96] J. Abbot, A. van Leeuwen, and A. Strotmann. Objectives of Open-
Math. Technical report 12, RIACA, Technische Universiteit Eindhoven,
The Netherlands, June 1996.



19

[AZ00] Alessandro Armando and Daniele Zini. Towards Interoperable Mechanized
Reasoning Systems: the Logic Broker Architecture. In A. Poggi, editor,
AI*IA-TABOO Workshop ‘From Objects to Agents: Evolutionary Trends of

Software Systems’, 2000.

[Bau99] Judith Baur. Syntax und semantik mathematisher texte — ein prototyp.
Master Thesis, Saarland University, 1999.

[BBS99] Christoph Benzmüller, Matthew Bishop, and Volker Sorge. Integrating Tps

and Ωmega. Journal of Universal Computer Science, 5(2), 1999.

[BCF+97] The Ωmega group. Ωmega: Towards a mathematical assistant. In William
McCune, editor, CADE-14, LNAI 1249, pages 252–255, 1997. Springer Ver-
lag.

[BPSM97] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML). W3C Recommendation TR-XML, December 1997. http:
//www.w3.org/TR/PR-xml.html.

[BS82] Robert G. Bartle and Donald Sherbert. Introduction to Real Analysis. Wiley,
2 edition, 1982.

[BSBG98] R. Boulton, K. Slind, A. Bundy, and M. Gordon. An interface between
CLAM and HOL. In Jim Grundy and Malcolm Newey, editors, TPHOLS-98,
pages 87–104, 1998.

[CC98] Olga Caprotti and Arjeh M. Cohen. Draft of the Open Math standard. The
Open Math Society, http://www.nag.co.uk/projects/OpenMath/omstd/,
1998.

[CCS99] Arjeh Cohen, Hans Cuypers, and Hans Sterk. Algebra Interactive! Springer
Verlag, 1999. Interactive Book on CD.

[CoF98] Language Design Task Group CoFI. Casl - the CoFI algebraic
specification language - summary, version 1.0. Technical report,
http://www.brics.dk/Projects/CoFI, 1998.

[DCN+00] Louise A. Dennis, Graham Collins, Michael Norrish, Richard Boulton, Kon-
rad Slind, Graham Robinson, Mike Gordon, and Tom Melham. The Prosper
toolkit. In Proc. TACAS-2000, 2000.

[Dea99] Stephen Deach. Extensible stylesheet language (xsl) specification. W3c
working draft, W3C, 1999. http://www.w3.org/TR/WD-xsl.

[FF94] T. Finin and R. Fritzson. KQML — a language and protocol for knowl-
edge and information exchange. In Proceedings of the 13th Intl. Distributed

Artificial Intelligence Workshop, pages 127–136, 1994.

[FHJ+99] Andreas Franke, Stephan M. Hess, Christoph G. Jung, Michael Kohlhase,
and Volker Sorge. Agent-oriented integration of distributed mathematical
services. Journal of Universal Computer Science, 5:156–187, 1999.

[Fie97] Armin Fiedler. Towards a proof explainer. In Siekmann et al. [SPH97],
pages 53–54.

[Fie99] Armin Fiedler. Using a cognitive architecture to plan dialogs for the adaptive
explanation of proofs. In Thomas Dean, editor, Proceedings IJCAI-99, pages
358–363, 1999. Morgan Kaufmann.

[FK99a] Andreas Franke and Michael Kohlhase. Communicating with mbase in
kqml. Internet Draft http://www.mathweb.org/mbase, 1999.

[FK99b] Andreas Franke and Michael Kohlhase. System description: MathWeb, an
agent-based communication layer for distributed automated theorem prov-
ing. In Harald Ganzinger, editor, Proceedings CADE-16, LNAI 1632, pages
217–221. Springer Verlag, 1999.



20

[FK00] Andreas Franke and Michael Kohlhase. System description: MBase, an
open mathematical knowledge base. In David McAllester, editor, CADE-
17, LNAI 1831, pages 455–459. Springer Verlag, 2000.

[HF96] Xiaorong Huang and Armin Fiedler. Presenting machine-found proofs. In
M.A. McRobbie and J.K. Slaney, editors, Proceedings CADE-13, LNAI 1104,
pages 221–225, 1996. Springer Verlag.

[HF97] Xiaorong Huang and Armin Fiedler. Proof verbalization in PROVERB. In
Siekmann et al. [SPH97], pages 35–36.

[Hor98] Helmut Horacek. Generating inference-rich discourse through revisions of
RST-trees. In Proceedings AAAI-98, pages 814–820. MIT Press, 1998.

[Hut99] Dieter Hutter. Reasoning about theories. Technical report, DFKI, 1999.
[IM98] Patrick Ion and Robert Miner. Mathematical Markup Language (MathML)

1.0 specification. W3C Recommendation 1998. http://www.w3.org/TR/

REC-MathML/.
[KF00] Michael Kohlhase and Andreas Franke. Mbase: Representing knowledge

and context for the integration of mathematical software systems. Journal
of Symbolic Comutation, 2000. forthcoming.

[Koh00a] Michael Kohlhase. Creating omdoc representations from LATEX. Internet
Draft http://www.mathweb.org/omdoc, 2000.

[Koh00b] Michael Kohlhase. OMDoc: Towards an openmath representation of math-
ematical documents. Seki Report SR-00-02, Fachbereich Informatik, Uni-
versität des Saarlandes, 2000.

[MT83] William Mann and Sandra Thompson. Rhethorical structure theory: A the-
ory of text organization. Technical Report ISI/RR-83-115, ISI at University
of Southern California, 1983.

[RHJ98] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Specification.
W3C Recommendation 1998. http://www.w3.org/TR/PR-xml.html.

[S+95] Martin Schönert et al. GAP – Groups, Algorithms, and Programming.
RWTH Aachen, Germany, 1995.

[SBC+00] The Ωmega group. Adaptive course generation and presentation. In
P. Brusilovski, editor, Proceedings of ITS-2000 workshop on Adaptive and

Intelligent Web-Based Education Systems, Montreal, 2000.
[Sho90] Y. Shoham. Agent-Oriented Programming. Technical report, Stanford Uni-

versity, 1990.
[SHS98] M. Kohlhase S. Hess, Ch. Jung and V. Sorge. An implementation of dis-

tributed mathematical services. In Arjeh Cohen and Henk Barendregt, ed-
itors, CALCULEMUS and TYPES, 1998.

[SPH97] J. Siekmann, F. Pfenning, and X. Huang, editors. Proceedings of the First
International Workshop on Proof Transformation and Presentation, Schloss
Dagstuhl , Germany, 1997.


